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INTRODUCTION
The empirical mode decomposition (EMD) 
(Huang et al., 1998) was used to separate a 
Lagrangian trajectory into low-frequency (non-
diffusive, i.e., deterministic) and high-
frequency (diffusive, i.e., stochastic) 
components. The 2D turbulent (or called 
eddy) diffusion coefficients are calculated on 
the base of the classical turbulent diffusion 
with mixing length theory from stochastic 
component of a single drifter. 
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EMPIRICAL MODE DECOMPOSITION
Mathematically, there are infinite number of ways to 
decompose a functions into a complete set of components.

The ones that give us more physical insight are more 
significant.
In general, the few the number of representing components, 
the higher the information content.

The adaptive method will represent the characteristics of 
the signal better.

EMD is an adaptive method that can generate infinite many 
sets of  IMF components to represent the original data.

Figure  1. 
Empirical  
mode 
decomposition. 
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STOCHASEIC LAGRANGIAN VELOCITY

Figure  2. Trajectories of 54 RAFOS 
floats in the California coast by the Naval 
Postgraduate School between 1992 and 
2004. The thick black trajectory refers to 
the Float N035.

(http://www.oc.nps.edu/npsRAFOS/). 
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Figure 5. Combination of IFM-4, IMF-5, IFM-6, and trend constitutes the deterministic 

component  

Figure 3. IMFs and trend  for  (a) x(t), and

(b) y(t) of the RAFOS N035.

SUMMARY
This study shows the capability of EMD to decompose a single  drifter‘s trajectory into 
deterministic and stochastic components. This will largely improve the Lagrangian
observations. This method can be used in general signal processing. 
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TURBULENT DIFFUSION COEFFICIENTS FOR EACH 
FLOAT  
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EMD OF THE RAFOS FLOAT N035
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Figure 4. The phase spectra for the
IMFs in  Figure 3.
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Float Kx(m2/s) Ky(m2/s) Float Kx(m2/s) Kx(m2/s)
N002 50.33 35.36 N050 807.00 869.98
N003 201.50 256.01 N051 1,428.79 429.88
N004 1,268.10  961.34 N053 744.84 567.72
N005 512.28 161.15 N055 575.79 1,266.25 
N006 1,154.57 491.32 N062 527.90 455.62
N007 140.41 322.12 N063 264.97 159.00
N008 229.77 136.26 N064 857.32 317.78
N010 275.39 239.34 N065 236.35 78.13
N011 249.02 243.60 N066 928.46 816.23
N013 402.84 331.44 N067 1,113.50 1,064.76
N014 357.15  310.99 N069 542.80 255.66
N019 530.12 692.70 N071 90.03 217.50
N021 66.89 13.61 N072 540.54 464.90
N022 15.08 10.28 N073 506.08 431.43
N024 46.75 10.07 N075 1,190.04 1,128.97
N026 788.09   180.61 N080 1,119.79 1,052.69
N028 301.14  146.19 N081 919.83 1,118.54
N029 128.14  227.37 N082 690.91 893.65
N030 20.37 438.64 N083 1,216.25 1,535.29
N031 1,372.19     1,354.11 N084 768.98 683.10
N032 375.76 284.72 N085 971.53 1,357.00
N033 106.38 662.16 N087 604.49 904.98
N035 896.11 330.70 N088 488.44 1,323.34
N039 539.05 631.89 N089 762.60 2,579.02
N041 1,123.98 619.72 N090 1,803.36 2,067.87
N043 1,057.78 618.90 N091 931.87 838.59
N048 476.43 86.36 N092 969.12 1,277.95

Table 1.  Horizontal diffusivity 
coefficients (Kx, Ky) identified 
from each RAFOS float
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