Optimal Spectral Decomposition (OSD) for Ocean Data Analysis

Peter C Chu⁽¹⁾ and Charles Sun⁽²⁾

⁽¹⁾ Naval Postgraduate School, Monterey, CA 93943
<u>pcchu@nps.edu</u>, http://faculty.nps.edu/pcchu/
⁽²⁾ NOAA/NODC, Silver Spring, MD 20910
<u>Charles.Sun@noaa.gov</u>

GTSPP Meeting, Honolulu, Hawaii, 27 October 2008

How can we effectively use observational ocean data to represent and to predict the ocean state?

Collaborators

- Leonid M. Ivanov (California State Univ)
- Chenwu Fan (NPS)
- Tateana Margolina (NPS)
- Oleg Melnichenko (Univ of Hawaii)

References

- Chu, P.C., L.M. Ivanov, T.P. Korzhova, T.M. Margolina, and O.M. Melnichenko, 2003a: Analysis of sparse and noisy ocean current data using flow decomposition. Part 1: Theory. Journal of Atmospheric and Oceanic Technology, 20 (4), 478-491.
- Chu, P.C., L.M. Ivanov, T.P. Korzhova, T.M. Margolina, and O.M. Melnichenko, 2003b: Analysis of sparse and noisy ocean current data using flow decomposition. Part 2: Application to Eulerian and Lagrangian data. Journal of Atmospheric and Oceanic Technology, 20 (4), 492-512.
- Chu, P.C., L.M. Ivanov, and T.M. Margolina, 2004: Rotation method for reconstructing process and field from imperfect data. International Journal of Bifurcation and Chaos, 14 (04), 2991-2997.

References

- Chu, P.C., L.M. Ivanov, and T.M. Margolina, 2005: Seasonal variability of the Black Sea Chlorophyll-a concentration. Journal of Marine Systems, 56, 243-261.
- Chu, P.C., L.M. Ivanov, and O.M. Melnichenko, 2005: Fall-winter current reversals on the Texas-Lousiana continental shelf. Journal of Physical Oceanography, 35, 902-910.
- Chu, P.C., L.M. Ivanov, O.V. Melnichenko, and N.C. Wells, 2007: On long baroclinic Rossby waves in the tropical North Atlantic observed from profiling floats. Journal of Geophysical Research, 112, C05032, doi:10.1029/2006JC003698.
- Chu, P. C., L. M. Ivanov, O. V. Melnichenko, and R.-F. Li, 2008: Argo floats revealing bimodality of large-scale mid-depth circulation in the North Atlantic. Acta Oceanologica Sinica, 27 (2), 1-10.
- Chu, P.C., C. Sun, and C. Fan, 2009: Variability in meridional overturning circulation and thermohaline structure detected from GTSPP/Argo/MOODS/OSCAR Data. Proceedings on 21th Symposium on Climate Variability, American Meteorological Society, Phoenix, January 11-15, 2009.

Observational Data

A Popular Method for Ocean Data Analysis: Optimum Interpolation (OI)

OI – Equation

Grid point $\rightarrow k$, Observational Point $\rightarrow j$

- $Q_k^f \rightarrow$ First guess field (gridded)
- $Q_j^o \rightarrow \text{Observation}$

 $Q_i^f \rightarrow$ First guess interpolated on the observational point

$$Q_k^a = Q_k^f + \sum_{j=1}^N \alpha_{kj} (Q_j^o - Q_j^f)$$

 $Q_k^a \rightarrow$ Analyzed field at the grid point

OI – Weight Coefficients α_{kj}

$$\sum_{j=1}^{N} (\eta_{ij} + \delta_{ij} \lambda_i^o) \alpha_{kj} = \eta_{kj}$$

η_{ij} η_{kj} \rightarrow Autocorrelation functions

$\lambda_i^o \rightarrow \text{Signal-to-noise ratio}$

Three Requirements for the OI Method

- (1) First guess field
- (2) Autocorrelation functions
- (3) High signal-to-noise ratio

What happens if the three conditions are not satisfied?

