#### Variation of Marine Geoid Due to Ocean Circulation and Sea Level Change

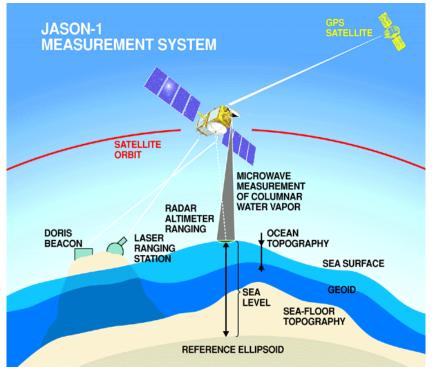
#### Peter C. Chu Naval Postgraduate School Monterey, California, USA

AGU Fall Meeting, New Orleans, 11-15 December 2017

Thank you very much for coming to the last talk on the last day!

## Outline

- 1. Marine Geoid before and after GRACE
- 2. Marine Geoid Anomaly due to Oceanic Motion and Sea Level Change
- 3. Governing Equation for Marine Geoid Anomaly
- 4. Temporally Averaged Global Marine Geoid Anomaly
- 5. Conclusions


## 1. Marine Geoid before and after GRACE

## Classical Marine Geoid (N<sub>0</sub>) before GRACE

 An equipotential surface (N<sub>0</sub>) which would coincide with the average level of the oceans (implying sea level not change) if the water were at rest.

### Sea Surface Height (Topography) ( $\eta$ )

JASON-1  $\rightarrow$  Dec 7, 2001 JASON-2  $\rightarrow$  JUN 20, 2008 JASON-3  $\rightarrow$  Jan 17, 2016 Surface Water and Ocean Topography (SWOT) – Launch 2020 time Frame

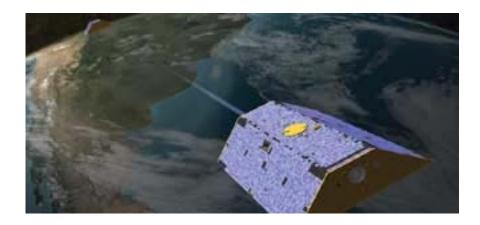


https://swot.jpl.nasa.gov/mission/

https://en.wikipedia.org/wiki/Ocean\_ surface\_topography#/media/File:Jas on-1\_measurement\_system.gif

Fu and Ubelmann (2014)

## Classical Marine Geoid and Dynamic Ocean Topography (DOT)


$$N_0 = \eta - D$$

Surface Geostrophic Currents  $[u_g(0), v_g(0)] \Rightarrow D$ 

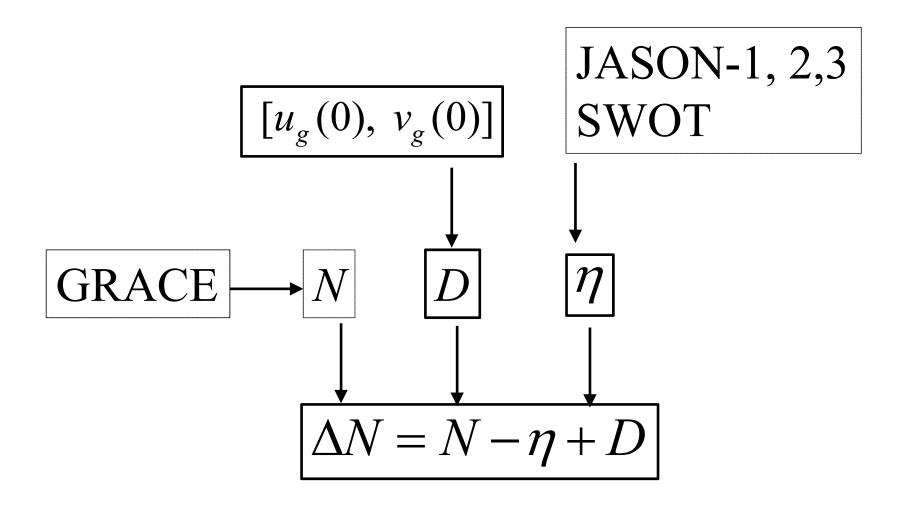
$$u_g(0) = -\frac{g_*}{f}\frac{\partial D}{\partial y}, \quad v_g(0) = \frac{g_*}{f}\frac{\partial D}{\partial x}$$

