

Underwater Bomb Trajectory Prediction for Stand-off Assault Breaching Weapon Fuse Improvement (SOABWFI)

Peter C. Chu Naval Postgraduate School, USA

Brian Almquist Office of Naval Research and Naval Postgraduate School, USA

> Paul Gefken SRI International, USA

Kennard Watson Naval Surface Warfare Center-Panama City, USA European Undersea Defense Technology, Carnes, France, 9-11 June 2009

Collaborators & Contributors

- Jack Goeller, ATR Corp
- Jim Markarski, Boeing
- LCDR Charles Allen, Naval Postgraduate School
- LCDR Jillene Bushnell, Naval Postgraduate School
- LCDR Greg Ray, Naval Postgraduate School
- C.W. Fan, Naval Postgraduate School
- Ronald Betsch, Naval Oceanographic Office, Stennis Space Center, Mississippi

UNCLASSIFIED

Future Assault Breaching System Operational Scenario

COBRA – Coastal Battlefield Reconnaissance and Analysis JABS – Joint Direct Attack Munition (JDAM) Assault Breaching System CMS – Countermine System (darts) MEDAL – Mine Warfare and Environmental Decision Aids Library JMPS – Joint Mission Planning System, DAGR – Defense Advanced GPS Receiver BFT – Blue Force Tracker, EPLRS – Enhanced Position Location Reporting System

Joint Direct Attack Munition (JDAM) Assault Breaching System (JABS)

Standoff Delivery Platform

SZ & BZ Countermine & Counterobstacle

- Current capability to clear SZ/BZ mines and light obstacles on the beach
- USN and/or USAF Delivered, Signed MOA between USN & USAF for Assault Breaching Munitions Delivery
 - B1, B2, B52, F/A18, JSF
- New mission for an existing weapon system

We know JABS performs well to water depths of 10 ft. Can it go deeper?

Successful breaching in beaches/surf zones by Joint Direct Attack Munition (JDAM) Assault Breaching System (JABS)

(from Almqist 2006)

Mission Execution CONOPS

No Change to JDAM Mission Execution

Mine Neutralization by MK84/JDAM

Objective

 Investigate lethality of precision guided bombs against mines in 10-40 ft water depths (VSW).

• Investigate bomb stability after water impact, lethal radius, and optimum detonation depth for fuse design.

Sub-Scale Model Test Objectives

- Use 1/12-scale tests to measure Mk84 bomb trajectory to a shallow water full-scale depth of 160 ft and for a 90 degree water entry angle.
- Evaluate stability performance associated with current USN Ogive, USN MXU-735, and USAF noses and conceptual 25% and 50% blunt nose designs.
- Evaluate trajectory performance for possible tactical water entry angles of 65 and 77 degrees and determine how possible fin or tail section removal during water entry or tail slap within cavity influences trajectory behavior.

Mk84 Bomb Full-Scale Features (With USN Ogive Nose)

