Near-Surface Ocean Currents

Peter C. Chu

Naval Postgraduate School, Monterey California 93943, USA

p c chu@yahoo.com

http://faculty.nps.edu/pcchu

- Magnitude of Near Surface Currents
 10 cm/s
- What are the statistical features?

Dealing with Uncertainty

Gaussian Distribution is often used

Gaussian Distribution

- Mean = μ
- Standard Deviation = σ
- Skewness = 0
- Kurtosis -3 = 0

$$p(x) = rac{1}{\sqrt{2\pi \sigma^2}} \cdot \exp\left[rac{-\left(x-\mu\right)^2}{2\sigma^2}
ight]$$

Gaussian Process

 Gaussian process is much easier to analyze, so is useful to produce a first approximation to reality. A frequent mistake is to confuse first approximation with the truth.

Satellite Altimeters (JASON-1, GFO, ENVISAT) Scatterometer (QSCAT)

Ocean Surface Velocity

Ocean Surface currents data available for whole world' oceans at <u>www.oscar.noa</u>

Data continuously available every 5 days

Statistical Characteristics of Global Surface Current Speed (1992-2008) (Chu 2008)

Longitude

General Features

- Positive/Negative Skewness
- Kurtosis $\neq 3$

Weibull Distribution – from Positive to Negative Skewness

Characteristics of the Weibull Distribution

$$b \approx \left[\frac{\operatorname{mean}(w)}{\operatorname{std}(w)}\right]^{1.086}, \quad a = \frac{\operatorname{mean}(w)}{\Gamma(1+1/b)}.$$
$$\operatorname{skew}(w) = \frac{\Gamma\left(1+\frac{3}{b}\right) - 3\Gamma\left(1+\frac{1}{b}\right)\Gamma\left(1+\frac{2}{b}\right) + 2\Gamma^{3}\left(1+\frac{1}{b}\right)}{\left[\Gamma\left(1+\frac{2}{b}\right) - \Gamma^{2}\left(1+\frac{1}{b}\right)\right]^{3/2}}$$
$$\operatorname{kurt}(w) = \frac{\Gamma\left(1+\frac{4}{b}\right) - 4\Gamma\left(1+\frac{1}{b}\right)\Gamma\left(1+\frac{3}{b}\right)}{\left[\Gamma\left(1+\frac{3}{b}\right) + \frac{6\Gamma^{2}\left(1+\frac{1}{b}\right)\Gamma\left(1+\frac{2}{b}\right) - 3\Gamma^{4}\left(1+\frac{1}{b}\right)}{\left[\Gamma\left(1+\frac{2}{b}\right) - \Gamma^{2}\left(1+\frac{1}{b}\right)\right]^{2}} - 3\Gamma^{4}\left(1+\frac{1}{b}\right)}$$

 $\Gamma \rightarrow$ Gamma Function

Kurt $\leftarrow \rightarrow$ Skew

Kurt = F(Skew)

• Since

 \rightarrow

Skew =
$$f_1(b)$$
, Kurt = $f_2(b)$

Kernel Density Estimates of Joint PDFs of kurtosis and skewness Surface Current Speed

(Red Curve \rightarrow Weibull Distribution)

Kernel Density Estimates of Joint PDF of Kurtosis and Skewness – Significant Wave Heights

(Red Curve \rightarrow Weibull Distribution)

TAO Array

Fig. 1: The TOGA-TAO Array in August 1993 and in its final configuration December 1994. ATLAS moorings, \Diamond and current-meter moorings, \Box .

with the upper panels for the whole period, the middle panels for the major El Nino events, and the lower panels for the major La Nina events.

L12606

Why is the Weibull Distribution ?

