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Abstract

We consider error propagation near an unstable equilibrium state (classified as an unstable focus) for
spatially uncorrelated and correlated finite-amplitude initial perturbations using short- (up to several weeks)
and intermediate (up to 2 months) range forecast ensembles produced by a barotropic regional ocean model.
An ensemble of initial perturbations is generated by the Latin Hypercube design strategy, and its optimal
size is estimated through the Kullback–Liebler distance (the relative entropy). Although the ocean model
is simple, the prediction error (PE) demonstrates non-trivial behavior similar to that existing in 3D ocean
circulation models. In particular, in the limit of zero horizontal viscosity, the PE at first decays with time
for all scales due to dissipation caused by non-linear bottom friction, and then grows faster than (quasi)-
exponentially. Statistics of a prediction time scale (the irreversible predictability time (IPT)) quickly depart
from Gaussian (the linear predictability regime) and becomes Weibullian (the non-linear predictability
regime) as amplitude of initial perturbations grows. A transition from linear to non-linear predictability is
clearly detected by the specific behavior of IPT variance. A new analytical formula for the model predictability
horizon is introduced and applied to estimate the limit of predictability for the ocean model.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A number of recent theoretical studies have demonstrated that the robust dynamical regimes
(attractors) of oceanic circulation often present a combination of (quasi-stable) equilibrium
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states and transient dynamics between these flow configurations (Berloff and McWilliams, 1999;
Schmeits and Dijkstra, 2000; Stanev and Staneva, 2000; Sura et al., 2001; Lermusiaux et al., 2006
among others). For example, Eremeev et al. (1992) and Stanev and Staneva (2000) identified sin-
gle, double, and multiple basin-scale current gyres observed in the Black Sea as quasi-stable
equilibrium states, for which transient dynamics were induced by baroclinic instability and
mesoscale anti-cyclonic eddy activity. Another example that was well documented in obser-
vations and numerical models is the path variation of the Kuroshio south of Japan (Masuda et al.,
1999).

Clearly, an equilibrium state influences the phase-spatial organization of the local prediction
error growth rate, i.e., it organizes the local predictability for a forecast model. Therefore, the
knowledge on how small- and finite-amplitude perturbations evolve near this equilibrium state
is important for understanding regional model predictability and identifying the persistence of
circulation ocean and atmospheric patterns with oscillations near equilibrium states (Robinson et
al., 1996).

The primary goals of the proposed study are (1) to understand what mechanism(s) can form
the statistics of finite-amplitude prediction error (PE) near an unstable equilibrium state identified
as an unstable focus, (2) to check how quickly such statistics depart from Gaussian (if such a
departure exists) for the short- (up to several weeks) and intermediate (up to a couple of months)
range forecasts, and (3) how to quantify PE statistics for perfect models with initial conditions
corrupted by finite-amplitude stochastic perturbations.

The computations presented below assume a perfect model scenario with stochastic perturba-
tions in initial conditions. A non-linear barotropic model of wind-driven circulation in an idealized
basin is used to understand evolution of prediction error. Although this model seems to be too
simple in comparison with large state of the art oceanic models, it describes a generic system with
many degrees of freedom while not requiring large computer resources. The latter feature allows
us to generate non-rank deficient forecast ensembles and strongly reduce errors in determination
of appropriate distributions in comparison with small ensemble integration.

Predictability in real-time systems can be qualified in many ways (for example, see Smith et
al., 1999). The proposed study defines model predictability in the stochastic stability context.
The stochastic stability addresses effects of random perturbations on trajectories of a dynam-
ical system and estimates its stability in terms of probabilistic measures, such as expected
values or distribution functions (Freidlin and Wentzell, 1998). In general, the stochastic sta-
bility and predictability differ from one another. However, if a time scale quantifies the model
predictability, and if this scale indicates the time when the forecast uncertainty exceeds some
boundary or when information on the initial condition is lost, the stochastic stability and pre-
dictability are interchangeable. Since these time scales are widely used in meteorology (see,
for example, Toth, 1991) and oceanography (Robinson et al., 1996), the stochastic stabil-
ity concept seems to be a useful tool for the predictability analysis of large hydrodynamic
models.

The loss of superposition and the extreme inhomogeneity common in non-linear hydrodynamic
models require applying local measures of predictability and corresponding time scales (see
Lorenz, 1965; Benzi and Carnevale, 1989; Ivanov et al., 1994; Boffetta et al., 1998; Smith et al.,
1999; Mu et al., 2004, and references thereof). It is widely held that time scales are related to the
inverse of the largest Lyapunov exponent estimated by the tangent linear models in assumption
of small-amplitude initial perturbations. The linear approach gives reasonable estimations of
model predictability in many practical cases. However, it cannot provide critical boundaries on
finite-amplitude stability of the thermohaline ocean circulation.
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In regional ocean modeling, neither initial perturbations nor prediction errors are small. There-
fore, the linear predictability regime, where the PE grows (quasi)-exponentially or even faster than
exponentially, may be quickly replaced by the non-linear predictability regime, for which the pre-
dictability time is much larger than the inverse of the leading Lyapunov exponent (Aurell et al.,
1996; Lorenz, 2005 and others).

To quantify both the linear and non-linear predictability the proposed study uses the so-called
irreversible predictability time (IPT) originally introduced by Ivanov et al. (1994). Chu et al. (2002)
demonstrated the capability of IPT for the analytical estimate. They have obtained an analytical
formula for the mean IPT and variance of IPT for Lorenz-84 atmosphere model (Lorenz, 1984).
Here, we would like to show how IPT statistics change with a transition from linear to non-
linear predictability regimes, and to find what kind of PE statistics may accompany the non-linear
predictability regime.

The paper is organized as follows. Section 2 briefly discusses IPT and its statistics. Section
3 analyzes the specificities of the reference solution reproduced by a barotropic regional ocean
model. The ensemble of stochastic perturbations added to the initial conditions is described
in Section 4. Section 5 depicts the optimal ensemble size of stochastic perturbations using the
Kullback–Leibler distance. Section 6 discusses the initial PE decay due to viscosity damping. Sec-
tion 7 studies the response of the model to finite-amplitude initial perturbations, and analyzes a
basic feature of the PDF of IPT (denoted τ-PDF), such as non-Gaussianity. Section 8 gives evidence
for using a three-parameter Weibull distribution as IPT statistics in the non-linear predictabil-
ity regime. Variations of mean IPT and its variance for transition from the linear to non-linear
predictability regime are discussed in Section 9. Section 10 estimates the model predictability
horizon (the maximum predictability time for the given statistics of initial perturbations). Section
11 summarizes the obtained results.

2. Irreversible predictability time

Let the prediction error Z(x, t) be defined as a difference between the reference solution Ŷ(x, t)
(i.e., the solution of a perfect model without errors in initial conditions; Lacarra and Talagrand,
1988) and an individual forecast Y(x, t):

Z(x, t) = Ŷ(x, t) − Y(x, t), Z0 = Z(x, t0),

where (x, t) are spatial coordinates and time and Z0 refers to the initial perturbations. Y(x, t) is
the state vector, which may include velocity, temperature, salinity and other fields.