 $g_* \rightarrow$  Globally Averaged Gravity  $f \rightarrow$  Coriolis Parameter

# Marine Geoid (N) from GRACE



Observed by GRACE GRACE 2002-2017 GRACE-FO 2018 Gravity field
measured from
GRACE →


with the ocean in ceaseless motion and changing sea level Tapley et al. (2004)

https://www.jpl.nasa.gov/missions/gravity-recovery-and-climateexperiment-follow-on-grace-fo/ 2. Marine Geoid Anomaly Due to Oceanic Motion and Sea Level Change

- N ← GRACE (Oceans in Ceaseless Motion and Changing Sea Level)
- N₀ ← Classical Marine Geoid (Oceans at Rest)

$$N \neq N_0$$
$$\Delta N \equiv N - N_0 = D - (\eta - N)$$

Marine Geoid Anomaly due to Motion in
Ocean and Sea Level Change



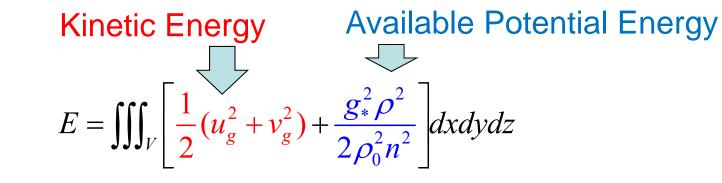
#### How to obtain D?

# 3. Governing Equation for Marine Geoid Anomaly

#### **Theoretical Base**

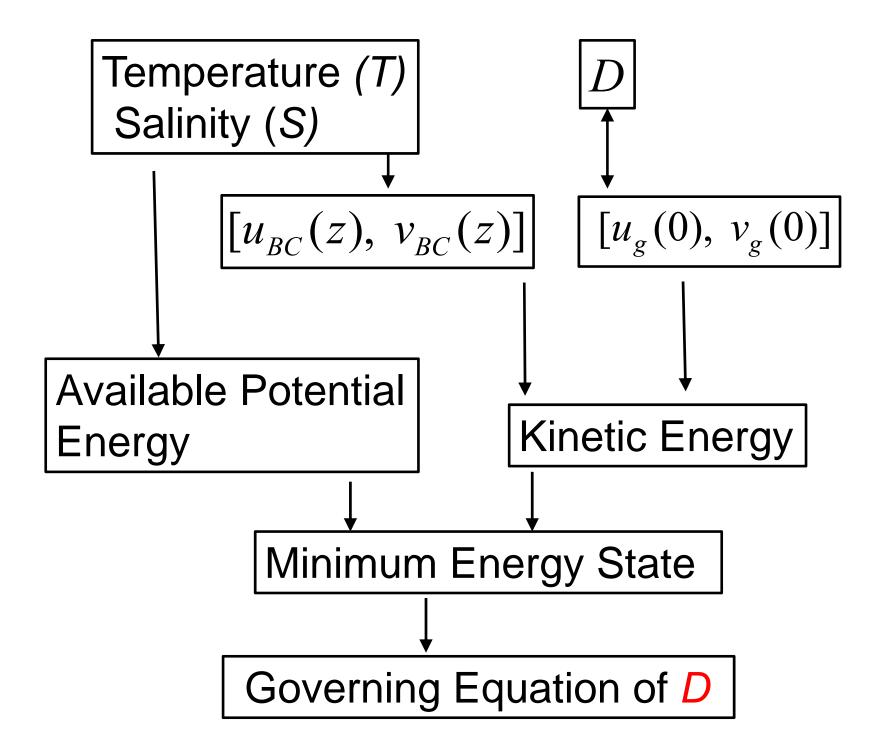
- (1) 3D geostrophic velocity is determined from 3D (T, S) fields and 2D DOT (D) using the thermal wind relation.
- (2) For large scale motion, geostrophic balance has a minimum energy state in an energy conserved basin (Vallis 1992).
- (3) Euler-Lagrangian equation of the global ocean mechanical energy leads to the governing equation