Spectral Representation - a Possible Alternative Method

$$c(\mathbf{x}, z_k, t) = A_0(z_k, t) + \sum_{m=1}^M A_m(z_k, t) \Psi_m(\mathbf{x}, z_k),$$

 $\Psi_m \rightarrow Basis functions$

 $c \rightarrow$ any ocean variable

Flow Decomposition

$$u = \frac{\partial \Psi}{\partial y} + \frac{\partial^2 \Phi}{\partial x \partial z}, \qquad v = -\frac{\partial \Psi}{\partial x} + \frac{\partial^2 \Phi}{\partial y \partial z},$$

 $\bigtriangleup \Psi = -\zeta$

 $\Delta \Phi = -w$

Basis Functions (Closed Basin)

$$\Delta \Psi_k = -\lambda_k \Psi_k, \quad \Psi_k|_{\Gamma} = 0, \qquad k = 1, ..., \infty$$

$$\Delta \Phi_m = -\mu_m \Phi_m, \quad \frac{\partial \Phi_m}{\partial n}|_{\Gamma} = 0, \qquad m = 1, ..., \infty.$$

Basis Functions (Open Boundaries)

$$\bigtriangleup \Psi_k = -\lambda_k \Psi_k,$$

$$\Delta \Phi_m = -\mu_m \Phi_m,$$

$$\Psi_k|_{\Gamma}=0, \quad rac{\partial \Phi_m}{\partial n}|_{\Gamma}=0,$$

$$\left[\frac{\partial \Psi_k}{\partial n} + \kappa(\tau)\Psi_k\right]|_{\Gamma_1'} = 0, \quad \Phi_m|_{\Gamma_1'} = 0,$$

Boundary Conditions

Spectral Decomposition

$$u_{KM} = \sum_{k=1}^{K} a_k(z, t^{\circ}) \frac{\partial \Psi_k(x, y, z, \kappa^{\circ})}{\partial y} + \sum_{m=1}^{M} b_m(z, t^{\circ}) \frac{\partial \Phi_m(x, y, z)}{\partial x},$$

$$v_{KM} = -\sum_{k=1}^{K} a_k(z, t^{\circ}) \frac{\partial \Psi_k(x, y, z, \kappa^{\circ})}{\partial x} + \sum_{m=1}^{M} b_m(z, t^{\circ}) \frac{\partial \Phi_m(x, y, z)}{\partial y}$$

$$T(\mathbf{x},t) = T_0(\mathbf{x}) + \sum_{m=1}^{M} c_m(t) \Phi_m(\mathbf{x},t)$$

$$S(\mathbf{x},t) = S_0(\mathbf{x}) + \sum_{m=1}^{M} d_m(t) \Phi_m(\mathbf{x},t)$$

Benefits of Using OSD

- (1) Don't need first guess field
- (2) Don't need autocorrelation functions
- (3) Don't require high signal-to-noise ratio
- (4) Basis functions are pre-determined before the data analysis.

Optimal Mode Truncation

$$J(a_{1,...,}a_{K}, b_{1,...,}b_{M}, \kappa, P) = \frac{1}{2} \left(\left\| u_{p}^{obs} - u_{KM} \right\|_{P}^{2} + \left\| v_{p}^{obs} - v_{KM} \right\|_{P}^{2} \right) \to \min,$$

Vapnik (1983) Cost Function

$$J_{emp} = J(a_{1,...,}a_{K,b_{1,...,}}b_{M},\kappa,P).$$

$$\operatorname{Prob}\left\{\sup_{K,M,S} \left| \langle J(K,M,S) \rangle - J_{emp}(K,M,S) \right| \ge \mu \right\} \le g(P,\mu)$$

$$\lim_{P\to\infty}g(P,\mu)=0$$

Optimal Truncation

 Gulf of Mexico, Monterey Bay, Louisiana-Texas Shelf, North Atlantic

Determination of Spectral Coefficients (III-Posed Algebraic Equation)

$A\hat{a} = QY,$

This is caused by the features of the matrix **A**.