The ocean-atmospheric model predictability is often quantified by the weighted relative root
mean square error (see Robinson and Haidvogel, 1980; Holland and Malanotte-Rizzoli, 1989;
Brasseur et al., 1996; Robinson et al., 1996; Wirth and Ghil, 2000 among others) written as

J(Z0,W, t) = (Z,WZ) · J−1
norm(t), (1)

where W is the weight matrix, (·, ·) is the inner product, and the function Jnorm(t) is specified
from the physics.

The IPT is defined as the time τ, at which J(Z0, W, t) reaches a predetermined level ε̄2 for the
first time:

τ(Z0,W, ε̄) = inf
t≥0

(t|J(Z0,W, t) > ε̄2), (2)

where ε̄ is a non-dimensional tolerance level (accepted prediction accuracy).
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Fig. 1. The IPT and e-folding time for an oscillating prediction error. (a) IPT (τ) computed in an individual forecast.
Shaded zones show returns of model predictability. (b) An ensemble of J (dashed curves), the ensemble averaged J (solid
curve) and the e-folding time (τe), and (c) the ensemble of J (dashed curves) and an appropriate ensemble of IPT (τ1, . . .,
τN).

This definition is illustrated by Fig. 1a. Clearly, the IPT defines the model predictability on the
condition that any returns of model predictability (the shaded zones in Fig. 1a) do not contribute
to the prediction skill.

The mean IPT differs from the e-folding or the doubling time when J oscillates or is random. To
compare, for example, the e-folding and the irreversible predictability time, we should suppose in
Eq. (2) Jnorm = (Z0, Z0) and ε̂2 = e2. The e-folding time is the time when 〈J〉 crosses e2 (Fig. 1b):

τe(W) = max
t≥0

(t|〈J(Z0,W, t)〉 ≤ e2), (3)

where the brackets 〈·〉 denote the average over the ensemble of initial perturbations Z0.
The mean IPT for the same e is computed by

〈τ(W, e)〉 = 〈inf
t≥0

(t|J (Z0,W, t) > e2)〉, (4)
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where the averaging is over the ensemble of IPTs (τ1, . . ., τN) induced by the ensemble of Z0
(Fig. 1c). Chu and Ivanov (2005) pointed out that the mean IPT is the lower bound of e-folding
time:

τe(W) ≥ 〈τ(W, e)〉.
In practical applications, the ensemble generated τ-PDF (F (τ,W, ε̄), hereafter, this is a PDF

which corresponds to the given ensemble of initial perturbations), the cumulative distribution
function of τ (τ-CDF):

P(W, ε̄, t − t0) = Prob(τ ≥ t − t0), (5a)

and τ-moments calculated by

〈τk(W, ε̄)〉 = k

∫ ∞

t0

(t − t0)k−1P(W, ε̄, t − t0) dt, k = 1 . . . K, (5b)

may be used to quantify model predictability. The first four unbiased τ-moments determine τ-mean
(〈τ〉), τ-variance (〈�τ2〉), τ-skewness (SK) and τ-kurtosis (KU).

For simplicity, the further analysis supposes (a) to replace the weight matrix W by the identity
matrix I, (b) to describe flow dynamics in a quasi-geostrophic approximation using the geostrophic
stream function Ψ (Pedlosky, 1987), and (c) to take Jnorm = (Ψ̂ , Ψ̂ ).

3. The reference solution

A shallow water circulation computed in a flat bottom semi-enclosed basin and forced by wind
and water flux across its open boundary, is taken as the reference solution. Our model leaves out the
effects of topographic and baroclinic processes but it reproduces a highly non-linear flow with a
balance on the β-plane between steady wind forcing, non-linear bottom friction and inertial terms
of the model. The model is similar to Veronis’ model of wind-driven circulation in a rectangular
basin (Veronis, 1966) but with a non-linear bottom friction.

The computation domain presents a rectangular basin with depth H (=2 km) centered at 35◦N.
The domain is bounded by the rigid (Λ) and open boundaries (Domain-A depicted in the top
panel of Fig. 2). This basin extends L2 = 1000 km (L1 = 1050 km) in the north–south (east–west)
directions. A Cartesian coordinate system is used with the origin in the southwest corner. The
x1-axis points towards the east, and the x2-axis towards the north.

The barotropic mode of the Princeton Ocean Model (POM) (Blumberg and Mellor, 1987) is
applied to compute the horizontal velocities u1, u2, and the surface elevation ζ in Domain-A with
no-slip boundary conditions. The circulation is forced by wind with stress varying with latitude:

τw

ρ0
= (−10−3 m2 s−2) cos

π x2

L2
, (6a)

and the prescribed open boundary conditions (ub and ζb) explained below. Here,
ρ0 = 1025.44 kg/m3 is the reference density. The model runs with time step equaled to 2.5 min
and reproduces the circulation with horizontal resolution of 50 km.

The Coriolis parameter varies linearly with a β-plane approximation f = f0 +βx2, where
f0 = 2Ω sinϕ0 and β = (2Ω/a) cosϕ0. Here, Ω and a are the rate of rotation and the radius of
the Earth, respectively; ϕ0 = 35◦; f0 = 0.73 × 10−4 s−1, β = 2 × 10−11 m−1 s−1.
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The horizontal kinematic viscosity is set to zero. The bottom stress is parameterized by the
quadratic drag relation:

w = (w̄1, w̄2) =
(
ᾱρ0

√
u2

1 + u2
2 u1, ᾱρ0

√
u2

1 + u2
2 u2

)
, (6b)

where the drag coefficient ᾱ = 0.0025. No model spin up exists for ᾱ < 0.0025 when any solution
is unstable.

The open boundary conditions are specified by Chu et al.’s (1997) approach. Accordingly
to this approach POM is firstly integrated with wind stress (6a) and dissipation (6b) from rest
(u = v = 0) and flat surface (ζ = 0) for 150 days in a closed rectangular basin formed by extension
of Domain-A up to 2000 km in the east (Domain-B shown in the bottom panel of Fig. 2). The
velocity and surface elevation in the left part of Domain-B computed on day 10 are utilized as
the initial conditions for the control run in Domain-A. The values of u1 and ζ along the line
x1 = 1050 km are the prescribed open boundary conditions ub and ζb between days 10 and 140.
The model spin up was found in Domain-A after 60-day integration. Here, the kinetic energy of
the reference flow slowly decays with the power exponent of 1000 day−1, oscillating with period
of about 180 days.

The circulation pattern evolves from a single semi-closed gyre with a maximum velocity of
about 0.35 m s−1 (Fig. 3a) and sea surface elevation between 0.05 and 0.1 m (not shown) to a
multi-gyre structure with maximum velocities up to 0.9–1.0 m s−1 (Fig. 3b) and high surface
elevation near 1 m in the west-northern part of the basin (not shown). This multi-gyre structure is
a model spin up reached after 60-day integration.

Fig. 2. Two areas for POM integration: Domain-A with the rigid Λ (the boundary segment between lb and la in the
counter-clockwise direction) and open Λ′ boundaries (top panel), and Domain-B with the rigid boundary (bottom
panel).
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Fig. 3. The reference circulation and normal velocity ūb on day 5 (a) and day 60 (b).