#### **Thermal Wind Relation**


$$u_g(z) = u_g(0) + u_{BC}(z), \quad v_g(z) = v_g(0) + v_{BC}(z)$$

$$u_g(0) = -\frac{g_*}{f}\frac{\partial D}{\partial y}, \quad v_g(0) = \frac{g_*}{f}\frac{\partial D}{\partial x}$$

$$u_{BC}(z) = -\frac{g_*}{f\rho_0} \int_z^0 \frac{\partial \rho}{\partial y} dz', \quad v_{BC}(z) = \frac{g_*}{f\rho_0} \int_z^0 \frac{\partial \rho}{\partial x} dz'$$


 $\rho = \rho(T, S, p)$  (Equation of State)

#### Minimum Energy State



$$E(D_x, D_y, \rho) = \frac{g_*^2}{2} \iiint_V \left[ \left( -D_y + \frac{fu_{BC}}{g_*} \right)^2 / f^2 + \left( D_x + \frac{fv_{BC}}{g_*} \right)^2 / f^2 + \frac{\rho^2}{\rho_0^2 n^2} \right] dx dy dz$$

$$n^2 \equiv -\frac{g_*}{\rho_0} \frac{\partial \overline{\rho}}{\partial z}$$
 (mean stratification)



#### **Euler-Lagrangian Equation**

Minimization of  $E(D_x, D_y, \rho) \Rightarrow$ 

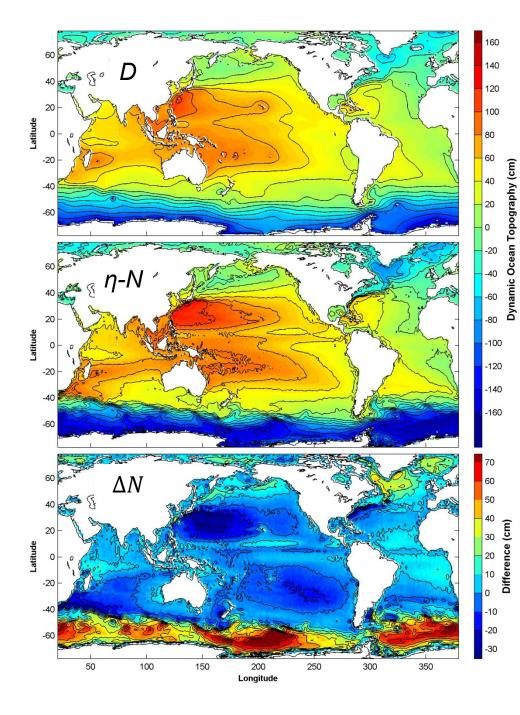
$$H\left[\nabla^2 D + r^{(x)}\frac{\partial D}{\partial x} + r^{(y)}\frac{\partial D}{\partial y} - 2(\beta / f)\frac{\partial D}{\partial y}\right] = -F$$
 (A)

$$F \equiv \left(\frac{\partial Y}{\partial x} - \frac{\partial X}{\partial y}\right), \quad \nabla \equiv \mathbf{i}\frac{\partial}{\partial x} + \mathbf{j}\frac{\partial}{\partial y}, \quad r^{(x)} \equiv \frac{1}{H}\frac{\partial H}{\partial x}, \quad r^{(y)} \equiv \frac{1}{H}\frac{\partial H}{\partial y}$$

At ocean rigid boundary:  $N_0 = N \rightarrow D = \eta - N$ 

#### $H \rightarrow$ Ocean Bottom Topography

#### 4. Temporally Averaged Global Marine Geoid Anomaly


## Ocean Data

 The climatological annual mean (T, S) data are obtained from the world ocean from the NOAA National Centers for Environmental Information (NCEI) World Ocean Atlas 2013 version 2 (WOA) at the website:

http://www.nodc.noaa.gov/OC5/woa13/woa13data.htm

 The ocean depth data H<sub>i,j</sub> is downloaded from the NECI 5-Minute Gridded Global Relief Data Collection (ETOPO5) at the website:

https://www.ngdc.noaa.gov/mgg/fliers/93mgg01.html



Numerical solution of the governing elliptic equation (A) of *D* with the rigid boundary values of

$$D = (\eta - N)$$

The mean (1993-2006)  $(\eta - N)$ "Dynamic Ocean Topography" downloaded from the NASA/JPL website:

