WIND EFFECTS ON CHEMICAL SPILL IN ST ANDREW BAY SYSTEM

PETER C. CHU, PATRICE PAULY
Naval Postgraduate School, Monterey, CA 93943

STEVEN D. HAEGER
Naval Oceanographic Office, Stennis Space Center

MATHEW WARD
Applied Science Associates, Inc. Narragansett, RI
Outlines

- Geographic Environment
- Hydrodynamic model
- Forcing mechanisms
- Hydrochemical model
- Conclusions
Geographic location - overview

- Northeastern Gulf of Mexico
- Part of the Intracoastal highway
- Fed by Deer Point Lake dam
Geographic location - bathymetry

Panama City Beach
Panama City
West boundary
East boundary
West Pass
East Pass
Geographic location - bathymetry

Panama City Beach
Panama City
West boundary
East boundary
West Pass
East Pass
Geographic location - bathymetry

Panama City Beach
Panama City
West boundary
East boundary
West Pass
East Pass
Geographic location - bathymetry

Panama City Beach
Panama City
West boundary
East boundary
West Pass
East Pass
Seasonal variability of tidal constituents at Panama City Beach.
Tides from NOAA

NOAA website provides:

- Tidal gauge time series
- Tidal constituents

Panama City Beach station:

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Amplitude (cm)</th>
<th>Phase (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>15.89</td>
<td>296.2</td>
</tr>
<tr>
<td>O1</td>
<td>15.84</td>
<td>284.8</td>
</tr>
<tr>
<td>Q1</td>
<td>3.4</td>
<td>270.7</td>
</tr>
<tr>
<td>M2</td>
<td>3.4</td>
<td>287.4</td>
</tr>
<tr>
<td>S2</td>
<td>2</td>
<td>303.1</td>
</tr>
</tbody>
</table>
Watershed (Fresh-water influx)
Bay county sub-basins flow

<table>
<thead>
<tr>
<th>number</th>
<th>flow [m³/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>0.8</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.3</td>
</tr>
<tr>
<td>5</td>
<td>1.4</td>
</tr>
<tr>
<td>6</td>
<td>0.4</td>
</tr>
<tr>
<td>7</td>
<td>1.4</td>
</tr>
<tr>
<td>8</td>
<td>1.7</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1.2</td>
</tr>
<tr>
<td>11</td>
<td>1.2</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>3.8</td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.7</td>
</tr>
<tr>
<td>16</td>
<td>0.9</td>
</tr>
<tr>
<td>17</td>
<td>38.1</td>
</tr>
</tbody>
</table>
Low Monthly mean winds

<table>
<thead>
<tr>
<th>Jan.</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>dir.</td>
<td>N</td>
<td>N</td>
<td>SSE</td>
<td>S</td>
<td>S</td>
<td>WSW</td>
<td>WSW</td>
<td>E</td>
<td>ENE</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>speed</td>
<td>3.5</td>
<td>3.5</td>
<td>4</td>
<td>3.5</td>
<td>3</td>
<td>3</td>
<td>2.5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Wind values (m/s) averaged over the past 60 years.

2004 average:

0.12m/s northwesterlies

May through September average:

4m/s.
High Synoptic Winds

Can easily reach 20 m/s and more during hurricane events
Water Quality Management and Analysis Package (WQMAP)

- **WQMAP** is an integrated modeling system designed to study surface water quality issues. The system allows the engineer or scientist to develop numerical grids, perform hydrodynamic simulations, conduct single constituent pollutant transport and multiple constituent eutrophication studies in a geographic context all from one application.
Features of WQMAP

• Integrated Geographic Information System
• Grid Generation
• Hydrodynamic Model
• Pollutant Transport Model
• Eutrophication Model
• All models use same computational grid
• Applicable within regions such as rivers, lakes, estuaries, bays and coastal seas.
Hydrodynamic Model

Continuity

\[R \frac{\partial \zeta}{\partial t} + \frac{1}{\sqrt{g_{11}g_{22}}} \left(\frac{\partial (UD \sqrt{g_{22}})}{\partial \xi} + \frac{\partial (VD \sqrt{g_{11}})}{\partial \eta} \right) = 0 \]