The model spin up is a non-linear regime identified by two non-dimensional numbers (Pedlosky,
1987):

Ro1 = max

(
U

f0L

)
∼ 0.7 − 0.1, Ro2 = max

(
1

f0T

)
∼ 0.12, (7)

where U ∼ 0.5–0.7 m s−1 is the characteristic velocity in the basin, L ∼ 105 m, and T ∼ 1 day are
the characteristic spatial and temporal scales of the flow, respectively.

The chosen model configuration allows us to use the same model for the analysis of model
predictability affected by different sources of uncertainty: stochastic errors inserted in initial
condition (the present study), wind (Ivanov and Chu, 2006), and open boundary conditions (Ivanov
and Chu, in preparation). Cross-correlations between different types of errors can also be studied.

Using the quasi-geostrophic approximation allows introducing a model phase space with the
basis composed from M eigenfunctions [ψ1, . . ., ψM] of a plane Laplacian operator (Δ⊥) defined
in Domain-A (for details see Appendix A) and getting the following spectral representations for
the reference solution:

Ψ̂ (x, t) =
M∑
m=1

Âm(t)ψm(x) + Ψharm(x, t), (8a)

and a perturbed solution

δΨ (x, t) =
M∑
m=1

δAm(t)ψm(x), (8b)

where δΨ = Ψ̂ − Ψ , Ψ is an individual forecast, and Ψharm is the harmonic function described
in Appendix A.

The spectral coefficients [Â1(t), . . . , ÂM(t)] and [δA1(t), . . ., δAM(t)] define the reference and
perturbed trajectories, starting, respectively, from points [Â0

1, . . . , Â
0
M] and [δA0

1, . . . , δA
0
M] in

the phase space. Appendix A specifies the optimal truncation number for both the reference and
perturbed flows as M ≈ 102.

Therefore, the dimensionality of a dynamical system (M) embedding the ocean model
should be ∼O(102). However, the real number of degrees of freedom (M0) determined by
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Syrovich’s approach (Syrovich, 1989; Aubry et al., 1991) is only about 15 (Chu and Ivanov,
2005).

We used a well-known classical stability analysis (Guckenheimer and Holmes, 1983) to classify
the model spin up (quasi-equilibrium state) in dynamical system context. The governing equations
in the spectral form (not shown) were linearized near the spin up state, and eigenvalues and
eigenfunctions of appropriate tangent operator were calculated. The spectrum of the eigenvalues
contained positive and negative real numbers only. Thus, the quasi-equilibrium state is an unstable
focus in the model phase space. Any model trajectory tends to move toward (off from) this point
in a phase plane determined by a pair of low-order (high-order) modes.

4. Perturbations of initial conditions

The main question in ensemble forecasting is how to generate a set of initial perturbations.
The present study uses a Monte Carlo method to produce ensembles of perturbed solutions from
running multiple POM simulations with initial perturbations, which are drawn randomly from a
specified probability density function.

It is often assumed in ensemble forecasting that for a forecast model of nearly 105 degrees
of freedom, direct sampling of small size [∼O(102)] ensembles is of limited utility because the
inherent sampling error may overwhelm the desired covariance information. To correct these dis-
tortions different selective sampling procedures are used. See Palmer (2000) for extensive review
of different techniques of ensemble generation including those based on singular (Molteni and
Palmer, 1993) and breeding vectors (Toth and Kalnay, 1997). Miller and Ehret (2002) examined
small ensembles drawn from spaces spanned by singular vectors and by bred vectors for non-linear
dynamical systems with multiple attractors.

A sound approach for estimating model predictability was developed by Lermusiaux and
Robinson (1999), Lermusiaux et al. (2000), and Lermusiaux (2001, 2002). The approach called
the “error subspace statistical estimation” (Lermusiaux and Robinson, 1999) combines the dynam-
ical equations for the ocean state in their discrete form in space, with a decomposition of error
covariance to initialize and evolve the “dominant” eigendecomposition of the variability covari-
ance matrix, merging data and dynamics. An essential feature of the dominant eigenvectors is that
they indicate, evolve and organize the directions in the variable space that have largest statistical
significance, based on a variance measure. Therefore, the approach provides a framework for
investigation of large and complex system like the ocean. Lermusiaux et al. (2006) have demon-
strated explicit capability of the approach through a number of practical examples including
acoustical and biological models.

For a number of reasons we simply sample initial perturbations from specified, multivari-
ate normal distributions. First, due to simplicity, our hydrodynamic model is able to produce
forecast ensembles containing up to ∼O(105) perturbations. Such large ensembles have desir-
able statistical characteristics as revealed by a series of specialized statistical tests considered in
Section 5.

Second, the Latin Hypercube (LHC) design (Latin Hypercube, 2007) was applied to simulate
a highly uniform distribution of an initial error in the phase space. Using pure probabilistic
arguments, Downing et al. (1985) pointed out that the Latin Hypercube design is more effective
than the classical Monte Carlo method. For obtaining dense error coverage with the same degree
of homogeneity from Monte Carlo samples and through the LHC design NM0 and N(2M0 + 2)
statistical realizations are required, respectively. Here, N is the number of statistical realizations
necessary to simulate one degree of freedom. Typically, N ∼ O(103).
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For M0 = 15, the classical Monte Carlo method should require ∼O(1045) initial perturbations
for a statistically significant estimate. This is not feasible with available computer resources.
Comparable results can be obtained by the LHC design approach with only ∼O(104) initial
perturbations.

Third, our study focuses only on the physics of finite-amplitude errors and their contributions to
losing model predictability. Thus, small forecast ensembles similar to those utilized by operational
forecast models, are not considered here.

The initial perturbations u′ = [u′
1(x), u′

2(x)] are assumed to be 2D isotropic Gaussian white
noise (white noise-like perturbations (WNLPs)) with the two-point correlation function:

〈u′
i(x)u′

j(x
′)〉 = I2δijδ(x − x′), (9)

or 2D isotropic Gaussian spatially correlated noise (red noise-like perturbations (RNLPs)) with
the two-point correlation function:

〈u′
i(x)u′

j(x
′)〉 = I2δij exp

[
− (x − x′)2

2R2
⊥

]
, (10)

where x = (x1, x2), (R⊥, I2) are correlation radius and noise variance (intensity of perturbations),
respectively. These perturbations are directly added to the initial conditions. The technical details
of generating Gaussian noises with correlation functions (9) and (10) can be found in Sabel’feld
(1991). The non-dimensional intensity of the initial perturbations Ī2 = I2/I2

0 (I2
0 = 1 m2 s−2)

will be used below.
Noise with correlation functions (9) and (10) is the popular model of errors for optimal inter-

polation or spline fitting. Both of these procedures are applied to construct initial conditions
for ocean models from irregularly spaced data (Brasseur et al., 1996; Robinson et al., 1996 and
others).

5. Optimal ensemble size

The LHC design approach provides the dense error coverage of the model phase space for
∼O(104) initial perturbations. This number of initial perturbations is a trade-off between the
ensemble ability to reproduce main features of PE statistics, and the computational cost. However,
the optimal number of initial perturbations (Nopt) should be specified for the concrete ocean model.
We suggest to estimate this number through the Kullback–Leibler (KL) distance (the relative
entropy) (White, 1994).