https://grace.jpl.nasa.gov/data /get-data/dynamic-oceantypography

$$\Delta N = N - \eta + D$$

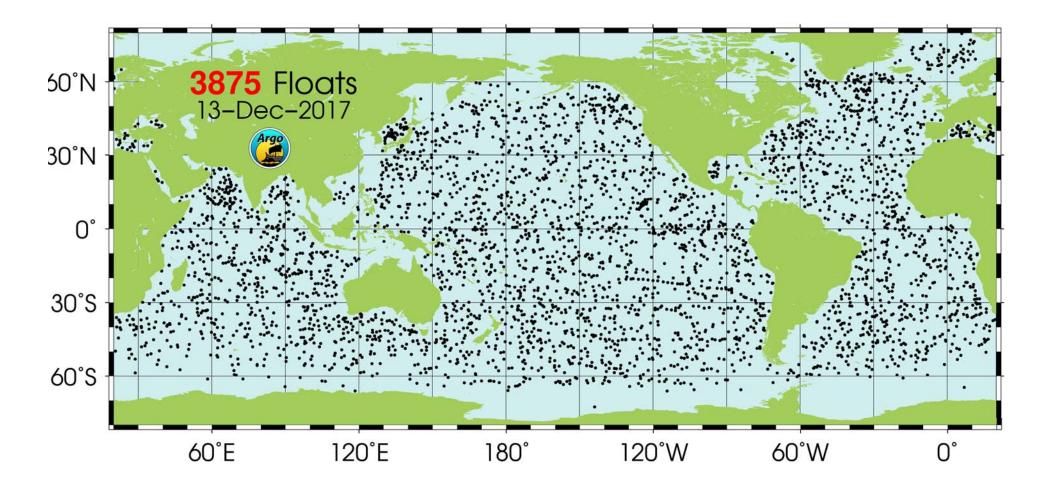
 $70 \text{ cm} > \Delta N > -30 \text{ cm}$ 

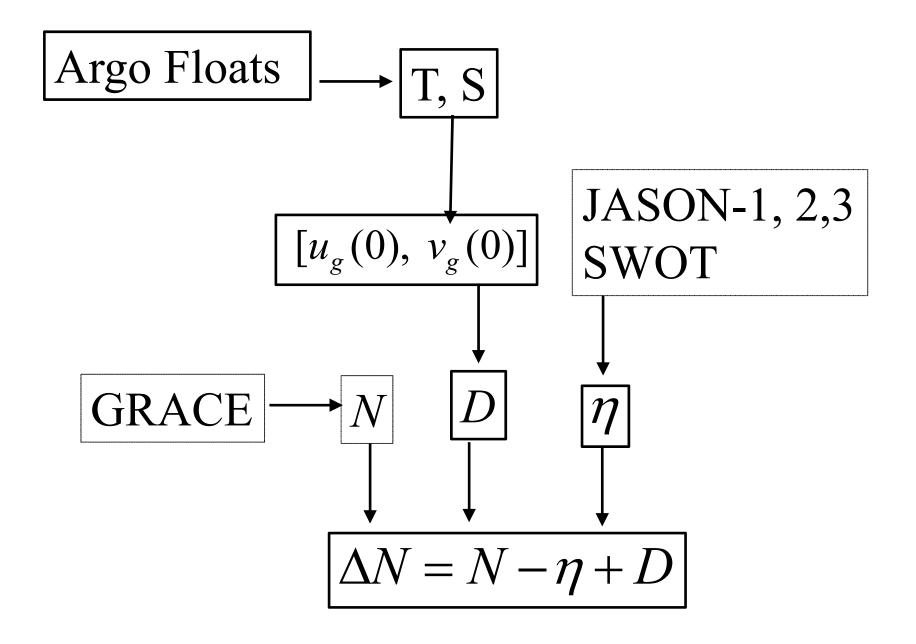
#### 5. Conclusions

- Marine geoid anomaly due to oceanic motion and sea level change is not negligible.
- A new elliptic equation was derived for the marine geoid anomaly.
- Combined space and underwater remote sensing may be important for future marine geodesy.

6 -12 hours at surface to transmit data to satellite

Total cycle time 10 days


Descent to depth ~10 cm/s (~6 hours)


> 1000 db (1000m) Drift approx. 9 days

Salinity & Temperature profile recorded during ascent ~10 cm/s (~6 hours)

Float descends to begin profile from greater depth 2000 db (2000m)

#### Global Argo Floats $\rightarrow$ (T,S) Profiles



