Observation-Model Compatibility in Coastal Data Assimilation

-Filtering & Optimal Spectral Decomposition -

Peter C. Chu
Naval Postgraduate School
and Other Contributors

Workshop for Environmental Modeling of California Central Coast
MBARI, Moss Landing, California, 15-16 August 2007
Other Contributors

- Leonid M. Ivanov, Tatanya Margolina, Chenwu Fan, NPS
- Oleg Melnichenko, University of Hawaii
- N.C. Wells, SOC, UK
- Charles Sun, NOAA/NODC
- George Galanis, George Kallos, University of Athens, Greece
How can we effectively use observational ocean data to represent and to model/predict the ocean state?
Outline

• (1) Model-Data Compatibility
• (2) Filtering Observational Data
• (3) Optimal Spectral Decomposition

 (Chu et al., 2003 a, b JTECH)

 – ARGO Data: Baroclinic Rossby Waves in Tropical Atlantic (Chu et al. JGR 2007)
 – Surface Drifting Buoy Data: Synoptic Current Reversals on the Texas-Louisiana Continental Shelf
 (Chu et al. 2005 JPO)
Part-1

Model-Data Compatibility
Difference between modeled and observed data

• Model
 – Regular in (t, x, y, z)
 – Representing mean value of a grid cell

• Observation
 – Irregular in (t, x, y, z) usually noisy and sparse
 – Representing value at the observational point
Example: RAFOS Floats (NPS#92) in Monterey Bay (Collins’ website)
NCOM Model Data (Hong et al. 2005)
Advection-Diffusion Equation

\[
\frac{\partial \Phi}{\partial t} + \nabla \cdot (V \Phi) = \nabla \cdot (\kappa \nabla \Phi) + S.
\]

\[
\tilde{\Phi}_{i,j,k}^{n+1} - \tilde{\Phi}_{i,j,k}^n = \frac{\langle F \rangle_{i+1/2,j,k}^{n+1} - \langle F \rangle_{i-1/2,j,k}^{n+1}}{\Delta x} + \frac{\langle G \rangle_{i,j+1/2,k}^{n+1} - \langle G \rangle_{i,j-1/2,k}^{n+1}}{\Delta y} + \frac{\langle H \rangle_{i,j,k+1/2}^{n+1} - \langle H \rangle_{i,j,k-1/2}^{n+1}}{\Delta z} + \hat{S}_{i,j,k},
\]
Characteristic Line

\[F(x, t_0 + \Delta t) \]

\[F(x - c^* \Delta t, t_0) \]
Modeled-Observational Data Difference at the same location

- (1) Observation → along the red curve
- (2) Model → spatial mean (upper blue line)
- (3) Temporal mean of observation ↔ Model
NOAA Buoy Data Center ↔ WAM

significant wave height

WAM-4 model
(Galanis et al., 2006)

Near California Coast
WAM -4

• (1) Integrating on 30 frequencies and 24 directions.
• (2) First integration frequency $\rightarrow 0.0417$ Hz
• (3) Time step $\rightarrow 300$ seconds
• (4) Spatial grid $\rightarrow 0.5^\circ \times 0.5^\circ$
• (5) Wind input (10 m) \rightarrow NCEP/GFS $0.5^\circ \times 0.5^\circ$
Observational and WAM Modeled Data
Part-2 Data Filtering

Kolmogorov-Zurbenko (KZ) Filter
KZ Filter

• Original Data

• First Iteration

\[x_i^1 = \frac{1}{2q + 1} \sum_{j=-q}^{q} x_{i+j}^0 \]

• Second Iteration

\[x_i^2 = \frac{1}{2q + 1} \sum_{j=-q}^{q} x_{i+j}^1 \]

• Number of Iteration (N)

\[(2q + 1) \cdot \sqrt{N} \leq P \]

• P → Time Steps
• Appropriate selection of the parameters \((N, P, q)\) leads to smoothed time series of observational and modeled data.
Observations vs Forecasts

Filtered data (> 1 day)

Daily variability has been removed.
The systematic error has not been affected.
Data Assimilation Window (12 hrs)

Assimilating SWH for 12 hrs and running the model for 24 hrs

Assimilation \rightarrow Kalman Filter
Model with data assimilation (Kalman Filter) and no KZ (Buoy- D)

Data (Significant Wave Height) input → Every hours
Model with data assimilation (Kalman Filter) and KZ (Buoy-D)
Impact of Data Assimilation and Filtering

WAM-no assimilation and KZ filtering
WAM2 – assimilation and no KZ filtering
WAM3 – Assimilation and KZ-filtering

<table>
<thead>
<tr>
<th></th>
<th>Buoy A</th>
<th></th>
<th></th>
<th>Buoy B</th>
<th></th>
<th></th>
<th>Buoy C</th>
<th></th>
<th></th>
<th>Buoy D</th>
<th></th>
<th></th>
<th>Buoy E</th>
<th></th>
<th></th>
<th>Buoy F</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WAM</td>
<td>WAM2</td>
<td>WAM3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bias</td>
<td>0.51</td>
<td>0.21</td>
<td>0.02</td>
<td>0.39</td>
<td>0.08</td>
<td>-0.19</td>
<td>0.99</td>
<td>0.72</td>
<td>0.33</td>
<td>0.68</td>
<td>0.39</td>
<td>0.10</td>
<td>0.62</td>
<td>0.27</td>
<td>-0.02</td>
<td>0.88</td>
<td>0.44</td>
<td>0.02</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.70</td>
<td>0.55</td>
<td>0.46</td>
<td>0.64</td>
<td>0.49</td>
<td>0.47</td>
<td>1.10</td>
<td>0.89</td>
<td>0.55</td>
<td>0.80</td>
<td>0.60</td>
<td>0.38</td>
<td>0.79</td>
<td>0.56</td>
<td>0.42</td>
<td>0.96</td>
<td>0.65</td>
<td>0.27</td>
</tr>
<tr>
<td>Nbias</td>
<td>0.42</td>
<td>0.28</td>
<td>0.21</td>
<td>0.33</td>
<td>0.22</td>
<td>0.17</td>
<td>1.05</td>
<td>0.73</td>
<td>0.40</td>
<td>0.44</td>
<td>0.27</td>
<td>0.16</td>
<td>0.43</td>
<td>0.24</td>
<td>0.15</td>
<td>0.74</td>
<td>0.38</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Part-3

