50th Liege Colloquium on Ocean Dynamics, Liege, Belgium 28 May – 1 June 2018

Establishment of Near-Real Time Monthly Gridded (T, S, u, v) Dataset from the World Ocean Database (WOD)

> Peter C Chu, Chenwu Fan Naval Postgraduate School

Reference

 Chu, P.C., and C. W. Fan, 2017: <u>Synoptic</u> <u>monthly gridded global and regional four</u> <u>dimensional WOD and GTSPP (T, S, u, v) fields</u> <u>with the optimal spectral decomposition</u> (OSD) and P-vector methods. <u>Geoscience Data</u> <u>Journal</u>, DOI: 10.1002/gdj3.48.

Synoptic Monthly Gridded Data

- Synoptic monthly gridded three dimensional (3D) World Ocean Database temperature and salinity from January 1945 to December 2014, NOAA National Centers for Environmental Information (NOAA/NCEI Accession 0140938) download
- Synoptic Monthly Gridded WOD Absolute Geostrophic Velocity (SMG-WOD-V) (January 1945 - December 2014) with the P-Vector Method, NOAA National Centers for Environmental Information (NOAA/NCEI Accession 0146195) download

Outline

- (1) Optimal Spectral Decomposition (OSD)
- (2) Establishment of Synoptic Monthly Gridded WOD (T, S) Data
- (3) Upper Ocean Heat Content
- (4) Synoptic Monthly Gridded Absolute Geostrophic Velocity (u, v) Data Calculated by the P-vector Method

(1) OSD Method

Effectively using the ocean topographic characteristics

A new spectral ocean data assimilation method without requiring *a priori* knowledge of matrix **B**

Basis Functions

$$\nabla^2 \phi_k = -\lambda_k \phi_k, \quad \left[b_1 \mathbf{n} \cdot \nabla \phi_k + b_2 \phi_k \right] |_{\Gamma} = 0, \quad k = 1, \dots, \infty$$

 $\phi_k \rightarrow$ The eigen functions of the 2D Laplacian Operator

satisfaction of the same homogeneous boundary condition of the assimilated variable anomaly

 $b_1 = 0 \rightarrow$ Dirichlet boundary condition

 $b_2 = 0 \rightarrow$ Newmann boundary condition

 $b_1 \neq 0, \ b_2 \neq 0 \rightarrow$ Cauchy boundary condition

Basis Function Matrix

$$\Phi \text{ Matrix } \rightarrow \Phi = \{\phi_{kn}\} = \begin{bmatrix} \phi_1(\mathbf{r}_1) & \phi_2(\mathbf{r}_1) & \dots & \phi_K(\mathbf{r}_1) \\ \phi_1(\mathbf{r}_2) & \phi_2(\mathbf{r}_2) & \dots & \phi_K(\mathbf{r}_2) \\ \dots & \dots & \dots \\ \phi_1(\mathbf{r}_N) & \phi_2(\mathbf{r}_N) & \dots & \phi_K(\mathbf{r}_N) \end{bmatrix}$$

$K \rightarrow$ truncated mode number

$$N \rightarrow$$
 number of grid points

First 12 basis functions for the Pacific Ocean at the surface.

DBDB5

Dirichlet boundary condition at the southern boundary (Antarctic),

Newmann boundary condition elsewhere

Spectral Ocean Data Assimilation

$$\mathbf{c}_{a} = \mathbf{c}_{b} + f_{n} \mathbf{s}^{(K)}, \quad s_{K}(\mathbf{r}_{n}) \equiv \sum_{k=1}^{K} a_{k} \ \phi_{k}(\mathbf{r}_{n}), \quad f_{n} \equiv \sum_{m=1}^{M} h_{nm}$$

 $\mathbf{H} = [h_{mn}] \rightarrow$ the *M*×*N* linear observation operator matrix

$$\boldsymbol{\varepsilon}_{a} \equiv \boldsymbol{c}_{a} - \boldsymbol{c}_{t} = (\boldsymbol{c}_{a} - \boldsymbol{c}_{b}) + (\boldsymbol{c}_{b} - \boldsymbol{c}_{t}) = \boldsymbol{\varepsilon}_{K} + \boldsymbol{\varepsilon}_{o}$$