Rotation Method (Chu et al., 2004)

$$\mathbf{SA}\hat{\mathbf{a}} = \mathbf{SQY},$$

$$J_1 = \left\|\mathbf{A}\right\|^2 - \frac{\left\|\mathbf{S}\mathbf{Q}\mathbf{Y}\right\|^2}{\left\|\mathbf{a}\right\|^2} \to \max,$$

Example-1

Temporal and spatial variability of Pacific Ocean

T (10 m) 1990-2008

T (100 m) 1990-2008

T (500 m) 1990-2008

Seasonal Anomaly versus WOA 94 (10 m)

 Monthly mean (1993-208)

minus

Seasonal Anomaly versus WOA 94 (100 m)

 Monthly mean (1993-208)

minus

Seasonal Anomaly versus WOA 94 (250 m)

 Monthly mean (1993-208)

minus

Seasonal Anomaly versus WOA 94 (500 m)

 Monthly mean (1993-208)

minus

T: NINO-3 (5°S-5°N, 150°W-90°W)

Example-2 OSD for Analyzing ARGO Data

Baroclinic Rossby Waves in the tropical North Atlantic

Tropical North Atlantic (4° -24°N) Important Transition Zone → Meridional Overturning Circulation (MOC) (Rahmstorf 2006)

MOC Variation \rightarrow

Heat Transport Variation \rightarrow

Climate Change

 Are mid-depth (~1000 m) ocean circulations steady?

 If not, what mechanisms cause the change? (Rossby wave propagation)
6 -12 hours at surface to transmit data to satellite

Total cycle time 10 days

Descent to depth ~10 cm/s (~6 hours)

> 1000 db (1000m) Drift approx. 9 days

Salinity & Temperature profile recorded during ascent ~10 cm/s (~6 hours)

Float descends to begin profile from greater depth 2000 db (2000m)

ARGO Observations (Oct-Nov 2004)

(a) Subsurface tracks

(b) Float positions where (T,S) were measured

Circulations at 1000 m estimated from the original ARGO float tracks (bin method)

It is difficult to get physical insights and to use such noisy data into ocean numerical models.

Boundary Configuration \rightarrow Basis Functions for OSD

Basis Functions for Streamfunction Mode-1 and Mode-2

Circulations at 1000 m (March 04 to May 05) Bin Method OSD

Mid-Depth Circulations (1000 m)

Mar-May 04

Nov 04 – Jan 05

May – Jul 04

Jan-Mar 05

Jul-Sep 04

Sep – Nov 04

Mar – May 05

Temperature at 950 m (March 04 to May 05) NOAA/WOA OSD

Mid-Depth Temperature (950 m)

Jan 05

Mar 05

60°

50°N

40°N

30°N

20°N

10°N

0°N

May 05

Baroclinic Rossby Waves in Tropical North Atlantic

Fourier Expansion → Temporal Annual and Semi-anuual

 $\hat{\psi} \approx \overline{\psi}(\mathbf{x}_{\perp}) + \psi_1(\mathbf{x}_{\perp}, t) + \psi_2(\mathbf{x}_{\perp}, t),$

$$\psi_1(\mathbf{x}_{\perp},t) = \sum_{s=1}^2 A_{\omega_1,s} \cos(\omega_1 t + \theta_{\omega_1,s}) Z_s(\mathbf{x}_{\perp}) + \sum_{k=1}^{K_{opt}} B_{\omega_1,k} \cos(\omega_1 t + \theta_{\omega_1,k}) \Psi_k(\mathbf{x}_{\perp}),$$

$$\psi_2(\mathbf{x}_{\perp},t) = \sum_{s=1}^2 A_{\omega_2,s} \cos(\omega_2 t + \theta_{\omega_2,s}) Z_s(\mathbf{x}_{\perp}) + \sum_{k=1}^{K_{opt}} B_{\omega_2,k} \cos(\omega_2 t + \theta_{\omega_2,k}) \Psi_k(\mathbf{x}_{\perp}),$$

