Observations of the Meridional Overturning Circulation (MOC) Above and Below the Ocean Surface

Peter C. Chu¹, Charles Sun², Chenwu Fan¹ ¹Naval Postgraduate School, Monterey, CA93943 ²NOAA/NODC, Silver Spring, MD 20910 <u>pcchu@nps.edu</u>, <u>http://faculty.nps.edu/pcchu</u>

tel: 831-656-3688, fax: 831-656-3686

Meridional Overturning Circulation (MOC)

How can we effectively use observational ocean data above and below the surface to detect MOC without distortion?

Objective

 Developing temporally varying 4D global gridded synoptic temperature, salinity, and velocity (STSV) dataset with temporal increment of one month

 \rightarrow

Meridional Overturning Circulation (MOC) Heat Transport

 \rightarrow

Climate Change

Ocean Surface Velocity

Satellite Altimeters (JASON-1, GFO, ENVISAT)

Scatterometer (QSCAT)

Ocean Surface Current Analyses – Realtime (OSCAR) Data

(1) Ocean Surface currents data available for whole world' oceans at <u>www.oscar.noaa.gov</u>

(2) Ocean Currents are computed from Sea Surface Height (SSH) data which is derived from satellite based altimeters JASON-1, GFO, Envisat and wind data which is derived from QUICKSCAT satellite

(3) Data continuously available every 5 days

NESDIS/NOAA

GTSPP

GTSPP = <u>Global Temperature Salinity Profile Program</u> GTSPP is a joint WMO-

- GTSPP is a joint WMO-IOC program designed to provide improved access to the highest resolution, highest quality data as quickly as possible.
- GTSPP began as an official IODE pilot project in 1989.
- It went into operation in November 1990.

6 -12 hours at surface to transmit data to satellite

Total cycle time 10 days

Descent to depth ~10 cm/s (~6 hours)

> 1000 db (1000m) Drift approx. 9 days

Salinity & Temperature profile recorded during ascent ~10 cm/s (~6 hours)

Float descends to begin profile from greater depth 2000 db (2000m)

Trend of Upper Ocean (0-700 m) Heat Content

0.4 X 10²² J/yr (1958-2008) (Levitus et al.,GRL, 2009) Without Argo data

1.3 X 10²² J/yr (1990-2008)

With Argo data

Establishment of 4D global gridded synoptic temperature, salinity, and velocity (STSV) dataset

OSD Spectral Representation

$$c(\mathbf{x}, z_k, t) = A_0(z_k, t) + \sum_{m=1}^M A_m(z_k, t) \Psi_m(\mathbf{x}, z_k),$$

Spatial Variability is represented by the basis functions

→ Vertical structure is preserved

Basis Functions (Closed Basin)

$$\Delta \Psi_k = -\lambda_k \Psi_k, \quad \Psi_k|_{\Gamma} = 0, \qquad k = 1, ..., \infty$$

$$\Delta \Phi_m = -\mu_m \Phi_m, \quad \frac{\partial \Phi_m}{\partial n}|_{\Gamma} = 0, \qquad m = 1, ..., \infty.$$

References

- Chu, P.C., L.M. Ivanov, T.P. Korzhova, T.M. Margolina, and O.M. Melnichenko, 2003a: Analysis of sparse and noisy ocean current data using flow decomposition. Part 1: Theory. Journal of Atmospheric and Oceanic Technology, 20 (4), 478-491.
- Chu, P.C., L.M. Ivanov, T.P. Korzhova, T.M. Margolina, and O.M. Melnichenko, 2003b: Analysis of sparse and noisy ocean current data using flow decomposition. Part 2: Application to Eulerian and Lagrangian data. Journal of Atmospheric and Oceanic Technology, 20 (4), 492-512.
- Chu, P.C., L.M. Ivanov, and T.M. Margolina, 2004: Rotation method for reconstructing process and field from imperfect data. International Journal of Bifurcation and Chaos, 14(8), 2991-2997.
- Chu, P.C., L.M. Ivanov, and O.M. Melnichenko, 2005: Fall-winter current reversals on the Texas-Lousiana continental shelf. Journal of Physical Oceanography, 35, 902-910
- Chu, P.C., L.M. Ivanov, O.M. Melnichenko, and N.C. Wells, 2007: On long baroclinic Rossby Waves in the tropical North Atlantic observed from profiling floats. Journal of Geophysical Research Oceans, 112, C05032, doi:10.1029/2006JC003698
- These papers can be downloaded from:
- <u>http://faculty.nps.edu/pcchu</u>

Global 4D (T, S) Dataset

4D Velocity Data

Reference + Geostrophic

Circulations at 1000 m (March 04 to May 05) from Argo trajectory data Bin Method OSD

Meridional Overturnina Streamfunction $\Psi(y, z)$

$$V(y,z) = \int v dx, \qquad W(y,z) = \int w dx$$
$$V = -\Psi_z \qquad W = \Psi_y$$

Conclusions

- (1) As technology advances, the MOC can be eventually observed by satellites, Argo drifters, ...
- (2) It is important to establish 4D (T, S, V) data for climate research
- (3) The data shows faster upper ocean warming in the recent two decades (1990-2008)