UNCLASSIFIED

9th International Symposium on Technology and the Mine Problem, NPS, 17-20 May 2010

Wave Effect on Underwater Bomb Trajectory with Application to Mine Neutralization

Peter C. Chu, and Chenwu Fan Naval Postgraduate School, USA

This project was sponsored by ONR Program Manager: Brian Almquist

Collaborator: Kennard Watson Naval Surface Warfare Center-Panama City, USA

Mine Neutralization Using Bomb

BOMB FALL LINE

For effective mine clearance

 $\Delta < 7 \, \text{ft} \, (2.1 \, \text{m})$

The Technology Transition Agreement (TTA) between the Office of Naval Research and the Navy states that the "trajectory deviation from the flight path (velocity vector) should not exceed 7 ft (2.1) m) (approximate) for water depths of 10-40 ft (3-12.2 m)" (Humes 2007).

Navy's Standard

r < 2.1 m (i.e., 7 ft)

Inside the cavity

Hitting the cavity wall → Tail Separation

Surface slope affects the tail separation and the trajectory

Probability Density Function (PDF) of Ocean Surface Slope

$$p(s) = \frac{n}{(n-1)} s \left[1 + \frac{s^2}{(n-1)} \right]^{-(n+2)/2}$$

 $s \rightarrow$ scaled slope, $n \rightarrow$ peakedness coefficient

6-FOF Bomb Trajectory Model

Dynamical Determination of Drag/Lift Coefficients

Definitions of $(C_d \ C_l \ C_m)$

$$f_{drag} = \frac{1}{2} C_d \rho A_w V^2$$
$$f_{lift} = \frac{1}{2} C_l \rho A_w V^2$$
$$M_{trav} = \frac{1}{2} C_m \rho \Pi_w V^2$$

 $\prod_{w} \rightarrow \text{Underwater volume}$

 $A_w \rightarrow$ Underwater area

Theoretical Base

$$m\frac{d\mathbf{V}}{dt} = \left(\rho\Pi - m\right)g\mathbf{k} + f_{drag}\mathbf{e}_{d} + f_{lift}\mathbf{e}_{l}$$

$$\mathbf{I} \bullet \frac{d\mathbf{\Omega}}{dt} = \mathbf{r}_{v} \times \mathbf{f}_{b} + \mathbf{r}_{f} \times \left(\mathbf{f}_{drag} + \mathbf{f}_{lift}\right) + \mathbf{M}_{r}$$

Here, V is the translation velocity of COM,

 Ω is the angular velocity.

There is no existing formulae for calculating $C_d C_l C_m$ for JABS

Diagnostic-Photographic Method $\rightarrow (C_d C_l C_m)$ for underwater bomb using data from 12th scaled bomb drop experiments at SRI and NPS

Chu, P.C., C.W. Fan, and P. R. Gefken, 2010: Diagnostic-photographic determination of drag/lift/torque coefficients of high speed rigid body in water column.

Journal of Applied Mechanics, AMSE, 77, 011015-1

Semi-Empirical Formulas for (C_d, C_l) $C_d = 0.02 + 0.35e^{-2(\alpha - \frac{\pi}{2})^2} \left(\frac{\text{Re}}{\text{Re}^*}\right)^{0.2} + 0.008\Omega \sin\theta$ $\theta = sign(\pi - 2\alpha) \left(\pi^{2.2} - (\pi - |\pi - 2\alpha|)^{2.2}\right)^{\frac{1}{2.2}}$ $C_{l} = \begin{cases} 0.35\sin\left(\theta_{1}\right)\left(\frac{\operatorname{Re}}{\operatorname{Re}^{*}}\right)^{0.2} & \text{if } \alpha \leq \frac{\pi}{2} \\ 0.1\sin\left(\theta_{2}\right) - 0.015\Omega\left(\frac{\operatorname{Re}}{\operatorname{Re}^{*}}\right)^{2}\sin\left(\theta_{2}^{0.85}\right) & \text{if } \alpha > \frac{\pi}{2} \end{cases}$

Where
$$\theta_1 = \pi \left(\frac{2\alpha}{\pi}\right)^{1.8}$$
 and $\theta_2 = 2\pi \left(\frac{2\alpha}{\pi} - 1\right)^{0.7}$.
Re*= 1.8 X 10⁷

Semi-Empirical Formulas for C_m

$$C_{m} = \begin{cases} 0.07 \sin\left(2\alpha\right) \left(\frac{\operatorname{Re}^{*}}{\operatorname{Re}}\right)^{0.2} & \text{if } \alpha \leq \frac{\pi}{2} \\ 0.02 \sin\left(2\alpha\right) \sqrt{\left(\frac{\operatorname{Re}}{\operatorname{Re}^{*}}\right)} & \text{if } \alpha > \frac{\pi}{2} \end{cases}$$

Re*= 1.8 X 10⁷

UNCLASSIFIED

Ensemble Integration of 6-DOF Model

Calculation → PDF of Horizontal Drift at Given Depth

PDF of Horizontal Drift at Various Depths

The median horizontal drift (unit: m) of an underwater bomb at various depths obtained from ensemble integration of the 6-DOF model with various input parameters

Depth (m)	Case 1:	Case 2:	Case 3:	Case 4:
	V = 300	V = 300	V = 300	V = 200 m/s
	m/s	m/s	m/s	n = 2
	n=2	n = 100	n = 2	$\sigma = 0.2$
	$\sigma = 0.2$	$\sigma = 0.2$	$\sigma = 1.0$	
12.2	0.16	0.16	0.37	0.17
(40 ft)				0.11
50.0	1.7	1.8	3.1	2.5
(164 ft)				
91.4	5.4	5.7	8.6	8.9
(300 ft)				

The $q_{0.95}$ values for horizontal drift (unit: m) of an underwater bomb at various depths obtained from ensemble integration of the 6-DOF model with various input parameters

Depth (m)	Case 1:	Case 2:	Case 3:	Case 4:
	V = 300	V = 300	V = 300	V = 200 m/s
	m/s	m/s	m/s	n = 2
	n=2	n = 100	n = 2	$\sigma = 0.2$
	$\sigma = 0.2$	$\sigma = 0.2$	$\sigma = 1.0$	
12.2	0.32	0.27	0.54	0.17
(40 ft)				0.11
50.0	2.80	2.55	4.00	3.60
(164 ft)				
91.4	7.86	7.40	10.05	10.97
(300 ft)				

Conclusions

- For very shallow water (VSW, water depth < 40 ft), the horizontal drift of bomb for variety of surface conditions is always less than 7 ft (2.1 m). This confirms the validity of underwater bomb for mine neutralization.
- For shallow water (40 ft < water depth < 300 ft), the validity of underwater bomb for mine neutralization needs more investigation.

Questions?