 $T_0 = 12 \text{ months}; \ \omega_1 = 2\pi / T_0 \ ; \ \omega_2 = 4\pi / T_0$

Fourier Expansion → Temporal Annual and Semi-anuual

 $\hat{T}(\mathbf{x}_{\perp}, z, t) \approx \overline{T}(\mathbf{x}_{\perp}, z) + T_1(\mathbf{x}_{\perp}, z, t) + T_2(\mathbf{x}_{\perp}, z, t),$

$$T_1(\mathbf{x}_{\perp}, z, t) = \sum_{m=1}^{M_{opt}} C_{\omega_1, m}(z) \cos[\omega_1 t + \chi_{\omega_1, m}(z)] \Xi_m(\mathbf{x}_{\perp}, z),$$

$$T_2(\mathbf{x}_{\perp}, z, t) = \sum_{m=1}^{M_{opt}} C_{\omega_2, m}(z) \cos[\omega_2 t + \chi_{\omega_{21}, m}(z)] \Xi_m(\mathbf{x}_{\perp}, z),$$

 $T_0 = 12 \text{ months}; \ \omega_1 = 2\pi / T_0 \ ; \ \omega_2 = 4\pi / T_0$

Optimization

$$J_{s} = \int_{t_{o}}^{t_{o}+T_{o}} \left[a_{s}(t) - \sum_{\omega=\omega_{1},\omega_{2}} A_{\omega,s} \cos(\omega t + \theta_{\omega,s}) \right]^{2} dt \to \min$$

$$I_{k} = \int_{t_{o}}^{t_{o}+T_{o}} \left[b_{k}(t) - \sum_{\omega = \omega_{1}, \omega_{2}} B_{\omega,s} \cos(\omega t + \vartheta_{\omega,s}) \right]^{2} dt \to \min$$

Annual Component

Semi-annual Component

Time –Longitude Diagrams of Meridional Velocity Along 11°N

Annual

Semi-Annual

Time –Longitude Diagrams of temperature Along 11°N

Annual Currents (1000 m)

May-Jun 2004

Jul-Aug 2004

Nov-Dec 2004

Sep-Oct 2004

Characteristics of Annual Rossby Waves

	March, 04 – May, 05 float data			March, 04 – May, 06 float data		
Latitude	$c_p \text{ (cm/s)}$	<i>L</i> ₁ (km)	L_2 (km)	$c_p \text{ (cm/s)}$	<i>L</i> ₁ (km)	L_2 (km)
5 ⁰ N	12	1200	1100	12	1300	900
8 ⁰ N	16	2500	1400	12	2100	1100
11 ⁰ N	14	2200	1400	11	1900	1100
13 ⁰ N	11	2100	1500	10	2300	1500

Western Basin

Eastern Basin Western Basin Eastern Basin

Annual Monthly Temperature Anomaly (°C) at 950 m Depth \rightarrow Annual Rossby Waves (7-10 cm/s)

Jun 04

Aug 04

Dec 04

Annual Monthly Temperature Anomaly (°C) at 250 m Depth \rightarrow Equatorially Forced Coastal Kelvin waves (27-30 cm/s)

Jun 04

Aug 04

Dec 04

6°N in Jun 04 →

11°N in Oct, 04 \rightarrow

16°N in Oct 04 \rightarrow

Baroclinic Modes

Annual Component in the Western Sub-Basin

Mean wind KE

Mean KE for mid-depth currents

Correlation between Winds and currents

Correlation between wind Stress curl and streamfunction (solid: no-lag, dashed: 3 mon lag

Annual Component in the Eastern Sub-Basin

Mean wind KE

Mean KE for mid-depth currents

Correlation between Winds and currents

Correlation between wind Stress curl and streamfunction (solid: no-lag, dashed: 3 mon lag

Month

Zonal: circle

Meridional :

square

Semi-annual currents at 1000 m depth (2004)

(a)5/15 (b)5/30 (c)6/14 (d)6/29 (e) 7/13

Semi-annual monthly temperature anomaly at 950m depth

Temperature anomaly (°C)

Semi-annual component of monthly temperature anomaly along 11°N (2004)

(a) 6/4
(b) 7/4
(c) 8/4
(d) 9/4

Semi-annual temperature anomaly at 550m depth (2004)

(a) 5/15

(b) 6/29

Semiannual Component in the Western Sub-Basin

- (a) wind KE
- (b) current KE
- (c) corr wind stress and currents
- (d) corr between semi-annual currents and mean wind
 (e) corr between semiannual currents and annual wind stress.