The KL distance is a natural distance function from a “true” probability density, F∞, to a
“target” probability density, FN. For continuous density functions, the KL distance is defined as

KLN (F∞|FN ) =
∫ ∞

0
dτ FN (τ) log

[
F∞(τ)

FN (τ)

]
, (11)

where FN(τ) and F∞(τ) are τ-PDFs computed for an N sample ensemble and a hypothetic ensemble
with infinite sampling, respectively. In practice, a difference between two distributions is negligible
if KLN ≤ 5.0 × 10−3 (White, 1994).

To calculate the KL distance we suppose F∞ = F100,000 because only small differences in τ-
statistics estimated from ensembles of 5.0 × 103, 1.0 × 104, 2.0 × 104, 5.0 × 104 and 1.0 × 105

samples have been observed. Typical behavior of KLN with the growth of N is shown in Fig. 4a.
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Fig. 4. Sensitivity of τ-statistics to the ensemble size (N): (a) the Kullback–Leibler distance; (b) the τ-mean; (c) the τ-most
probable; (d) the τ-variance; (e) the τ-skewness; (f) the τ-kurtosis. Initial perturbations are red noise with the correlation
radius R⊥ = 112 km and the intensity Ī2 = 0.1, ε̄2 = 0.2. Arrows indicate Nopt = 103.

The KLN rapidly reduces with N from 2.0 × 10−1 (N = 20) to 4.0 × 10−3 (N = 103). Therefore,
Nopt was chosen as 103.

The first four moments of IPT also quickly converge as N increases to 103: τ-mean to 43.8 days
(Fig. 4b), τ-most probable to 42.6 days (Fig. 4c), τ-variance to 8.8 days2 (Fig. 4d), and τ-skewness
to 0.75 day (Fig. 4e). Kurtosis is most sensitive to the choice of N (Fig. 4f), and varies between 3.9
and 4.1 for N ∼ 103. However, these variations are quite small to mask the non-Gaussian feature
of IPT statistics (Gaussian statistics is identified by both SK = 0.0 and KU = 3.0).

By varying characteristics of initial perturbations (Ī2 and R2
⊥) we have found that Nopt = 103

is an acceptable choice for any combinations of Ī2 and R2
⊥. Thus, all forecast ensembles below

have large size (Nopt = 103) and are not rank-deficient (Nopt  M0). This reduces the sampling
errors significantly.

6. Prediction error evolution

6.1. Different stages of PE evolution

A number of stages for PE evolution (at least four) are observed for both WNLPs (Fig. 5a) and
RNLPs (Fig. 5b). All these stages are clearly identified by the growth rate Q = d(ln 〈J〉)/dt (Fig. 6a
and b).
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Fig. 5. Temporal evolution of the root mean square error 〈J〉 for various initial perturbations—(a) WNLPs with different
noise intensities (Ī2): 0.05, 0.01, 0.005, and 0.001 (denoted by 1, 2, 3, 4) and (b) RNLPs with the correlation radius (R⊥)
of 70 km and different noise intensities (Ī2): 0.02, 0.01, 0.003 and 0.001 (denoted by 1, 2, 3, 4).

Fig. 6. The growth rate Q for (a) WNLPs and (b) RNLPs with the correlation radius (R⊥) of 70 km. The solid and dashed
curves correspond to Ī2 = 1.0 × 10−3 and 0.5. Black arrows indicate boundaries between the linear and non-linear
predictability regimes for different characteristics of initial perturbations.
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Initial error decay is observed for the first 10 days of PE evolution (Fig. 5a and b) where the
growth rate Q evolves as

Q ≈ Q0[exp(α0t) − α1], (12)

where α0 is the decay exponent, Q0α1 ≈ −0.45, α0 = lnα1/t1, t1 = 10 days.
Non-exponential initial error decay corresponding to (12) differs from a quasi-exponential

decay obtained in Wirth and Ghil’s (2000) model with the dissipative operator νΔ⊥ and quite
large horizontal viscosity ν. In contrast to this model the zero horizontal viscosity is used in our
model. Therefore, the non-exponential decay seems to be caused by non-linear bottom friction.

Then 〈J(t)〉 retains quasi-stationary low values during 10 and 20 days for WNLPs (Fig. 5a) and
RNLPs (Fig. 5b), respectively. At this stage (stagnation stage) the growth rate Q oscillates near
zero (Fig. 6a and b).

During the third stage (after days 20 and 30 for WNLPs and RNLPs, respectively) PE grows
faster than exponentially (Fig. 5a and b). Fig. 6a and b shows that here the growth rate increases
with t linearly:

Q ∼ t (13)

Mechanisms for PE to grow faster than (quasi)-exponentially, were discussed earlier in the
scientific literature (Lacarra and Talagrand, 1988; Smith et al., 1999 among others). Therefore,
they are not in the focus of the present study. Duration of “super-exponential” error growth does
not exceed 7–10 days.

Non-linear interactions among various scales slow down (Fig. 6a and b), and then, limit further
growth of PE (Fig. 5a and b). The transition from the linear to non-linear predictability regime is
identified by a behavior of the growth ratio: Q reaches a maximum value and then quickly reduces.
Although linear effects can also stimulate similar behavior of Q (Smith et al., 1999), more detailed
analysis provided in Section 7 gives evidence for the non-linear predictability regime.

The duration of the non-linear predictability regime (up to 10–15 days) does not seem to be
short, and is comparable with the time when the PE grew faster than exponentially. The larger the
error amplitude, the faster the transition from linear to non-linear predictability regime. Therefore,
the non-linear regime should play an important role in understanding model predictability and its
limits.

6.2. Initial error decay

Initial error decay was documented earlier by Lorenz (1996), Brasseur et al. (1996), Molteni et
al. (1996), Wirth and Ghil (2000), Vannitsem and Nicolis (1997), Snyder et al. (2003) and others.
Their results show (a) the relation of the decay to model dissipation, and (b) that stability of the
reference solution estimated by the kinetic energy norm is less than when other norms are used.

The initial error decay quantified by the kinetic energy norm diminishes or even disappears with
reducing the coefficient of horizontal viscosity νh, when dissipation processes were parameterized
by a hyper-dissipation operator −νhΔ

2
⊥ (Snyder et al., 2003; Vannitsem and Nicolis, 1997).

In contrast to this, Wirth and Ghil (2000) have demonstrated that the square root of the stream-
function error variance (J) for randomly inserted small-amplitude perturbations first decays due
to viscous damping parameterized by the usual dissipative operator νΔ⊥. Although for smaller
values of horizontal viscosity ν the decay was slower, it did not disappear with reducing ν.
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Our computations demonstrate the existence of the initial error decay for both the kinetic energy
norm and norm (1) only due to non-linear bottom friction if the friction coefficient α ≥ ᾱ. The
choice of Jnorm = 1 in norm (1) does not change the obtained result, although the decay becomes
slower. The decay also exists for non-zero coefficients (ν and νh) of horizontal viscosity.

Since the initial error decay, in general, does not depend on the amplitude of initial perturbations
(Fig. 5a and b), to understand its physics we limit ourselves to the case of small-amplitude initial
perturbations. In our opinion, the initial error decay may be explained by features of a non-linear
dissipation scheme and statistical features of initial perturbations with correlation functions (9)
and (10).

