Optimal Spectral Decomposition (OSD) for GTSPP Data Analysis

Peter C Chu⁽¹⁾, Charles Sun⁽²⁾, & Chenwu Fan⁽¹⁾

⁽¹⁾ Naval Postgraduate School, Monterey, CA 93943
<u>pcchu@nps.edu</u>, http://faculty.nps.edu/pcchu/
⁽²⁾ NOAA/NODC, Silver Spring, MD 20910
<u>Charles.Sun@noaa.gov</u>

GTSPP Meeting, Oostende, Belgium, 5-7 May 2010.

Observational Data

It is an urgent need to establish monthly varying (T, S, u, v) gridded dataset from GTSPP and Argo trajectory data →

Oceanographic and Climate Studies

Ocean Data Analysis

Classical Method \rightarrow Fourier Series Expansion

Joseph Fourier 1768-1830

Fourier was obsessed with the physics of heat and developed the Fourier series and transform to model heat-flow problems.

Fourier Series Expansion

For a rectangular region (L_x, L_y) , the basis functions are sinusoidal functions.

$$f(x, y) = \sum_{i} \sum_{j} a_{ij} \sin \frac{i\pi x}{L_x} \sin \frac{j\pi y}{L_y}$$
$$+ \sum_{i} \sum_{j} b_{ij} \cos \frac{i\pi x}{L_x} \cos \frac{j\pi y}{L_y}$$

For the Dirichret boundary condition : f = 0 at the boundaries

$$f(x, y) = \sum_{i} \sum_{j} a_{ij} \sin \frac{i\pi x}{L_x} \sin \frac{j\pi y}{L_y}$$

Linear Algebraic Equations for the Coefficients a_{ii}

$$f(x_1^{ob}, y_1^{ob}) = \sum_{i} \sum_{j} a_{ij} \sin \frac{i\pi x_1^{ob}}{L_x} \sin \frac{j\pi y_1^{ob}}{L_y}$$

$$f(x_2^{ob}, y_2^{ob}) = \sum_{i} \sum_{j} a_{ij} \sin \frac{i\pi x_2^{ob}}{L_x} \sin \frac{j\pi y_2^{ob}}{L_y}$$

 $f(x_M^{ob}, y_M^{ob}) = \sum_i \sum_j a_{ij} \sin \frac{i\pi x_M^{ob}}{L_x} \sin \frac{j\pi y_M^{ob}}{L_v}$

Determination of Spectral Coefficients (III-Posed Algebraic Equation)

$A\hat{a} = QY,$

Known $a_{ij} \rightarrow$ Analyzed Field

 $f(x, y) = \sum_{i} \sum_{j} a_{ij} \sin \frac{i\pi x}{L_x} \sin \frac{j\pi y}{L_y}$

For the Neumann boundary condition $n \bullet \nabla f = 0$ at the boundaries

$$f(x, y) = \sum_{i} \sum_{j} b_{ij} \cos \frac{i\pi x}{L_x} \cos \frac{j\pi y}{L_y}$$

The dots represent the Observations.

Linear Algebraic Equations for the Coefficients a_{ij}

$$f(x_1^{ob}, y_1^{ob}) = \sum_{i} \sum_{j} b_{ij} \cos \frac{i\pi x_1^{ob}}{L_x} \cos \frac{j\pi y_1^{ob}}{L_y}$$

$$f(x_2^{ob}, y_2^{ob}) = \sum_{i} \sum_{j} b_{ij} \cos \frac{i\pi x_2^{ob}}{L_x} \cos \frac{j\pi y_2^{ob}}{L_y}$$

.

$$f(x_M^{ob}, y_M^{ob}) = \sum_i \sum_j b_{ij} \cos \frac{i\pi x_M^{ob}}{L_x} \cos \frac{j\pi y_M^{ob}}{L_y}$$