 $\boldsymbol{\varepsilon}_{K} \equiv \left[f_{n} \boldsymbol{s}^{(K)} - \boldsymbol{H}^{T} (\boldsymbol{c}_{o} - \boldsymbol{H} \boldsymbol{c}_{b}) \right], \qquad \boldsymbol{\varepsilon}_{o} \equiv \boldsymbol{H}^{T} \boldsymbol{c}_{o} - \boldsymbol{c}_{t}$ $\left\langle \boldsymbol{\varepsilon}_{o}^{T} \boldsymbol{\varepsilon}_{K} \right\rangle = 0$

$$E^{2} = \left\langle \boldsymbol{\varepsilon}_{a}^{T} \boldsymbol{\varepsilon}_{a} \right\rangle = E_{K}^{2} + E_{o}^{2}, \quad E_{K}^{2} \equiv \left\langle \boldsymbol{\varepsilon}_{K}^{T} \boldsymbol{\varepsilon}_{K} \right\rangle, \quad E_{o}^{2} \equiv \left\langle \boldsymbol{\varepsilon}_{o}^{T} \boldsymbol{\varepsilon}_{o} \right\rangle$$

OSD/OI (KF) Data Assimilation Equations

 $E^2 \rightarrow \min, \quad \partial E^2 / \partial a_k = \partial E_K^2 / \partial a_k = 0, \quad k = 1, ..., K$

$$E_K^2 = \sum_{n=1}^N f_n \left[\left(\sum_{k=1}^K a_k \phi_{kn} - D_n \right)^2 \right] \rightarrow \min$$

$$\sum_{k'=1}^{K}\sum_{n=1}^{N} (\phi_{kn} f_n \phi_{nk'}) a_{k'} = \sum_{n=1}^{N} \phi_{kn} f_n D_n, \quad k=1, 2, ..., K$$

$$\mathbf{\Phi}\mathbf{F}\mathbf{\Phi}^T\mathbf{A} = \mathbf{\Phi}\mathbf{F}\mathbf{D}, \qquad \mathbf{A} = \left[\mathbf{\Phi}\mathbf{F}\mathbf{\Phi}^T\right]^{-1}\mathbf{\Phi}\mathbf{F}\mathbf{D}$$

$$OSD \rightarrow \mathbf{c}_a = \mathbf{c}_b + \mathbf{F} \mathbf{\Phi}^T \left[\mathbf{\Phi} \mathbf{F} \mathbf{\Phi}^T \right]^{-1} \mathbf{\Phi} \mathbf{H}^T \mathbf{d}$$

OI/KF \rightarrow $\mathbf{c}_a = \mathbf{c}_b + \mathbf{B}\mathbf{H}^T (\mathbf{H}\mathbf{B}\mathbf{H}^T + \mathbf{R})^{-1}\mathbf{d}$

NCEI/WOD Main Web Site

(https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html/)

					Databasa
SC ST. OK	1111	1000	1111	1111	
		0000011		21242	
					Cartin day
	100				TO COO
	*****	and see		-	
			Absorbally Absorbally		
			111	-	
	HOUSE	-			
			-	-	
	8.6.	C. March	* 14	164	
. U.	(n):	12.80	le e	10101	Datahasa

(2) Synoptic Monthly Gridded (T, S) Data

Monthly Gridded Temperature at 10 m in the Atlantic Ocean

Monthly Gridded Temperature at 1000 m in the Atlantic Ocean

Monthly Gridded Temperature at 10 m in the Pacific Ocean

Monthly Gridded Temperature at 1000 m in the Pacific Ocean

(3) Upper Ocean Heat Content and Climate Change

Upper Ocean (0-300 m) Heat Content

$$HC = \int_{-h}^{0} \rho c T dz$$

$$HC = HC_{mean} + HC_{seasonal} + HC_{anomaly}$$

EOF Analysis
$$\rightarrow$$
 HC_{anomaly}

→ Global Ocean Dipole Modes

Trend of Upper Ocean (0-700 m) Heat Content

0.4 X 10²² J/yr (1958-2008) (Levitus et al.,GRL, 2009) Without Argo data

1.3 X 10²² J/yr (1990-2008)

With Argo data

Upper Ocean (0-300 m) Mean Heat Content (J/m²) (1961-2017)

Seasonal Variability of Upper Ocean (0-300 m) Heat Content (J/m²) (1961-2017)

Conclusions

- The datasets are quality controlled by NCEI
- They are easily downloaded from the NCEI website