Optimal Detection of Surface Drifting Mine with Navy Ocean Model

Peter C Chu, LT Kriste Colpo, C.-W. Fan, NPS
Ronald E Betsch, NAVO
Purpose

• To provide methodology for optimizing locations of stationary sensors and UUV path planning intended for drifting mine detection using Navy ocean model
Specific Requirements

- Estimations of target movement

- Optimal sensor numbers (or number of UUVs)

- Optimal sensor locations (or UUV locations)
Hampton Roads Inlet

- Within 3nm of Norfolk Naval Base
- Hampton Roads—world’s leading bulk cargo harbor.
 - 150,000 – 500,000 barrels of petroleum in and around Hampton Roads biweekly
- Six military tankers (7.5 million gallon capacity) home-ported in Norfolk
Physical Processes in Hampton Roads Inlet

- Tides
- Freshwater
- Surface Winds
- Water Levels
- Waves
- Water Temperature
- Salinity
- Currents
River-Estuary-Ocean (REO) Interactions
Prediction of Mine Drifting

6 DOF Model

\[m \frac{dV}{dt} = (\rho \Pi - m) g \mathbf{k} + f_{\text{drag}} \mathbf{e}_d + f_{\text{lift}} \mathbf{e}_l \]

\[\mathbf{I} \cdot \frac{d\Omega}{dt} = r_v \times f_b + r_f \times (f_{\text{drag}} + f_{\text{lift}}) + \mathbf{M}_r \]

\(\mathbf{V} \rightarrow \text{Mine Drifting Velocity} \)

\(\mathbf{\Omega} \rightarrow \text{Mine Angular Velocity} \)
Definition of \((f_{\text{drag}}, f_{\text{lift}}, M_r)\)

\[
f_{\text{drag}} = \frac{1}{2} C_d \rho A_w (V - V_o)^2
\]

\[
f_{\text{lift}} = \frac{1}{2} C_l \rho A_w (V - V_o)^2
\]

\[
M_r = \frac{1}{2} C_m \rho \Pi_w (V - V_o)^2
\]

\(V_o \rightarrow \) Ocean Velocity (from Navy Ocean Model)

\(\Pi_w \rightarrow \) Underwater volume

\(A_w \rightarrow \) Underwater area
Ocean Modeling

Observations → Global → Regional → Coastal

3D, Full Physics, Data Assimilating, Dynamic, Forecast Models

COAMPS

NOGAPS

Global NCOM

Delft3D

NCOM

US-East NCOM

Water Temperature at 0m for 03 Mar 2009 00:00 Z
Real-time

• Current
• T & S
• Waves
• Surface Elevation

NAVO Coastal Model - Delft-3D

MIW – EXW – HLS: Port & Estuarine Modeling

Horizontal resolution 10-100 m or less
Delft3D - Chesapeake Bay

- Operational Model at NAVO
- Acting as a nested model, its flow forced at open boundaries by:
 - Temperature
 - Salinity
 - Velocity
 - Water level
 Provided by the USEAST Regional NCOM
- Local wind stress input forces flow at the free surface: COAMPS
- Tidal forcing
Ocean Velocity
Prediction of Mine Drift Trajectory

• July 28 – August 30, 2011

• Delft3D \rightarrow Ocean Velocity (u_o, v_o)

• Mine Drift Model \rightarrow Mine Position (x, y)
 \rightarrow Mine Trajectory
Optimal Sensor Grid - Formation

Sensor Grid Location, Sensor Index Numbers, and Drifter Start Box

Uncertain Mine Location Inside the Box
Monte-Caro Simulation of Mine Trajectories
Procedures of the Monte-Carlo Simulation

- All drifters started with randomly selected position (Normal Distribution, Matlab) within 2 x 1.6nm (3.7 X 3 km) box

- Box located 0.75nm (1.4 km) east of Fort Wool

- 10,000 simulated drifters permitted to run at beginning of flood tide each day

- Flood period ~3hrs
Flood Period

<table>
<thead>
<tr>
<th>Day (2011)</th>
<th>Flood Time Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/28</td>
<td>10Z – 13Z</td>
</tr>
<tr>
<td>7/29</td>
<td>10Z – 13Z</td>
</tr>
<tr>
<td>7/30</td>
<td>11Z – 14Z</td>
</tr>
<tr>
<td>8/01</td>
<td>12Z – 15Z</td>
</tr>
<tr>
<td>8/02</td>
<td>13Z – 16Z</td>
</tr>
<tr>
<td>8/03</td>
<td>14Z – 17Z</td>
</tr>
<tr>
<td>8/04</td>
<td>14Z – 17Z</td>
</tr>
<tr>
<td>8/05</td>
<td>15Z – 18Z</td>
</tr>
<tr>
<td>8/06</td>
<td>16Z – 19Z</td>
</tr>
<tr>
<td>8/07</td>
<td>17Z – 20Z</td>
</tr>
<tr>
<td>8/08</td>
<td>18Z – 21Z</td>
</tr>
<tr>
<td>8/09</td>
<td>19Z – 22Z</td>
</tr>
</tbody>
</table>
Trajectories of Drifting Mines
Optimal Sensor Grid

• Sensors are hypothetical and ideal:
 – Modeled as perfect upward looking sonar systems
 – Circular detection footprint on the surface (radius = 100 m)
 – Drifting mines will be called if they enter the footprint

• Each drifter will only be called once
Probability of Detection
Probability of Detection - Assumptions

• Positive detection if drifter within radius for 5 seconds or more

• Based solely upon the three hour flood period
Probability of Detection – Ranking Sensors

• After 3hr flood period, ranking process of sensors
 – Sensor with the highest number of detections, “lead sensor” (or “best location” for UUV)
 – 2nd highest detections, not called by the lead sensor, “second place sensor”...
 – continued until all drifters that flowed through the grid were counted
Probability of Detection – Sensor Detection Probability

• number of drifters each sensor called, not previously called by other sensors, divided by 10,000

• Equaled zero if:
 – All of the drifters were previously called
 – Not a single drifter flowed through its radius
Optimal Deployment of Stationary Sensors – Results
Optimal Deployment of Stationary Sensors – Sensor Location*

Sensor Detection Probability (28JUL2011) - Normal
Optimal Deployment of Stationary Sensors – Sensor Number*

*Optimum sensor number – average value for 99% of total probability

<table>
<thead>
<tr>
<th>Uniform</th>
<th>Days</th>
<th></th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>90%</td>
<td>6.3960</td>
<td>5.7517</td>
<td>5.8258</td>
<td>5.1278</td>
<td>4.5709</td>
<td>4.4934</td>
<td>5.1692</td>
<td>5.1833</td>
<td>5.6069</td>
<td>5.4840</td>
<td>5.4614</td>
<td>6.1694</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normal</th>
<th>Days</th>
<th></th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

• 8 sensors for Normal (99% of total prob)
Conclusions

• Navy ocean model → methodology for optimizing stationary sensor employment in an inlet

• The results can be used for UUV path planning to get optimal detection
QUESTIONS?