Semiannual Component in the Eastern Sub-Basin

(a) wind KE
(b) current KE
(c) corr wind stress and currents
(d) corr between semi-annual currents and mean wind
(e) corr between semiannual currents and annual wind stress

Results

- The annual and semi-annual unstable standing Rossby waves are detected in both the western and eastern sub-basins.
- The wind-driven Ekman pumping seems to be responsible for the standing wave generation in both the sub-basins.

Example-3 OSD for Analyzing Combined Current Meter and Surface Drifting Buoy Data

Ocean Velocity Observation

- 31 near-surface (10-14 m) current meter moorings during LATEX from April 1992 to November 1994
- Drifting buoys deployed at the first segment of the Surface Current and Lagrangian-drift Program (SCULP-I) from October 1993 to July 1994.

Moorings and Buoys

LTCS current reversal detected from SCULP-I drift trajectories.

Reconstructed and observed circulations at Station-24.

Probability of TLCS Current Reversal for Given Period (T)

- n₀ ~0-current reversal
- $n_1 \sim 1$ -current reversal
- n₂~ 2-current reversals
- m ~ all realizations

$$P_0(T) = \frac{n_0}{m}, P_1(T) = \frac{n_1}{m}, P_2(T) = \frac{n_2}{m},$$

Fitting the Poison Distribution

$$P_k(T) = \frac{1}{k!} (\mu T)^k \exp(-\mu T)$$

k=0, 1, 2

 μ is the mean number of reversal for a single time interval $\mu \sim 0.08$

Dependence of P₀, P₁, P₂ on T

For observational periods larger than 20 days, the probability for no current reversal is less than 0.2.

For 15 day observational period, the probability for 1-reversal reaches 0.5

Data – Solid Curve Poison Distribution Fitting – Dashed Curve

Time Interval between Successive Current Reversals (not a Rare Event)

$$p(\tau) = \mu \exp(-\mu \tau)$$

LTCS current reversal detected from the reconstructed velocity data

EOF Analysis of the Reconstructed Velocity Filed

EOF	Variance (%)		
	01/21/93-05/21/93	12/19/93-04/17/94	10/05/94-11/29/94
1	80.2	77.1	74.4
2	10.1	9.5	9.3
3	3.9	5.6	6.9
4	1.4	3.3	4.6
5	1.1	1.4	2.3
6	0.7	1.1	0.8

Mean and First EOF Mode

$\tilde{\mathbf{u}}(x, y, t) = \overline{\mathbf{u}}(x, y) + A_1(t)\mathbf{u}_1(x, y),$

Mean Circulation

1. First Period (01/21-05/21/93)

2. Second Period 12/19/93-04/17/94)

3. Third Period (10/05-11/29/94)

EOF1

1. First Period (01/21-05/21/93)

2. Second Period 12/19/93-04/17/94)

3. Third Period (10/05-11/29/94)

Calculated A1(t)
Using Current Meter
Mooring (solid)
and SCULP-1
Drifters (dashed)

 8 total reversals observed

$$\eta = A_1^2 / \sum_{n=2}^6 A_n^2$$

 Uals ~ alongshore wind

Morlet Wave

$$\Phi(t) = \pi^{-4} \exp(imt - t^2/2), m = 6$$

Surface Wind Data

 7 buoys of the National Data Buoy Center (NDBC) and industry (C-MAN) around LATEX area

- Regression between
- A1(t) and Surface
- Winds
- Solid Curve (reconstructed)
- Dashed Curve (predicted using winds)

$$A_1(t) = \alpha \left[U(t) - \overline{U} \right] + \beta \left[V(t) - \overline{V} \right] + \gamma$$

Results

- Alongshore wind forcing is the major factor causing the synoptic current reversal.
- Other factors, such as the Mississippi-Atchafalaya River discharge and offshore eddies of Loop Current origin, may affect the reversal threshold, but can not cause the synoptic current reversal.

Part-4 OSD for Analyzing CODAR Data

CODAR

Monterey Bay

Place for comments: left - radar derived currents for 17:00 UT December 1, 1999 right – reconstructed velocity field.

Conclusions

- OSD is a useful tool for processing realtime velocity data with short duration and limited-area sampling especially the ARGO data.
- OSD has wide application in ocean data assimilation.