Known $b_{ij} \rightarrow$ Analyzed Field

 $f(x, y) = \sum_{i} \sum_{j} b_{ij} \cos \frac{i\pi x}{L_x} \cos \frac{j\pi y}{L_y}$

For General Ocean Basin → Generalized Fourier Series Expansion

Spectral Representation Fourier Series Expansion

$$c(\mathbf{x}, z_k, t) = A_0(z_k, t) + \sum_{m=1}^M A_m(z_k, t) \Psi_m(\mathbf{x}, z_k),$$

 $\Psi_m \rightarrow Basis functions (not sinusoidal)$

 $c \rightarrow$ any ocean variable

Determination of Basis Functions

(1) Eigen Functions of the Laplace
Operator (Data and Model Independent)

 (2) Empirical Orthogonal Functions (Data or Model Dependent)

Eigen Functions of Laplace Operator → Basis Functions (Closed Basin)

$$\Delta \Psi_k = -\lambda_k \Psi_k, \quad \Psi_k|_{\Gamma} = 0, \qquad k = 1, ..., \infty$$

$$\Delta \Phi_m = -\mu_m \Phi_m, \quad \frac{\partial \Phi_m}{\partial n}|_{\Gamma} = 0, \qquad m = 1, ..., \infty.$$

 $\Psi_k \rightarrow$ Streamfunction

 $\Phi_m \rightarrow T$, S, Velocity Potential

Basis Functions (Open Boundaries)

$$\Delta \Psi_k = -\lambda_k \Psi_k,$$

$$\Delta \Phi_m = -\mu_m \Phi_m,$$

$$|\Psi_k|_{\Gamma} = 0, \quad \frac{\partial \Phi_m}{\partial n}|_{\Gamma} = 0,$$

$$\left[\frac{\partial \Psi_k}{\partial n} + \kappa(\tau)\Psi_k\right]|_{\Gamma'_1} = 0, \quad \Phi_m|_{\Gamma'_1} = 0,$$

Boundary Conditions

Spectral Decomposition

$$u_{KM} = \sum_{k=1}^{K} a_k(z, t^\circ) \frac{\partial \Psi_k(x, y, z, \kappa^\circ)}{\partial y} + \sum_{m=1}^{M} b_m(z, t^\circ) \frac{\partial \Phi_m(x, y, z)}{\partial x},$$

$$v_{KM} = -\sum_{k=1}^{K} a_k(z, t^\circ) \frac{\partial \Psi_k(x, y, z, \kappa^\circ)}{\partial x} + \sum_{m=1}^{M} b_m(z, t^\circ) \frac{\partial \Phi_m(x, y, z)}{\partial y},$$

$$T(\mathbf{x},t) = T_0(\mathbf{x}) + \sum_{m=1}^{M} c_m(t) \Phi_m(\mathbf{x})$$

$$S(\mathbf{x},t) = S_0(\mathbf{x}) + \sum_{m=1}^{M} d_m(t) \Phi_m(\mathbf{x})$$

Benefits of Using OSD

- (1) Don't need first guess field
- (2) Don't need autocorrelation functions
- (3) Don't require high signal-to-noise ratio
- (4) Basis functions are pre-determined before the data analysis. They are independent on the data.

Optimal Mode Truncation

$$J(a_{1,...,}a_{K}, b_{1,...,}b_{M}, \kappa, P) = \frac{1}{2} \left(\left\| u_{p}^{obs} - u_{KM} \right\|_{P}^{2} + \left\| v_{p}^{obs} - v_{KM} \right\|_{P}^{2} \right) \to \min,$$

Vapnik (1983) Cost Function

$$J_{emp} = J(a_{1,...,}a_{K,b_{1,...,}}b_{M,\kappa}, R).$$

$$\operatorname{Prob}\left\{\sup_{K,M,S} \left| \langle J(K,M,S) \rangle - J_{emp}(K,M,S) \right| \ge \mu \right\} \le g(P,\mu)$$

$$\lim_{P\to\infty}g(P,\mu)=0$$

Optimal Truncation

 Gulf of Mexico, Monterey Bay, Louisiana-Texas Shelf, North Atlantic

• Kopt = 40, Mopt = 30

Determination of Spectral Coefficients (III-Posed Algebraic Equation)

$A\hat{a} = QY,$

This is caused by the features of the matrix **A**.