Stochastic Dynamics for the Ocean Surface Currents

Vertically Averaged Horizontal Velocity (*u*, *v*) within the Mixed Layer -- Slab Model --

$$\frac{\partial u}{\partial t} = \frac{1}{h} \Lambda_u - \frac{K}{h^2} u \quad (1)$$

 $h \rightarrow$ mixed layer depth

 $K \rightarrow$ eddy viscosity

$$\frac{\partial v}{\partial t} = \frac{1}{h} \Lambda_v - \frac{K}{h^2} v \qquad (2)$$

 $(\tau_x, \tau_y) \rightarrow \text{Surface wind}$ stress

$$\Lambda_{u} \equiv fV_{E} + \frac{\tau_{x}}{\rho}, \quad \Lambda_{v} \equiv -fU_{E} + \frac{\tau_{y}}{\rho}$$

Ekman Transport (U_E , V_E)

$$(U_{E},V_{E})=\int_{-h}^{0}(\tilde{u}-u_{g},\tilde{v}-v_{g})dz,$$

 $(\tilde{u}, \tilde{v}) \rightarrow$ Vertically Varying Velocity

 $(u_q, v_q) \rightarrow$ geostrophic velocity

 $(u_g, v_g) = 0 \rightarrow Eqs(1)(2) \rightarrow Wind-forced Slab model$

Ensemble Mean and Stochastic Fluctuations of the Forcing

 (1) Ensemble Mean → Ekman Transport is determined by the surface wind stress →

$$\left< \Lambda_u \right> = 0, \quad \left< \Lambda_v \right> = 0$$

• (2) Fluctuations ($\Sigma \rightarrow$ strength)

$$\Lambda_{u}(t) = \left\langle \Lambda_{u} \right\rangle + \dot{W}_{1}(t)h\Sigma, \quad \Lambda_{v}(t) = \left\langle \Lambda_{v} \right\rangle + \dot{W}_{2}(t)h\Sigma \quad (3)$$
$$\left\langle \dot{W}_{i}(t_{1})\dot{W}_{j}(t_{2}) \right\rangle = \delta_{ij}\delta(t_{1} - t_{2})$$

Stochastic Dynamic System

 $Eq(3) \rightarrow Eqs(1)(2)$

$$\frac{\partial u}{\partial t} = -\frac{K}{h^2}u + \dot{W}_1(t)\Sigma$$
(4)

$$\frac{\partial v}{\partial t} = -\frac{K}{h^2}v + \dot{W}_2(t)\Sigma$$
(5)

Fokker-Planck Equation for PDF of (*u*, *v*)

$$\frac{\partial p}{\partial t} = \left(\frac{\Sigma^2}{2}\right) \left(\frac{\partial^2 p}{\partial u^2} + \frac{\partial^2 p}{\partial v^2}\right) + \frac{\partial}{\partial u} \left[\left(\frac{K}{h^2}u\right)p\right] + \frac{\partial}{\partial v} \left[\left(\frac{K}{h^2}v\right)p\right] \quad (6)$$

Polar Coordinate $\rightarrow u = w \cos \varphi, v = w \sin \varphi$

$w \rightarrow$ Current Speed

For Constant $K \rightarrow$ PDF of $w \rightarrow$ the Rayleigh Distribution (Special Case of the Weibull Distribution)

$$p(w) = \frac{2w}{a^2} \exp\left[-\left(\frac{w}{a}\right)^2\right], \quad a \equiv \frac{\Sigma h}{\sqrt{K}}$$

For Non-Constant $K \rightarrow$ Weibull Distribution

$$p(w) = \frac{b}{a} \left(\frac{w}{a}\right)^{b-1} \exp\left[-\left(\frac{w}{a}\right)^2\right]$$

$$\operatorname{mean}(w) = a\Gamma\left(1 + \frac{1}{b}\right)$$

std(w) =
$$a \left[\Gamma \left(1 + \frac{2}{b} \right) - \Gamma^2 \left(1 + \frac{1}{b} \right) \right]^{1/2}$$

 $\Gamma \rightarrow$ Gamma Function

Summary

 The Weibull distribution provides a reasonable empirical approximation to the PDF of the near surface current speeds for the global oceans.