Multifractal Thermal Characteristics of the Southwestern GIN Sea Upper Layer

Peter C Chu Naval Postgraduate School Monterey, CA 93943

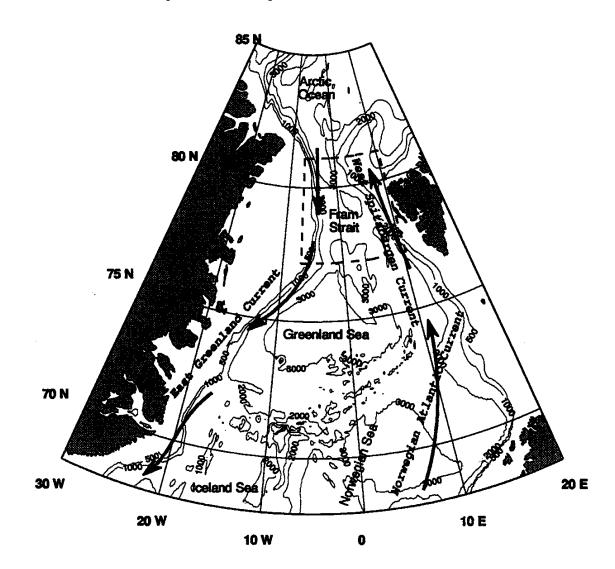
pcchu@nps.edu

http://www.oc.nps.navy.mil/~chu

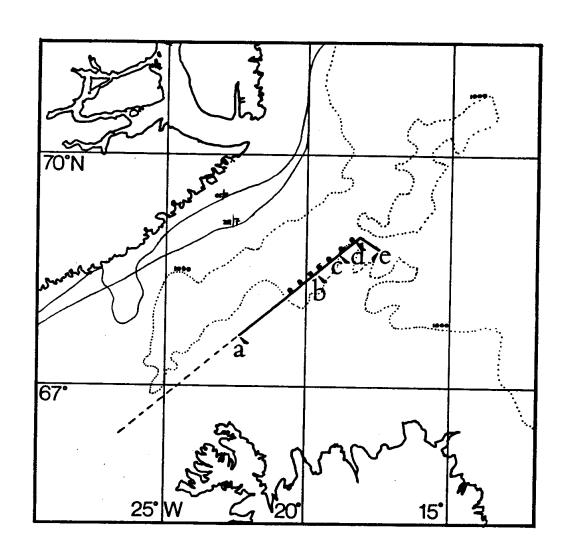
Reference

 Chu, P.C., 2004: Multifractal thermal characteristics of the southwestern GIN Sea upper layer, the journal "Chaos, Solitons and Fractals", 19 (2), 275-284.