Using the assumption on small amplitudes of initial perturbations, the term, which is respon-
sible for PE dissipation (see Appendix B), can be written as

〈F1u
′
1〉 ≈ αE−1/2[γ1〈(u′

1)2〉 + γ2〈u′
1u

′
2〉], (14)

〈F2u
′
2〉 ≈ α E−1/2[γ3〈(u′

2)2〉 + γ2〈u′
1u

′
2〉], (15)

where (ū1, ū2) and (u′
1, u

′
2) are velocities of the reference and perturbed solutions, respectively;

E = ū2
1 + ū2

2 is the kinetic energy of the reference flow, γ1 = 2 ū2
1 + ū2

2, γ2 = ū1ū2 and γ3 =
ū2

1 + 2ū2
2.

During the first stage (initial error decay), the PE dissipation is only determined by the first
terms in the right-hand sides of Eqs. (14) and (15), because the initial perturbations are statistically
isotropic: 〈u′

i(x)u′
j(x)〉 = 0, if i �= j (the isotropy feature). Both renormalized coefficients of friction

αE−1/2γ1 and αE−1/2γ2 are positive and grow with increasing kinetic energy as E1/2.
During the stagnation stage (Fig. 5a and b), the correlations between u′

1 and u′
2 become not

small. The growth of the renormalized coefficients is compensated by the term γ2〈u′
1u

′
2〉 ≤ 0.

This process stops the PE decay. After day 20 for WNLPs and day 30 for RNLPs, γ2〈u′
1u

′
2〉 ≤ 0

continues to reduce the dissipative terms 〈F1u
′
1〉 and 〈F2u

′
2〉, what reduces the model dissipation

and stimulates the growth of prediction error.
Non-linear bottom friction (6b) leads to effective decay of the prediction error at all spatial

scales larger than a scale determined by the 100th mode (see Fig. 7a and b). At this stage of
PE evolution geostrophic adjustment inducing an upscale flux of the prediction error does not
play an important role. A measure of re-distribution of the kinetic energy among modes is the
spectral entropy (Aubry et al., 1991). The entropy is equaled to 1 when the kinetic energy is
homogeneously distributed among all the modes (maximum disorder), and to 0 when the energy
is contained in a single mode (maximum order). The spectral entropy is computed by

S = −[log(M −m0)]−1
M∑

m=m0

pm logpm, pm = b2
m

b
, b =

M∑
m=m0

b2
m, (16)

where bm are Âm (�Am) for the reference (the perturbed) solution; m0 and M determine the spectral
band for calculating the spectral entropy.

The spectral entropy computed for the PE (the reference solution) is shown in Fig. 8a (b).
Fig. 8a does not show any significant re-distribution of kinetic energy among different flow scales
up to 10–12 days. A strong upscale flux of PE is observed for low-order modes (from 1 to 20)
after day 12: the spectral entropy approximately reduces into half. Such a process seems to be
considerably weaker for high-order modes. In contrast to the PE, the complexity of the reference
flow monotonically grows up to day 40 (Fig. 8b).
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Fig. 7. Spectra of PE 〈δA2
m〉at large (m = 1–40) and small (m = 40–100) scales between days 1 and 10. The initial error is

the WNLP with Ī2 = 0.1, ε̄2 = 0.5.

Fig. 8. The spectral entropy S of (a) PE and (b) the reference solution. Dashed and solid lines are computations for the
first 20 (m0 = 1, M = 20) modes and last 50 (m0 = 50, M = 100) modes, respectively. The initial error is the WNLP with
Ī2 = 0.1, ε̄2 = 0.5.

7. Response to finite-amplitude initial perturbations

Linear intuition suggests that the larger the amplitude of the initial perturbations, the higher
the probability of obtaining low model predictability. Prediction errors should steadily increase
with a prediction time scale in the linear predictability regime. In contrast to this, forecasts skill
may decay slower when amplitude of initial perturbations grows. Our computations show that the
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growing perturbations rapidly adopt a horizontal scale comparable to that of the reference state
(linear predictability regime), and their further growth is limited by interactions with this state
and among them (non-linear predictability regime). In the non-linear predictability regime the PE
demonstrates clear contributions from the cumulative effects of flow scales, and the predictability
time is no longer measured by the inverse of the leading Lyapunov exponent. Moreover, model
predictability enhances with the growth of the correlation radius R⊥ and is less sensitive to the
choice of the intensity Ī2.

To understand correlations between model predictability, the amplitude of initial perturbations,
the correlation radius and the noise intensity, let us show how the amplitude of initial perturbations
is affected by R⊥ and Ī2. Using the spectral representation for noise covariance matrix obtained
in Appendix C, the maximum amplitude of initial perturbations is estimated as

〈(δA0
max)

2〉1/2 = (2π)1/2L1L2R
2
⊥Ī erf

(
L1√
2R⊥

)1/2

erf

(
L2√
2R⊥

)1/2

λ1/2
max, (17)

where λmax is the maximum eigenvalue of a matrix determined in Appendix C.
Eq. (17) clearly shows that the amplitude of initial perturbations is most sensitive to the

correlation radius but not the noise intensity, because the amplitude may grow as R2
⊥ and only

linearly with Ī.
Our computations demonstrate the existence of the linear predictability regime identified by

non-Gaussian statistics and (quasi)-exponential growth of PE, for a small correlation radius
(R⊥ � 50 km, the case of WNLPs) and large noise intensities (Ī2 ≤ 0.2). For WNLPs, typi-
cal τ-PDF was close to Gaussian if Ī2 ∼ 0.01–0.05. The growth of Ī2 up to 0.1–0.2 resulted in
a weak asymmetry for the τ-PDF (SK → 0.15), and departs from non-Gaussian (KU → 3.10).
However, although such a τ-PDF has a short tail (labeled by 1 in Fig. 9a), it was still close to
Gaussian and the mean τ-IPT reduced with the growth of amplitude of initial perturbations. The

Fig. 9. τ-PDFs for (a) WNLPs with Ī2 = 0.1 and ε̄2 = 0.5, and (b) RNLPs with Ī2 = 0.1 and R⊥ = 125 km, and ε̄2 = 0.2.
Skewness and kurtosis are 0.15 and 3.09 in case (a), and 0.77 and 3.95 in case (b). Dashed lines indicate mirror reflections
of the left-hand side tails of τ-PDFs.
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Fig. 10. Dependence of τ-statistics on the correlation radius R⊥ for RNLPs with the noise intensity Ī2 = 0.1, and ε̄2 = 0.2.
(a) τ-mean, (b) τ-variance, (c) τ-skewness, and (d) τ-kurtosis.

τ-PDF quickly departs from Gaussian with the growth of Ī2 after 0.2. However, from the physical
point of view, such initial perturbations seem to be too large to exist in reality.

The non-linear predictability regime appears as R⊥ grows. Both highly non-Gaussian τ-PDFs,
and the mean IPT that grows with R⊥, indicate that the PE becomes non-linear. A typical non-
Gaussian τ-PDF (SK ≈ 0.8, KU ≈ 4.0) computed for a finite correlation radius is demonstrated
in Fig. 9b. The long PDF tail (labeled by 2 in Fig. 9b) is clearly seen in this figure. The tail is
formed by rare individual forecasts (IPT up to 60 days), each of which is longer than the mean
ensemble forecasting (IPT of about 44 days).