UNCLASSIFIED

Current Mk84 Bomb Nose Features

USN Ogive Nose

USAF Nose

USN MXU-735 Nose

Conceptual Mk84 Nose Designs

50% Blunt Nose

Trajectory Scaling

High-Fidelity 1/12-Scale Mk84 Scale Model - 4 Fins

Length (in.)	Weight (Ib)	Center of Gravity (in.)			Radius of Gyration (in.)		
		CGx	CGy	CGz	Кх	Ку	Kz
150.51	2076.64	63.12	0.130	0.100	6.660	30.640	30.640
12.54	1.202	5.260	0.010	0.010	0.555	2.553	2.553
lt 12.54	1.201	5.362	0.000	0.000	0.319	2.557	2.557
r 0.0	-0.1	0.2	-	-)	$\left(\begin{array}{c} - \end{array} \right)$	0.1	0.1
Due to neglecting casing lugs and strakes					Neglected because the bomb does not rotate about x-axis		
	Length (in.) 150.51 12.54 r 0.0 Du cas	Length (in.) Weight (ib) 150.51 2076.64 12.54 1.202 t 12.54 1.201 r 0.0 -0.1 Due to negl casing lugs	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Length (in.)Weight (lb)Center of Grav (in.)CGxCGy150.512076.64 63.12 0.130 12.541.202 5.260 0.010 t12.541.201 5.362 0.000 r 0.0 -0.1 0.2 $-$ Due to neglecting casing lugs and strakes	Length (in.) Weight (lb) Center of Gravity (in.) CGx CGy CGz 150.51 2076.64 63.12 0.130 0.100 12.54 1.202 5.260 0.010 0.010 t 12.54 1.201 5.362 0.000 0.000 r 0.0 -0.1 0.2 - - Due to neglecting casing lugs and strakes Jugs and strakes Jugs and strakes	Length (in.)Weight (lb)Center of Gravity (in.)Rad CGx CGy CGz Kx 150.51 2076.64 63.12 0.130 0.100 6.660 12.54 1.202 5.260 0.010 0.010 0.555 t 12.54 1.201 5.362 0.000 0.000 0.319 r 0.0 -0.1 0.2 $ -$ Due to neglecting casing lugs and strakesNegle bomb about	Length (in.)Weight (lb)Center of Gravity (in.)Radius of Gyrati (in.) CGx CGy CGz Kx Ky 150.512076.64 63.12 0.130 0.100 6.660 30.640 12.541.202 5.260 0.010 0.010 0.555 2.553 t12.541.201 5.362 0.000 0.000 0.319 2.557 r 0.0 -0.1 0.2 $ 0.1$ Neglected bec bomb does not about x-axis

High-Fidelity 1/12-Scale Mk84 Scale Model - 4 Fins

Tests With Simulated Fin or Tail Removal

Models represent possible different damage scenarios due to excessive loads during water entry or tail slap within cavitated region

Sabot Design

SRI Test Arrangement

4" dia. Gas Gun

2 Phantom 7 Cameras (10,000 fps) in Periscope

30-ft-dia. by 20-ft-deep Water Shock Pool

Underwater Lights

1/12th Scaled Model Test Results

6-FOF Bomb Trajectory Model

There is no existing formulae for calculating $C_d C_l C_m$ for MK-84 Bomb.

Dynamical Determination of Drag/Lift Coefficients

Definitions of $(C_d \ C_l \ C_m)$

$$f_{drag} = \frac{1}{2} C_d \rho A_w V^2$$
$$f_{lift} = \frac{1}{2} C_l \rho A_w V^2$$
$$M_{trav} = \frac{1}{2} C_m \rho \Pi_w V^2$$

 $\prod_{w} \rightarrow \text{Underwater volume}$

 $A_w \rightarrow$ Underwater area

Theoretical Base

$$m\frac{d\mathbf{V}}{dt} = \left(\rho\Pi - m\right)g\mathbf{k} + f_{drag}\mathbf{e}_{d} + f_{lift}\mathbf{e}_{l}$$

$$\mathbf{I} \cdot \frac{d\mathbf{\Omega}}{dt} = \mathbf{r}_{v} \times \mathbf{f}_{b} + \mathbf{r}_{f} \times \left(\mathbf{f}_{drag} + \mathbf{f}_{lift}\right) + \mathbf{M}_{r}$$

Here, V is the translation velocity of COM, Ω is the angular velocity.

Determination of C_d C_l C_m from Experimental Data

$$C_{d} = \frac{\left(\rho\Pi - m\right)g\mathbf{k} \cdot \mathbf{e}_{d} - md\mathbf{v} / dt \cdot \mathbf{e}_{d}}{\frac{1}{2}\rho DLV^{2}}$$
$$C_{l} = \frac{\left(\rho\Pi - m\right)g\mathbf{k} \cdot \mathbf{e}_{l} - md\mathbf{v} / dt \cdot \mathbf{e}_{l}}{\frac{1}{2}\rho DLV^{2}}$$

$$C_{m} = \frac{\mathbf{J} \cdot \frac{d\mathbf{\Omega}}{dt} \cdot \mathbf{e}_{m}^{h} + \sigma \rho \Pi g \left(\mathbf{e} \times \mathbf{k} \right) \cdot \mathbf{e}_{m}^{h} - \frac{n}{2} \sigma_{f} \left(\mathbf{e} \times \mathbf{F}_{r}^{f} \right) \cdot \mathbf{e}_{m}^{h}}{\frac{1}{2} \rho A_{w} L_{w} v^{2}}$$
$$+ \frac{\sigma}{L_{w}} \left(C_{d} \left(\mathbf{e} \times \mathbf{e}_{m}^{h} \right) \cdot \mathbf{e}_{m}^{h} + C_{l} \left(\mathbf{e} \times \mathbf{e}_{l} \right) \cdot \mathbf{e}_{m}^{h} \right)$$