Rotation Method (Chu et al., 2004)

Well-Posed \rightarrow SA $\hat{a} = SQY$,

The matrix S is determined by

$$J_1 = \left\|\mathbf{A}\right\|^2 - \frac{\left\|\mathbf{S}\mathbf{Q}\mathbf{Y}\right\|^2}{\left\|\mathbf{a}\right\|^2} \to \max,$$

Errors

$$\overline{T}(\mathbf{x}) = \overbrace{T_0 + \sum_{l=1}^{48} D_l \Phi_l(\mathbf{x})}^{\hat{T}} + T'(\mathbf{x})$$

$$\mathbf{\overline{u}}(\mathbf{x},t) = \underbrace{C\Psi_0}_{n=1} + \sum_{n=1}^{24} A_n \nabla \times \mathbf{k}\Psi_n(\mathbf{x}) + \mathbf{\widetilde{u}}(\mathbf{x}) + \mathbf{u}'(\mathbf{x})$$

T',
$$\mathbf{u}' \rightarrow \text{errors}$$

Noise-to-Signal Ratio → Error Estimation

$$\eta(\boldsymbol{\alpha},\boldsymbol{\beta}) = \frac{\|\boldsymbol{\alpha}\|_{(P)}}{\|\boldsymbol{\beta}\|_{(P)}}$$

$$\eta(T', T - T') \sim 0.1$$

OSD Applications

(a) Baroclinic Rossby Waves in the tropical North Atlantic at mid-depth (Argo Trajectory Data)

(b) Synoptic Current Reversals on the Texas-Louisiana Continental Shelf (Surface Drifting Buoys)

(c) Monterey Bay Surface Circulation (CODAR)

(d) Synoptic (T, S) Fields for Pacific

(a) Baroclinic Rossby Waves in the tropical North Atlantic at middepth (ARGO)

References

- Chu, P.C., L.M. Ivanov, and O.M. Melnichenko, 2005: Fall-winter current reversals on the Texas-Lousiana continental shelf. Journal of Physical Oceanography, 35, 902-910
- Chu, P.C., L.M. Ivanov, O.M. Melnichenko, and N.C. Wells, 2007: On long baroclinic Rossby Waves in the tropical North Atlantic observed from profiling floats. Journal of Geophysical Research – Oceans, 112, C05032, doi:10.1029/2006JC003698.
- These papers can be downloaded from:
- http://www.nps.edu/pcchu

Tropical North Atlantic (4° -24°N) Important Transition Zone → Meridional Overturning Circulation (MOC) (Rahmstorf 2006)

- Surface flow
- Deep flow
- Bottom flow
- Deep Water Formation
- O Wind-driven upwelling
- Mixing-driven upwelling
- Salinity > 36 ‰
- Salinity < 34 ‰</p>

- L Labrador Sea
- G Greenland Sea
- W Weddell Sea
- R Ross Sea

MOC Variation \rightarrow

Heat Transport Variation \rightarrow

Climate Change

- Are mid-depth (~1000 m) ocean circulations steady?
- If not, what mechanisms cause the change? (Rossby wave propagation)

6 -12 hours at surface to transmit data to satellite

Total cycle time 10 days

Descent to depth ~10 cm/s (~6 hours)

> 1000 db (1000m) Drift approx. 9 days

Salinity & Temperature profile recorded during ascent ~10 cm/s (~6 hours)

Float descends to begin profile from greater depth 2000 db (2000m)

Argo Observations (Oct-Nov 2004)

(a) Subsurface tracks

(b) Float positions where (T,S) were measured

Circulations at 1000 m estimated from the original ARGO float tracks (bin method)

It is difficult to use such noisy data into ocean numerical models.