Optimal Spectral Decomposition
Spectral Decomposition

\[u_{KM} = \sum_{k=1}^{K} a_k(z,t^o) \frac{\partial \Psi_k(x,y,z,\kappa^o)}{\partial y} + \sum_{m=1}^{M} b_m(z,t^o) \frac{\partial \Phi_m(x,y,z)}{\partial x}, \]

\[v_{KM} = -\sum_{k=1}^{K} a_k(z,t^o) \frac{\partial \Psi_k(x,y,z,\kappa^o)}{\partial x} + \sum_{m=1}^{M} b_m(z,t^o) \frac{\partial \Phi_m(x,y,z)}{\partial y}. \]
Basis Functions (Open Boundaries)

(Chu et al., 2003 a,b JTECH)

\[\Delta \Psi_k = -\lambda_k \Psi_k, \]

\[\Delta \Phi_m = -\mu_m \Phi_m, \]

\[\Psi_k|_\Gamma = 0, \quad \frac{\partial \Phi_m}{\partial n}|_\Gamma = 0, \]

\[\left[\frac{\partial \Psi_k}{\partial n} + \kappa(\tau) \Psi_k \right]|_{\Gamma'_1} = 0, \quad \Phi_m|_{\Gamma'_1} = 0, \]
Boundary Conditions

\[
\frac{\partial^2 \Phi}{\partial n \partial z} = 0 \\
\Psi = 0 \\
\frac{\partial \Phi}{\partial n} + \kappa \Psi = 0 \\
\frac{\partial \Phi}{\partial z} = 0 \\
\frac{\partial \Psi}{\partial n} = 0
\]
Benefit of Using OSD

• Ocean Topographic Configuration ➔

 Basis Functions (Pre-Determined)
Vapnik (1983) Cost Function

→ Optimal Mode Truncation

\[J(a_1, \ldots, a_K, b_1, \ldots, b_M, \kappa, P) = \frac{1}{2} \left(\left\| u_p^{obs} - u_{KM} \right\|_P^2 + \left\| v_p^{obs} - v_{KM} \right\|_P^2 \right) \rightarrow \min, \]

\[J_{emp} = J(a_1, \ldots, a_K, b_1, \ldots, b_M, \kappa, P). \]

\[\text{Prob} \left\{ \sup_{K,M,S} \left| \langle J(K, M, S) \rangle - J_{emp}(K, M, S) \right| \geq \mu \right\} \leq g(P, \mu) \]

\[\lim_{P \to \infty} g(P, \mu) = 0 \]
Optimal Truncation

- Gulf of Mexico, Monterey Bay, Louisiana-Texas Shelf, Tropical Atlantic

- $K_{opt} = 40$, $M_{opt} = 30$
Determination of Spectral Coefficients
(Ill-Posed Algebraic Equation)

\[A \hat{\alpha} = QY, \]
Rotation Method (Chu et al., 2004)

\[S A \hat{a} = SQY, \]

\[J_1 = \|A\|^2 \cdot \frac{\|SQY\|^2}{\|a\|^2} \rightarrow \text{max}, \]
Near-realtime ocean surface currents derived from satellite altimeter and scatterometer data
NOAA OSCAR Data: http://www.oscar.noaa.gov/

Original Data 2007 Jan 14

![Map of ocean currents](image)
OSD on OSCAR Data

OSD smooth data 2007 Jan 24
6-12 hours at surface to transmit data to satellite

Descent to depth
~10 cm/s (~6 hours)

1000 db (1000m)
Drift approx. 9 days

Total cycle time 10 days

Salinity & Temperature profile recorded during ascent
~10 cm/s (~6 hours)

Float descends to begin profile from greater depth
2000 db (2000m)
ARGO Observations (Oct-Nov 2004)

(a) Subsurface tracks (b) Float positions where (T,S) were measured
It is difficult to use such noisy data into ocean numerical models.
Boundary Configuration → Basis Functions for OSD
Basis Functions for Streamfunction
Mode-1 and Mode-2
Circulations at 1000 m (March 04 to May 05)
Bin Method
OSD
Annual Component
Semi-annual Component
Time –Longitude Diagrams of Meridional Velocity
Along 11°N

(a) Annual
(b) Semi-Annual
Time –Longitude Diagrams of temperature Along 11°N

(a) (b) (c) (d)

Annual Semi-Annual Annual Semi-Annual

550 m 950 m
OSD for Analyzing Combined Current Meter and Surface Drifting Buoy Data
Ocean Velocity Observation

• 31 near-surface (10-14 m) current meter moorings during LATEX from April 1992 to November 1994

• Drifting buoys deployed at the first segment of the Surface Current and Lagrangian-drift Program (SCULP-I) from October 1993 to July 1994.
Moorings and Buoys
LTCS current reversal detected from SCULP-I drift trajectories.
Conclusions

• (1) Data analysis is important for coastal modeling and prediction.

• (2) KZ filter reduces model-data incompatibility.

• (3) OSD is an effective method for establishing gidden data from sparse and noisy ocean observations.