Separation of SRI Bomb Trajectory Data

- The total 15 trajectories are separated into two groups:
 - (1) 11 trajectories $\rightarrow (C_d \ C_l \ C_m)$ semi-empirical formulas
 - (2) 4 trajectories \rightarrow model verification

Semi-Empirical Formulas for (C_d, C_l) $C_d = 0.02 + 0.35e^{-2(\alpha - \frac{\pi}{2})^2} \left(\frac{\text{Re}}{\text{Re}^*}\right)^{0.2} + 0.008\Omega\sin\theta$ $\theta = sign(\pi - 2\alpha) \left(\pi^{2.2} - (\pi - |\pi - 2\alpha|)^{2.2}\right)^{\frac{1}{2.2}}$ $C_{l} = \begin{cases} 0.35\sin(\theta_{1})\left(\frac{\text{Re}}{\text{Re}^{*}}\right)^{0.2} & \text{if } \alpha \leq \frac{\pi}{2} \\ 0.1\sin(\theta_{2}) - 0.015\Omega\left(\frac{\text{Re}}{\text{Re}^{*}}\right)^{2}\sin(\theta_{2}^{0.85}) & \text{if } \alpha > \frac{\pi}{2} \end{cases}$

Where
$$\theta_1 = \pi \left(\frac{2\alpha}{\pi}\right)^{1.8}$$
 and $\theta_2 = 2\pi \left(\frac{2\alpha}{\pi} - 1\right)^{0.7}$.
Re*= 1.8 X 10⁷

Semi-Empirical Formulas for C_m

$$C_{m} = \begin{cases} 0.07 \sin\left(2\alpha\right) \left(\frac{\operatorname{Re}^{*}}{\operatorname{Re}}\right)^{0.2} & \text{if } \alpha \leq \frac{\pi}{2} \\ 0.02 \sin\left(2\alpha\right) \sqrt{\left(\frac{\operatorname{Re}}{\operatorname{Re}^{*}}\right)} & \text{if } \alpha > \frac{\pi}{2} \end{cases}$$

Re*= 1.8 X 10⁷

STRIKE35 and SRI Data Inter-Comparison Test-13

STRIKE35 and SRI Data Inter-Comparison

STRIKE35 and SRI Data Inter-Comparison Speed vs Time (Test-13)

STRIKE35 and SRI Data Inter-Comparison Speed vs Depth (Test-13)

STRIKE35 and SRI Data Inter-Comparison Test-14

STRIKE35 and SRI Data Inter-Comparison Test-14

STRIKE35 and SRI Data Inter-Comparison Speed vs Time (Test-14)

STRIKE35 and SRI Data Inter-Comparison Speed vs Depth (Test-14)

STRIKE35 and SRI Data Inter-Comparison Test-15

STRIKE35 and SRI Data Inter-Comparison Test-15

STRIKE35 and SRI Data Inter-Comparison Speed vs Time (Test-15)

STRIKE35 and SRI Data Inter-Comparison Speed vs Depth (Test-15)

Test pond at China Lake with JDAM near impact (25 ft deep)

Provided by Boeing/ATR Corp

UNCLASSIFIED

Avg surface impact error = 4.4 ft (4 shots) Avg bottom impact error = 3.6 ft

Summary

- Small Distance Between Water Entry and Bottom Impact Points →
 Achieving Objective Requirement to Deliver MK-84 JDAM to a Depth of 40 ft
- 6-DOF Underwater Trajectory Model has been developed, and verified with Test Data, which could be used to facilitate transition to operational capability

Future Work

• Extending SOABWFI to deep water