Asymmetry of τ-PDFs becomes higher for the larger values of correlation radius R⊥ (Fig. 10c).
SK, which is a measure of asymmetry, increases up to 0.8 when R⊥ tends to 100 km. Larger values
of mean IPT (Fig. 10a) and τ-variances (Fig. 10b) correspond to more asymmetric PDFs. Highly
non-Gaussian (KU ≈ 4, Fig. 10d) and sharp τ-PDFs with long tails stretching to large prediction
times accompany this non-linear predictability regime. The explicit growth of mean predictability
time observed with the growth of correlation radius R⊥ is a strong evidence of the non-linear
predictability regimes caused by inhomogeneous morphology of the model phase space (Kaneko,
1998).

8. Weibull statistics

The results above demonstrated a fast departure of τ-PDFs from Gaussian shape with the
growth of amplitude of initial perturbations. For finite-amplitude initial perturbations τ-PDFs
were highly non-Gaussian and asymmetric. The following question arises: what distribution is
the best fit for such τ-PDFs? If the analytical form of such a distribution can be found, it can be
useful for the parametric estimate of ensemble generated PDFs from limited observation samples
and small forecast ensembles.

Our computations demonstrate that the tailed τ-PDFs reconstructed by a non-parametrical
technique based on the Epanichenikov’s kernel and the bootstrap re-sampling procedure (Good,
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1996) directly from the Monte Carlo samples, are fitted by the three-parameter Weibull distribution
function (Bury, 1999):

f (τ) = β

η

(
τ − γ

η

)β−1

exp

[
−
(
τ − γ

η

)β]
. (18)

Here, η, γ and β are scale, shape and location parameters. We found no difference between the
reconstructed PDFs and their Weibull counterparts with at least a 95% confidence level.

We suggest to identify the distribution parameters of (18) by the probability weighted moments
(PWMs). Definition of PWMs and their features are given in Greenwood et al. (1979). For
a number of reasons these moments seem to be more attractive for the practical calculations
of prediction scales than the classical statistical moments (CSMs). First, the PWMs are less
sensitive to sampling than the CSMs. Second, the classical statistical moments may not exist
for PDFs with long (heavy) tails. For example, if a cumulative distribution function P has
asymptotic tail ∼t−σ as t → ∞, then the classical τ-moments of (k − σ− 1) order do not exist
because integral (5) does not converge. In contrast to the CSMs, the PWMs exist for any tailed
PDFs.

From the physical point of view, the model predictability is also clearly quantified by τ-CDF,
which is the probability that a model is able to predict with accuracy higher than ε̄, at times larger
than t (see, also Section 1). Accordingly to Bury (1999) CDF for Weibull distribution (18) can be
written as

P(t) = exp

[
−
(
t − γ

η

)β]
. (19)

The parameter β is a measure of how quickly the τ-CDF decays with t. The super-exponential
(β > 1), exponential (β = 1) and sub-exponential (β < 1) decay regimes correspond to small, inter-
mediate and high probabilities to obtain the enhanced predictability in an individual forecast.

The following method was used to estimate distribution parameters of (18) from ensemble
samples.

The PWMs can be estimated in two ways: from Eq. (D1), using analytical representation (19),
and directly from ensemble samples through Eq. (D2). The distribution parameters are obtained
through a misfit between these estimations. For details see Appendix D.

Typical τ-CDFs computed for both WNLPs and RNLPs are shown in Fig. 11a and b, respec-
tively. A more tailed CDF corresponds to the RNLPs (compare Fig. 11a and b). That indicates
a higher probability of long individual forecasting for spatially correlated initial errors than for
WNLPs. If parameters for distribution (18) are known, there is a chance to predict an asymp-
totic behavior of τ-CDF tail with t, and understand contributions of rare long forecasts to model
predictability.

The last statement is illustrated through a simple example. Let us estimate a contribution of rare
long forecasts to the growth of τ-mean with R⊥. The mean IPT calculated for WNLPs (Ī2 = 0.1)
added to initial conditions, was equal to about 30.41 days, when the tolerance level was ε̄2 = 0.2.
For initial RNLPs with the same intensity but the correlation radius R⊥ = 125 km, the Weibull
distribution parameters are estimated as

γ ≈ 37.5 days, η ≈ 6.2 days, and β ≈ 2.1. (20)
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Fig. 11. τ-CDF computed for (a) WNLPs with Ī2 = 0.1 and (b) RNLPs with Ī2 = 0.1 and R⊥ = 70 km. In both these
cases ε̄2 = 0.1. Here, the circles and dashed lines represent τ-CDFs computed directly from the Monte Carlo samples
and by the probable weighted moment technique, respectively. The location parameter γ equals to 20.4 days in case (a)
and 38.3 days in case (b).

For Weibull distribution (18) the τ-mean is calculated as

〈τ〉 = γ + ηΓ

(
1 + 1

β

)
, (21)

where Γ is the gamma function.
Substituting parameters (20) into Eq. (21) yields,

〈τ〉 ≈ 44.2 days. (22)

Therefore, the mean IPT has grown on 13.8 days. The tail lengthening stimulates approximately
50% (η≈ 6.2 days) of this growth. The other half of the growth estimated as γ − 〈τ〉 = 7.1 days is
caused by variations of the location parameter.

9. Transition from linear to non-linear predictability regime

The above results showed the existence of two predictability regimes. From the practical point
of view it is important to understand how quickly the linear predictability decays and what is a
threshold δ on amplitude of initial perturbations, above which the non-linear predictability regime
dominates. There are two approaches for determining the duration of the linear predictability
regime. One is to compare the evolution of a perturbation under the full non-linear model with its
evolution under the tangent linear model in order to quantify the PE in this model as a function
of time (for example see Vukicevic, 1991).

Another approach is to develop a criterion. For example Gilmour et al. (2001) suggested
estimating duration of the linear predictability regime by monitoring the evolution of twin per-
turbations under the full non-linear model. Our idea is to demonstrate that the decay of the linear
predictability regime correlates with the changes in behavior of τ-variance.
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Fig. 12. Dependence of τ-statistics on the noise intensity for WNLPs: (a) and (b) for ε̄2 = 0.01; (c) and (d) for ε̄2 = 0.5.
Logarithmic law (23) is indicated by solid line in (a) and (c). Dashed line in (b) corresponds to logarithmic law (24).

Let us introduce the non-dimensional parameter μ = ε̄2/Ī2 that is a measure for degree of
smallness of initial perturbations, and estimate it for a number of combinations of ε̄2 and Ī2. The
linear predictability regime occurs for 2.5 × 10−3 <μ≤ 1.0 (Fig. 12a and b) when τ-mean and
τ-variance evolve along the following logarithmic laws:

〈τ〉 ∼ ln

(
ε̄2

Ī2

)
, (23)

〈δτ2〉 ∼ ln

(
ε̄2

Ī2

)
. (24)

Eq. (23) coincides with the well-known law of the exponential growth of infinitesimal initial per-
turbations on a chaotic attractor (Lorenz, 1996). Logarithmic law (24) was theoretically predicted
by Chu et al. (2002).

The departure from the linear predictability is observed for 1.0 <μ≤ 16.7 (Fig. 12c and d).
Although, here, the τ-mean still follows the (quasi)-logarithmic law (23) with the growth (reduc-
tion) of μ(Ī2), and deviations from this law do not seem to be essential for small Ī2 and large ε̄2,
the τ-variance does not demonstrate a behavior that Eq. (24) predicts. It is practically constant
(about 9 days2) for Ī2 varied between 0.5 × 10−1 and 0.2 (Fig. 12d). That shows no correlations
between the τ-mean (ensemble mean) and τ-variance (ensemble spread) when the amplitude of
initial perturbations exceeds the threshold μ≈ 1.0.