Boundary Configuration → Basis Functions for OSD

Basis Functions for Streamfunction Mode-1 and Mode-2

Circulations at 1000 m (March 04 to May 05) Bin Method OSD

Fourier Expansion → Temporal Annual and Semi-anuual

 $\hat{\psi} \approx \overline{\psi}(\mathbf{x}_{\perp}) + \psi_1(\mathbf{x}_{\perp}, t) + \psi_2(\mathbf{x}_{\perp}, t),$

$$\psi_1(\mathbf{x}_{\perp},t) = \sum_{s=1}^2 A_{\omega_1,s} \cos(\omega_1 t + \theta_{\omega_1,s}) Z_s(\mathbf{x}_{\perp}) + \sum_{k=1}^{K_{opt}} B_{\omega_1,k} \cos(\omega_1 t + \theta_{\omega_1,k}) \Psi_k(\mathbf{x}_{\perp}),$$

$$\psi_2(\mathbf{x}_{\perp},t) = \sum_{s=1}^2 A_{\omega_2,s} \cos(\omega_2 t + \theta_{\omega_2,s}) Z_s(\mathbf{x}_{\perp}) + \sum_{k=1}^{K_{opt}} B_{\omega_2,k} \cos(\omega_2 t + \theta_{\omega_2,k}) \Psi_k(\mathbf{x}_{\perp}),$$

 $T_0 = 12 \text{ months}; \ \omega_1 = 2\pi / T_0 \ ; \ \omega_2 = 4\pi / T_0$

Fourier Expansion → Temporal Annual and Semi-anuual

$$\hat{T}(\mathbf{x}_{\perp}, z, t) \approx \overline{T}(\mathbf{x}_{\perp}, z) + T_1(\mathbf{x}_{\perp}, z, t) + T_2(\mathbf{x}_{\perp}, z, t),$$

$$T_1(\mathbf{x}_{\perp}, z, t) = \sum_{m=1}^{M_{opt}} C_{\omega_1, m}(z) \cos[\omega_1 t + \chi_{\omega_1, m}(z)] \Xi_m(\mathbf{x}_{\perp}, z),$$

$$T_2(\mathbf{x}_{\perp}, z, t) = \sum_{m=1}^{M_{opt}} C_{\omega_2, m}(z) \cos[\omega_2 t + \chi_{\omega_{21}, m}(z)] \Xi_m(\mathbf{x}_{\perp}, z),$$

 $T_0 = 12 \text{ months}; \ \omega_1 = 2\pi / T_0 \ ; \ \omega_2 = 4\pi / T_0$

Optimization

$$J_{s} = \int_{t_{o}}^{t_{o}+T_{o}} \left[a_{s}(t) - \sum_{\omega=\omega_{1},\omega_{2}} A_{\omega,s} \cos(\omega t + \theta_{\omega,s}) \right]^{2} dt \to \min$$

$$I_{k} = \int_{t_{o}}^{t_{o}+T_{o}} \left[b_{k}(t) - \sum_{\omega=\omega_{1},\omega_{2}} B_{\omega,s} \cos(\omega t + \vartheta_{\omega,s}) \right]^{2} dt \to \min$$

Annual Component

Semi-annual Component

Time –Longitude Diagrams of Meridional Velocity Along 11°N

Time –Longitude Diagrams of temperature Along 11°N

550 m

950 m

Characteristics of Annual Rossby Waves

	March, 04 – May, 05 float data			March, 04 – May, 06 float data		
Latitude	$c_p \text{ (cm/s)}$	<i>L</i> ₁ (km)	L_2 (km)	$c_p \text{ (cm/s)}$	<i>L</i> ₁ (km)	L_2 (km)
5 ⁰ N	12	1200	1100	12	1300	900
8 ⁰ N	16	2500	1400	12	2100	1100
11 ⁰ N	14	2200	1400	11	1900	1100
13 ⁰ N	11	2100	1500	10	2300	1500

