Separation of stochastic and deterministic California subsurface currents from Lagrangian drifter using the Hilbert-Huang transform
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INTRODUCTION

The empirical mode decomposition (EMD)
(Huang et al., 1998) was used to separate a
Lagrangian trajectory into low-frequency (non- ; -
diffusive, i.e., deterministic) and high-
frequency (diffusive, i.e., stochastic)
components. The 2D turbulent (or called
eddy) diffusion coefficients are calculated on
the base of the classical turbulent diffusion
with mixing length theory from stochastic

the Float NO35.
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A, Figure 2. Trajectories of 54 RAFOS

floats in the California coast by the Naval
Postgraduate School between 1992 and
2004. The thick black trajectory refers to

(http://www.oc.nps.edu/npsRAFQOS)/).

component of a single drifter.

EMPIRICAL MODE DECOMPOSITION

Mathematically, there are infinite number of ways to
decompose a functions into a complete set of components.
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In general, the few the number of representing components,
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the signal better.

EMD is an adaptive method that can generate infinite many K =ca,d;, Ky = Cavgy' ¢ =0.1(Ozmidov Coefficient)

sets of IMF components to represent the original data.
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Figure 3. IMFs and trend for (a) X(t), and Figure 4. The phase spectra for the

= h=c. (b) y(t) of the RAFOS N035. LALS LRI
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Figure 5. Combination of IFM-4, IMF-5, IFM-6, and trend constitutes the deterministic
component

F L O AT 50.33 35.36 NO50 807.00 869.98
20150 256.01 NOSL  1,428.79 429.88
1,268.10 961.34 NOS3 74484 567.72
. . .. 512.28 16115 NOS5 57579 1266.25
Table 1. Horizontal dIﬁUSIVIty 1,154.57 491.32 NOG2 527.90 455.62
L. . e 14041 322.12 NO63 264.97 159.00
coefficients (KX‘ Ky) identified 22077 136.26 NO64 857.32 317.78
275.39 239.34 NOB5 23635 78.13
from eaCh RAFOS ﬂoat 249.02 243.60 NO66 928.46 816.23
402.84 33144 NO67 111350 106476
357.15 310.99 NOG9 542.80 255.66
530.12 692.70 NO71 90.03 217.50
66.89 13.61 NoO72 540.54 464.90
15.08 10.28 NO73 506.08 431.43
4675 10.07 NO75 119004 112897
788.09 18061 NOBO 111979 1,052.69
30114 14619 NO81 91983 111854
12814 227.37 NO82 69091 893.65
20.37 438.64 NO083 1,216.25 1,535.29
1,372.19 1,354.11 N084 768.98 683.10
375.76 284.72 NO85 97153 1357.00
106.38 662.16 NO87 604.49 904.98
896.11 330.70 No88 488.44 132334
539.05 631.89 No89 76260 2,579.02
1,123.98 619.72 NO9O 180336  2,067.87
1,057.78 618.90 NO91 931.87 838.59
SUMMARY 476.43 86.36 N092 969.12  1277.95

This study shows the capability of EMD to decompose a single drifter's trajectory into
deterministic and stochastic components. This will largely improve the Lagrangian
observations. This method can be used in general signal processing.
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