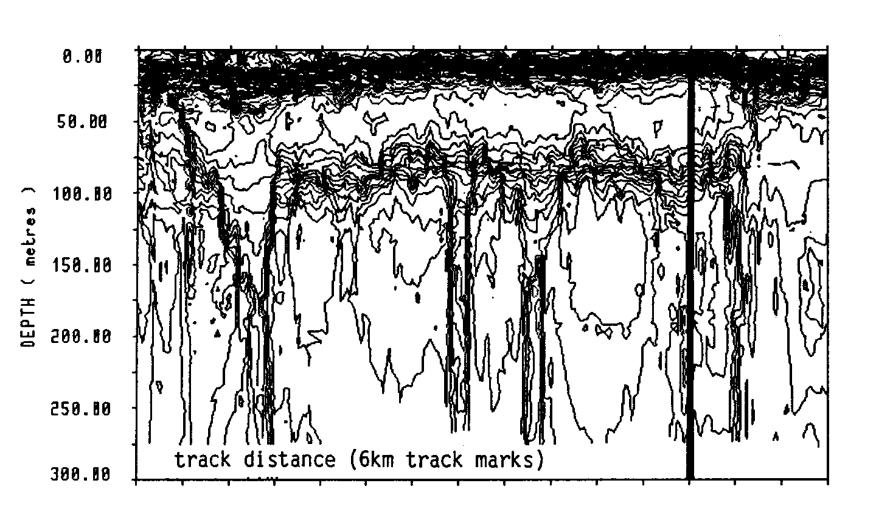
Greenland-Icelandic-Norwegian (GIN) Sea



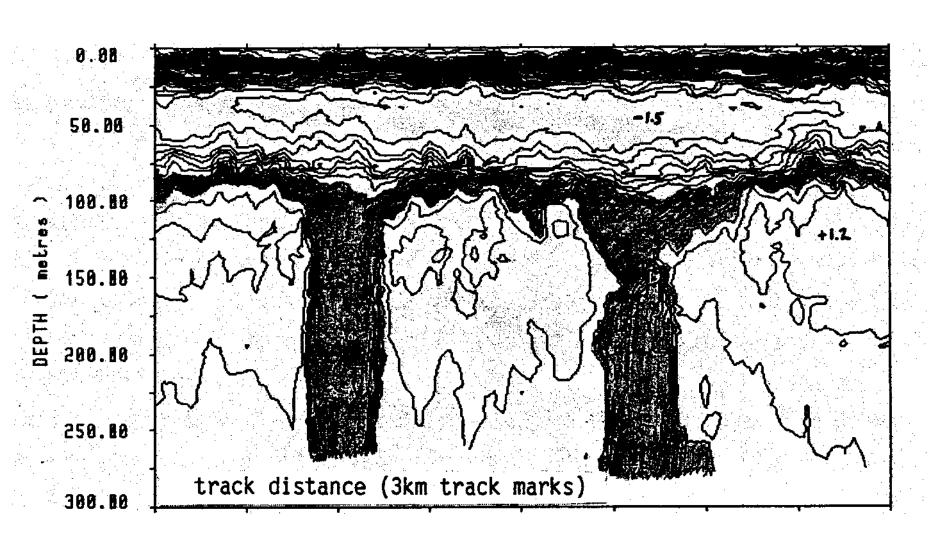
Thermister Chain



Temperature Field



Temperature Field (zoomed in)



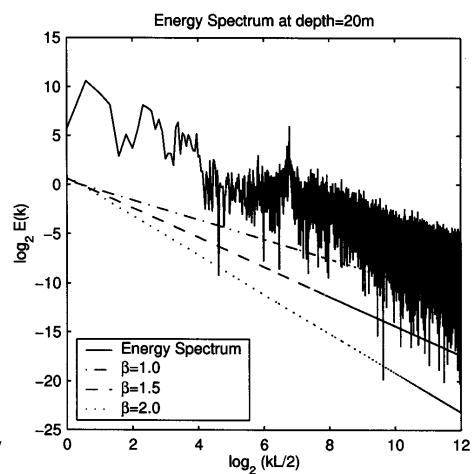
Power Spectrum

$$E(k) \propto k^{-\beta},$$

$$1 < \beta < 2$$
,

Spike at

$$Log_2(kL/2) \simeq 6.5,$$



Corresponding to Chimney Scale ~ 3 km

Structure Function (1)

$$|\Delta T(r;x)| = |T(x_{i+r}) - T(x_i)|, \quad i = 0,1,...,\Lambda - r,$$

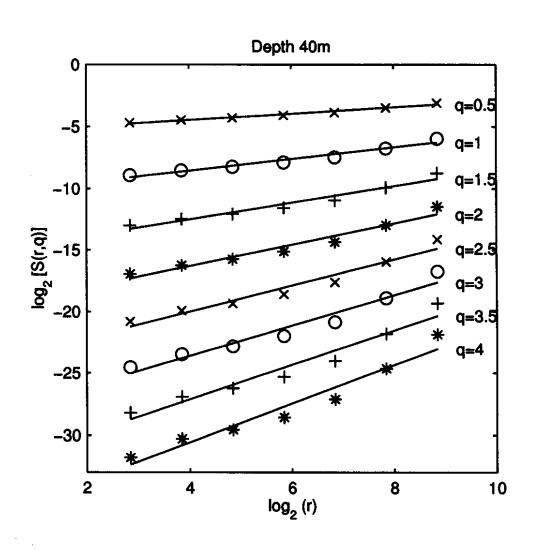
$$S(r,q) \equiv \left\langle \left| \Delta T(r;x) \right|^q \right\rangle = \frac{1}{\Lambda - r} \sum_{i=0}^{\Lambda - r} \left| \Delta T(r;x) \right|^q.$$

Here, r is the lag, q is the order of the structure function

$$S(1,1) = \frac{1}{\Lambda - 1} \sum_{i=0}^{\Lambda - 1} |T(x_{i+1}) - T(x_i)|$$

S(1,1) is the mean gradient.

Structure Function (Power Law)



$$S(r,q) \propto r^{\zeta(q)}$$

$$\zeta(q) = H(q)q$$
,

Dimension of GIN Sea Temperature Field

$$D_{g(T)}=2-H_1.$$

Stationary

$$S(r,1) = const$$
,

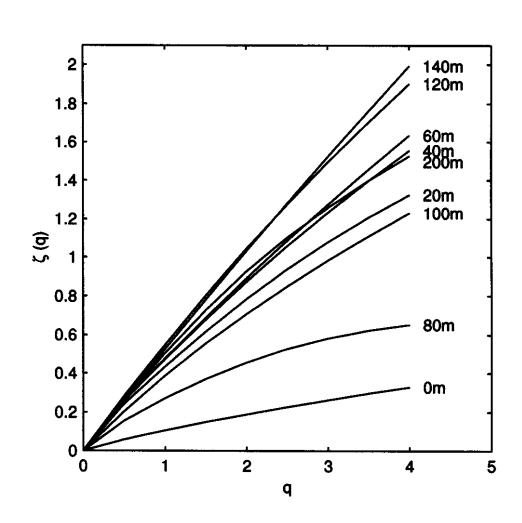
$$\zeta(1) = H(1) = 0$$
.

$$D_{g(T)}=2,$$

Power of the structure function S(r, 1) and the dimension of GIN Sea temperature field