The intermediate domain between the linear and non-linear predictability regimes, when there
are no correlations between ensemble mean and spread, is also characterized by small changes in
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scale and shape parameters (η, β) estimated as

η ≈ 9.6 ± 0.1, β ≈ 3.4 ± 0.1. (25)

Here, τ-statistics is still close to Gaussian because the skewness and the kurtosis are close to
0 (|SK| < 0.5) and 3 (|KU-3.0| < 1.5 × 10−1), respectively.

The lack of statistically significant correlations between the forecast skill and ensemble spread
is sometimes observed in ensemble modeling for the atmosphere and ocean. For example, Moore
(1999) performed a series of experiments, in which he applied different methods of ensemble
generation to a quasi-geostrophic model of the Gulf Stream. He obtained no statistically significant
relationships between forecast skill and ensemble spread in a number of cases and explained them
only by poor statistics in the forecast experiments. Our computations show that the same effects
can appear when the initial perturbations have quite large amplitudes.

10. Predictability horizon

Asymptotic behavior of the τ-CDF with time determines the predictability horizon for the
hydrodynamic model used here. Model predictability horizon is defined as the maximum predic-
tion time (τhor) for the given model and statistics of initial perturbations (Kravtsov, 1993) and can
be calculated by

τhor = γ + η[−ln P̄∗] 1/β
, (26)

where P̄∗ is the probability that τhor will be achieved in an individual forecast.
Let us estimate the model predictability horizon for the example discussed in Section 8.

Substituting parameters (20) into Eq. (26) yields,

τhor ≈ 50.21, 52.79 and 55.03 days (27)

for P̄∗ = 0.01, 0.001 and 0.0001, respectively. Thus, for the RNLPs with the fixed values of
R⊥ and Ī2, and ε̄2 = 0.20, the model predictability horizon is limited to 52–55 days and any
individual forecast longer than 55 days, is improbable.

11. Conclusions

We have used a simple shallow-water model to understand predictability of perfect ocean
models. This model is a highly idealized representation of some aspects of the ocean dynamics
and naturally, cannot simulate re-distributions of PE between barotropic and baroclinic dynamics,
and interactions among large and small flow scales reproduced by high-resolution ocean models.
However, due to the small degree of freedom of the model, distribution function for a prediction
scale and its high-order moments were computed for a large number of ensemble realizations (up
to 105). That allows us to quantify PE statistics in an accurate manner.

Similar analysis is difficult to realize in full-scale numerical forecast ocean models due to
limited computer resources. The full-scale models produce small sample forecast ensembles and
therefore, cannot resolve the full complexity of PE statistics. The idealized model reveals some
trends in behavior of PE and produces useful knowledge for extracting them from small forecast
ensemble samples.

The following trends obtained in the present study need to be examined by baroclinic high-
resolution ocean models with realistic bottom topography and forcing:
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(1) In the limit of zero horizontal viscosity the model demonstrates the initial decay of spatially
uncorrelated and correlated perturbations due to non-linear bottom friction. Since the bottom
friction plays a significant role in the energy balance of ocean coastal currents (Wunsch and
Ferrari, 2004), the observed decay seems to be an important process that may enhance model
predictability.

Initial error decay was noted in connection with numerical experiments in preparation for
what became eventually known as the Global Weather Experiment (Williamson and Kasahara,
1971), and more recently, in the oceanographic and meteorological literature, by Brasseur et
al. (1996), Wirth and Ghil (2000), Vannitsem and Nicolis (1997), Snyder et al. (2003) among
others. The initial error decay found in these models was controlled by dissipative processes
parameterized through a hyper-diffusion or usual diffusion operator with a horizontal viscos-
ity. Our study reveals another mechanism of initial error decay: PE decays due to viscosity
damping by non-linear bottom friction and this process is weakly dependent on horizontal
viscosity.

(2) Statistics of the finite-amplitude prediction error was found to be close to extremum
statistics—Weibullian. No general theory is available that demonstrates universality of this
result for any forecasting model. However, there is a number of reasons to examine Weibull
statistics in large ocean and atmospheric models. First, extremum statistics are often observed
to arise in multi-dimensional systems, exhibiting correlation over a broad range of scales, lead-
ing to emergent phenomenology, such as self-similarity and in some case fractional dimension
(Boffetta et al., 2002). Second, Weibull statistics seems to be a good mathematical tool for
the parametrical estimate of PE distributions in small forecast ensembles and from lim-
ited observation samples. Preliminary computations provided by us support this conclusion
(Ivanov et al., in preparation). Third, if the divergence of a predicted flow in phase space
is constant, the cumulative distribution function P(ε̄, t)(defined by Eq. (5a)) can be analyt-
ically estimated (Ivanov et al., in preparation). Here, we only give the final results without
calculations:

P(ε̄, t) = exp

(
−c0t

〈τ〉
)
, (28)

where k is a constant depending on a forecast model.
CDF (28) corresponds to the exponential probability distribution function, which results

from Weibullian distribution (18) for γ = 0, β = 1, and η= c0/〈τ〉. Eq. (28) assesses predictabil-
ity for many forecast models including Lorenz 63 model (Lorenz, 1963).

(3) Our computations demonstrated that the transition from the linear to non-linear predictabil-
ity regime may be detected by high-order τ-moment behavior. We found the predictability
regime where the mean prediction time scale grew along (quasi)-exponential law, which
accompanies the linear predictability, but a behavior of variance for this scale was abnormal,
so there are no statistically significant correlations between the forecast skill and ensemble
spread. This result explains the lack of correlations between the forecast skill and ensem-
ble spread found in a number of the atmospheric and oceanic models, and may be used
to develop criteria for detection of the transition from linear to non-linear predictability
regime.

Although the present study has analyzed only model predictability near the equilibrium ocean
state, non-monotonous behavior of ensemble spread seems to be a common feature of forecast
models. A possible explanation of this effect is that model predictability strongly depends on the
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spatial correlation scale of initial error as it was firstly demonstrated by Lorenz (1965), and on
variations of this scale when the PE evolves.

There are in general different scenarios in behavior of the ensemble spread due to variations of
the spatial correlation scale of PE. For example, Lorenzo et al. (2003) demonstrated decreasing
ensemble spread of an ensemble system consisting of chaotic Lorenz cells diffusively coupled, as
the correlation scale of PE grows. If the growing perturbations rapidly adopt the horizontal scales
comparable to that of the reference flow, the ensemble spread reaches an asymptotic value and
then weakly changes. This case is studied in Section 9.

However independently on the realized scenario, the correlation scale of prediction error should
change when the error leaves the tangent space (Schertzer and Lovejoy, 2004). That can, in
general, result into variations of high-order statistics of IPT and in the non-monotonous behavior
of ensemble spread, examples of which can be found in Nicolis (1992), Cohn (1993) among
others. Obviously, a more systematic analytical description of the observed effects is required.
We will address this point elsewhere.