Western Basin

Eastern Basin Western I Basin I

Eastern Basin (b) Synoptic Current Reversals on the Texas-Louisiana Continental Shelf (Surface Drifting Buoys)

Ocean Velocity Observation

- 31 near-surface (10-14 m) current meter moorings during LATEX from April 1992 to November 1994
- Drifting buoys deployed at the first segment of the Surface Current and Lagrangian-drift Program (SCULP-I) from October 1993 to July 1994.

Moorings and Buoys

LTCS current reversal detected from SCULP-I drift trajectories.

LTCS current reversal detected from the reconstructed velocity data

EOF Analysis of the Reconstructed Velocity Filed

EOE	Variance (%)					
EOF	01/21/93-05/21/93	12/19/93-04/17/94	10/05/94-11/29/94			
1	80.2	77.1	74.4			
2	10.1	9.5	9.3			
3	3.9	5.6	6.9			
4	1.4	3.3	4.6			
5	1.1	1.4	2.3			
6	0.7	1.1	0.8			

Mean and First EOF Mode

$\tilde{\mathbf{u}}(x, y, t) = \overline{\mathbf{u}}(x, y) + A_1(t)\mathbf{u}_1(x, y),$

Mean Circulation

1. First Period (01/21-05/21/93)

2. Second Period 12/19/93-04/17/94)

3. Third Period (10/05-11/29/94)

EOF1

- 1. First Period (01/21-05/21/93)
- 2. Second Period 12/19/93-04/17/94)

3. Third Period (10/05-11/29/94)

Calculated A1(t)
Using Current Meter
Mooring (solid)
and SCULP-1
Drifters (dashed)

 8 total reversals observed

$$\eta = A_1^2 / \sum_{n=2}^6 A_n^2$$

.

 Uals ~ alongshore wind

Results

- Alongshore wind forcing is the major factor causing the synoptic current reversal.
- Other factors, such as the Mississippi-Atchafalaya River discharge and offshore eddies of Loop Current origin, may affect the reversal threshold, but can not cause the synoptic current reversal.

(c) Monterey Bay Surface Circulation (CODAR)

CODAR

Monterey Bay

Place for comments: left - radar derived currents for 17:00 UT December 1, 1999 right – reconstructed velocity field.

Preliminary Comparison of OSD and OI Mean (1990-2009)

Visual comparison of the Optimal Spectral Decomposition (OSD)-derived SST (left) to the NOAA Optimally Interpolated (OI) SST (right)

(d) Temporal and spatial variability of Pacific Ocean 1990-2009

Monthly Temperature (10 m) in the Pacific Ocean since 1990 (analyzed from GTSPP)

Monthly Temperature (100 m) in the Pacific Ocean since 1990 (analyzed from GTSPP)

Monthly Temperature (500 m) in the Pacific Ocean since 1990 (analyzed from GTSPP)

Monthly Temperature (1000 m) in the Pacific Ocean since 1990

Conclusions

 OSD is a useful tool for processing realtime velocity data with short duration and limited-area sampling especially the GTSPP/Argo data.

OSD has wide application in ocean data assimilation.
What is next?

It is an urgent need to establish monthly varying (T, S, u, v) gridded dataset from GTSPP and Argo trajectory data →

Oceanographic and Climate Studies

Steps for GTSPP Data Analysis

- (1) Change the current data format "one file for one profile" into new data format "one file for profiles in a month from January 1990 for individual ocean basin (Atlantic, Pacific, Indian oceans).
- (2) Reconstruct the profile data with the same month and year into grid points using the Optimal Spectral Decomposition (OSD) method.

4D Global Velocity Data

Reference + Geostrophic