Depth (m)	0	20	40	60	80	100	120	140	200
$\zeta(1) = H_1$	0.11	0.43	0.47	0.48	0.28	0.40	0.56	0.52	0.50
$D_{g(T)}$	1.89	1.57	1.53	1.52	1.78	1.60	1.44	1.48	1.50

Dependence of structure function's power $\zeta(q)$ on q and depth



Normalized Small Scale Absolute Gradient and Running Mean

$$\langle |\Delta T(1;x_i)| \rangle = \frac{1}{\Lambda} \sum_{i=0}^{\Lambda-1} |\Delta T(1;x_i)|,$$

$$\varepsilon(1;x_i) = \frac{\left|\Delta T(1;x_i)\right|}{\left\langle\left|\Delta T(1;x_i)\right|\right\rangle},\,$$

$$\varepsilon(r;x_i) = \frac{1}{r} \sum_{j=i}^{i+r-1} \varepsilon(1;x_j), \qquad i = 0,1,...,\Lambda - r.$$

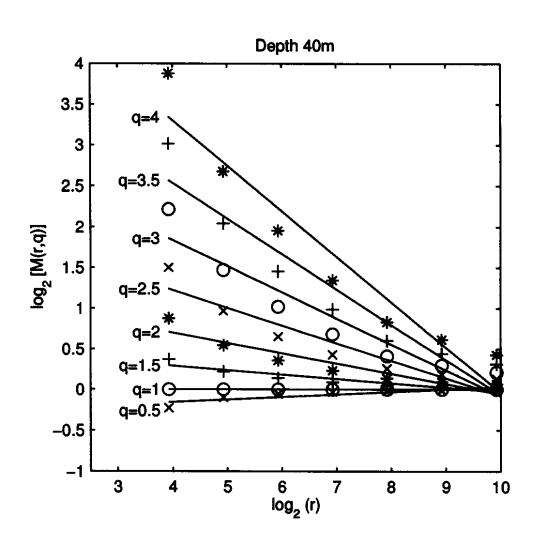
Singular Measure

$$M(r,q) \equiv \langle \varepsilon(r;x_i)^q \rangle = \frac{1}{\Lambda - r} \sum_{i=0}^{\Lambda - r} \left[\varepsilon(r;x_i) \right]^q$$

$$M(r,1) \equiv \left\langle \varepsilon(r;x_i) \right\rangle = \frac{1}{\Lambda - r} \sum_{i=0}^{\Lambda - r} \left[\varepsilon(r;x_i) \right]$$

$$=\frac{1}{\Lambda-r}\sum_{i=0}^{\Lambda-r}\left[\frac{1}{r}\sum_{j=i}^{i+r-1}\varepsilon(1;x_j)\right]=1.$$

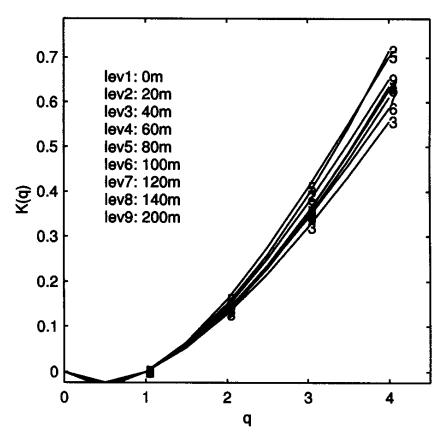
Singular Measure (Power Law)



Power of the Singular Measure

$$M(r,q) \propto r^{-K(q)}, \quad q \geq 0,$$

$$K(0) = K(1) = 0$$
.



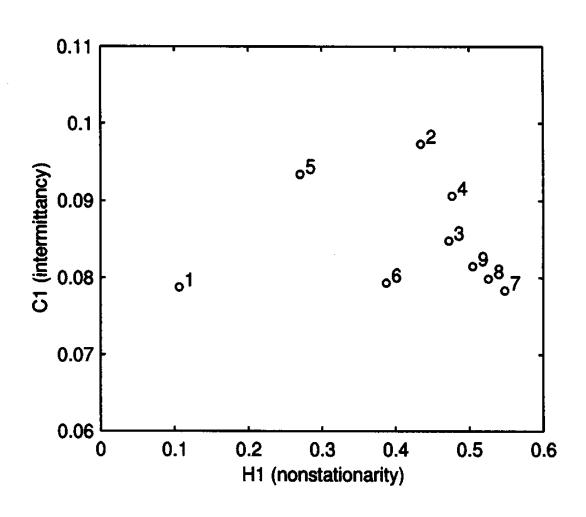
Characteristics of the Power of the Singular Measure

$$\frac{d^2K(q)}{dq^2} > 0,$$

$$K(q) < 0$$
 only if $0 < q < 1$
$$C(q) = \frac{K(q)}{q-1}.$$

$$C_1 \equiv C(1) = K'(1) \ge 0,$$

Mean Multifractal Plane (number representing level: 1 ~ 0 m, ..., 9 ~ 200m)



Conclusions

(1) Chimney width is aound 3 km.

(2) GIN Sea sublayer is nonstationary.

 (3) The structure function has multifractal characteristics.