Acknowledgements

The authors are grateful to Prof. Catherine Nicolis at the Royal Meteorological Institute of
Belgium for constructive discussion on the stochastic concept of model predictability. Comments
from Prof. Lenny Smith at University of Oxford (the United Kingdom) helped to clarify the
presentation of the obtained results. The authors would like to thank two anonymous reviewers
for helpful comments. This study was supported by the Office of Naval Research and Naval
Oceanographic Office for P. Chu, the NATO and NSF (award N OCE-0530748) for L. Ivanov.

Appendix A. Spectral decomposition

Following Morse and Feshbach (1953), the geostrophic stream function is decomposed into

Ψ = Ψhom + Ψharm, Ψhom(x, t) =
M∑
m=1

Am(t)ψm(x), (A1)

where Ψharm is the harmonic function calculated with the open boundary conditions written by

Ψharm|Λ′ = −
∫ x2

la

ub(x, t) dx and Ψhom|Λ = 0. (A2)

The basis functions {Ψm} are the eigenfunctions of the horizontal Laplacian operator Δ and
computed by

�ψm = −λmψm, ψm|Λ∪Λ′ = 0, (A3)

where λm are its eigenvalues.
Spectral decomposition (A1)–(A3) is also applicable for non-rectangular domains and can be

generalized for 2D compressible and 3D incompressible flows (Chu et al., 2003).
The optimal truncation number Mopt in (A1) depends on complexity of a flow structure. Direct

computations have shown that to represent the reference flow with accuracy better than 0.1%, the
truncation number Mopt should be taken about 102.

This number can be theoretically confirmed in the following way. The used hydrodynamic
model may resolve ocean flows with ∼100–200 km spatial scales (L) because of numerical grid
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with 50 km cells. Following Mikhlin (1964) the spatial scale of the highest-order mode ψm can
be defined as

LM ∼ L1

(
λ1

λM

)1/2

, (A4)

where L1 is the spatial characteristic scale of the largest mode m = 1.
For the rectangular Domain-A we can suppose LM ≈ L, L1 ≈ 108 km and L ≈ 107 to

2 × 107 km. Substituting L1 and LM into Eq. (A4), yields

λ1

λM
∼ 25–100, (A5)

Therefore, from 80 to 120 modes should approximate the reference and perturbed solutions
with a reasonable accuracy. We used Mopt = 100.

Appendix B. Dissipation of prediction error

Following Blumberg and Mellor (1987), the bottom friction of both velocity components is
parameterized by

F1(u1, u2) = αEu1, (B1)

F2(u1, u2) = αEu2, (B2)

where α is the drag coefficient, E =
√
u2

1 + u2
2. Let the circulation in a basin be decomposed as

the reference circulation (ū1, ū2) and perturbations (u′
1, u

′
2):

u1 = ū1 + u′
1, u2 = ū2 + u′

2,

such that

|ū1|  |u′
1| and |ū2|  |u′

2|.

For small perturbations, linearization of (B1) and (B2) leads to

F1 ≈ F1(ū1, ū2) + αE−1/2[(2ū2
1 + ū2

2) u′
1 + ū1ū2u

′
2], (B3)

F2 ≈ F2(ū1, ū2) + αE−1/2[(ū2
1 + 2ū2

2)u′
2 + ū1ū2u

′
1], (B4)

Therefore, the dissipative terms in the prediction error energy balance can be written by

〈F1u
′
1〉 ≈ αE−1/2[γ1〈(u′

1)2〉 + γ2〈u′
1u

′
2〉], (B5)

〈F2u
′
2〉 ≈ αE−1/2[γ3〈(u′

2)2〉 + γ2〈u′
1u

′
2〉], (B6)

where γ1 = 2ū2
1 + ū2

2, γ2 = ū1ū2 and γ3 = ū2
1 + 2ū2

2.
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Appendix C. Probability density function of initial perturbations

Let the two-point correlation function of the geostrophic stream function be projected onto the
phase space with the basis [�1,. . .,�M]:

〈δΨ (x1)δΨ (x2)〉 =
M∑
l=1

M∑
m=1

〈δA0
l δA

0
m〉ψl(x1)ψm(x2), (C1)

Integrating (C1) over the spatial variables x1, x2 in the computation area yields:∫∫
d2x1 d2x2〈δΨ (x1)δΨ (x2)〉 = 〈δA0

l BlmδA
0
m〉, (C2)

with ∫∫
d2x1 d2x2ψl(x1)ψm(x2) = Blm. (C3)

Using (10), the correlation function in the left-hand side of (C2) is represented, following
Panchev (1971) as

〈δΨ (x1)δΨ (x2)〉 = 1

2
R2

⊥I
2 exp

(
− (x1 − x2)2

2R2
⊥

)
, R⊥ � L ∼ L1. (C4)

Introducing new variables: r = x1 − x2 and r1 = x1 + x2, and integrating (C2) over r and r1
yield:

〈δA0
l BlmδA

0
m〉 = 2πL2

1L
2
2R

4
⊥I

2 erf

(
L1√
2R⊥

)
erf

(
L2√
2R⊥

)
. (C5)

Eq. (C5) defines an M-dimension hyper ellipsoidal surface Ω0 in the model phase space. The
ellipsoid semi-axes are directed along the eigenvectors of the matrix Blm. Therefore, the maximum

deviation for the vector of initial perturbations 〈(δA0
max)

2〉1/2
is estimated by

〈(δA0
max)

2〉1/2 = (2π)1/2L1L2R
2
⊥Ī erf

(
L1√
2R⊥

)1/2

erf

(
L2√
2R⊥

)1/2

λ1/2
max, (C6)

where λmax is the maximum eigenvalue of the matrix Blm.
In the context of the predictability problem, the PDF of a RNLP is Gaussian with the mean

〈δA0
m〉 = 0 and the covariance matrix:

σ2
lm = BlmL

−2
1 L−2

2 R−4
⊥ I−2 erf

(
L1√
2R⊥

)−1

erf

(
L2√
2R⊥

)−1

. (C7)

Appendix D. Probability weighted moments

The probability weighted moments of a random variable are defined by Greenwood et al.
(1979):

αk =
∫ 1

0
X(u)(1 − u)k du and βk =

∫ 1

0
X(u)uk du, (D1)
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where k = 0, 1, . . ., K and X(u) is the quantile function (i.e., the inverse of cumulative distribution
function). Following Hosking and Wallis (1997) (αk, βk) are calculated from an ordered random
sample τn of size N as unbiased estimates of (α̂k, β̂k):

α̂k = 1

N
C

(
N − 1

k

)
N∑
n=1

C

(
N − n

k

)
τn, β̂k = 1

N
C

(
N − 1

k

)
N∑
n=1

C

(
n− 1

k

)
τn,

(D2)

where C

(
p

q

)
are the binomial coefficients.

The following procedure is used to estimate the parameters of a Weibull distribution function.
(a) The probability weighted moments αk or βk are computed from modeled samples accord-

ingly to (D2). (b) With the given moments (αk, βk), the Weibull distribution parameters are
identified from the condition:

KLs(η, β, γ) = KL(F1|F2) + KL(F2|F1) → min, (D3)

where KLs is the symmetrical Kullback–Leibler distance, F1 and F2 are distribution functions
computed from Monte Carlo samples and identified by the probability weighted moments, respec-
tively.
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