Momentum Equation in \(\xi \)-direction

\[
\frac{\partial UD}{\partial t} + \frac{1}{\sqrt{g_{11}g_{22}}} \left[\frac{\partial (U^2 D \sqrt{g_{22}})}{\partial \xi} + \frac{\partial (UVD \sqrt{g_{11}})}{\partial \eta} + UVD \frac{\partial (\sqrt{g_{11}})}{\partial \eta} - U^2 \frac{\partial (\sqrt{g_{22}})}{\partial \xi} \right] = fDV
\]

\[
= -\frac{gD}{R \sqrt{g_{11}}} \left[\frac{\partial \zeta}{\partial \xi} + \frac{D}{\rho_0 - 1} \left(\frac{\partial \rho}{\partial \xi} - \sigma \frac{\partial D \partial \rho}{\partial \xi \partial \eta} \right) \right] d\sigma
\]

Momentum Equation in \(\eta \)-direction

\[
\frac{\partial VD}{\partial t} + \frac{1}{\sqrt{g_{11}g_{22}}} \left[\frac{\partial (UVD \sqrt{g_{22}})}{\partial \xi} + \frac{\partial (V^2 D \sqrt{g_{11}})}{\partial \eta} + UVD \frac{\partial (\sqrt{g_{11}})}{\partial \xi} - U^2 \frac{\partial (\sqrt{g_{22}})}{\partial \eta} \right] = fDV
\]

\[
= -\frac{gD}{R \sqrt{g_{22}}} \left[\frac{\partial \zeta}{\partial \eta} + \frac{D}{\rho_0 - 1} \left(\frac{\partial \rho}{\partial \eta} - \sigma \frac{\partial D \partial \rho}{\partial \xi \partial \eta} \right) \right] d\sigma
\]
Hydrodynamic model – grid generation
Wind impacts

09/16 at 05:00 AM

09/16 at 01:20 PM
Errors overview

<table>
<thead>
<tr>
<th>Runoff fluctuation</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>surface</td>
<td></td>
<td>bottom</td>
<td>surface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Pass</td>
<td>rme</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>rmse</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>ecv</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>cor</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East Bay</td>
<td>rme</td>
<td>0.02</td>
<td>0.02</td>
<td>-0.02</td>
<td>-0.02</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>rmse</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>ecv</td>
<td>0.02</td>
<td>0.02</td>
<td>-0.03</td>
<td>-0.03</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>cor</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>salinity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Bay</td>
<td>rme</td>
<td>-0.05</td>
<td>-0.04</td>
<td>0.05</td>
<td>0.04</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>rmse</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>1.57</td>
</tr>
<tr>
<td></td>
<td>ecv</td>
<td>-0.05</td>
<td>-0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>cor</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
</tr>
</tbody>
</table>
Chemical Spill (Ethylene Glycol)

- 10 tons of the aforementioned chemical constituent is released at depth of 0.5 m.

- The release locations are selected in order to identify the tidal pumping effect and the vertical mixing process.
Chemical Discharge Model System (CHEMMMAP)

- **CHEMMMAP** is a chemical discharge model designed to predict the trajectory, fate, impacts and biological effects of a wide variety of chemical substances three-dimensionally.
Features of CHEMMAP

- Contains ASA's own GIS or can be used in other GIS software such as ArcView.

- Location specific environmental/biological data applied to any fresh or salt aquatic environment in the world.

- Can utilize a variety of hydrodynamic file formats.

- Easily interpreted visual displays of concentrations over time.

- 3D Viewer capabilities.

- Biological exposure model to predict exposed fish and wildlife impacts.

- MSDS database linked to the physical-chemical database.

- Extensive chemical database providing physical-chemical data.
Chemical Fates Model

- Initial plume dynamics.
- Slick spreading, transport, and entrainment of floating materials.
- Evaporation and volatilization (to atmosphere).
- Transport and dispersion of dissolved and particulate materials in the water column and in the atmosphere.
- Dissolution and adsorption to suspended sediments.
- Sedimentation and resuspension.
- Natural degradation.
- Shoreline entrainment.
- Boom effectiveness.
Control Case (Chemical Release on June 1, 2004)

Mass Balance for ethylene glycol

Spill dispersion after 3 weeks
Wind Vectors

Time from 01-Jun-2004 12:00am [hours]

5 m/s
Wind effects on spill propagation

No wind simulation

Reversed wind simulation
Release time influence – stochastic model

50 cases from 1st of June to 31st of August

Run number for worst case scenario
Release the 1st of June – 12:00am
Release location influence
Time response delay

Minimum time to exceed a threshold
Conclusions

• Importance of the wind in the pollution drift, particularly in St Andrew Bay system.

• East-west bay bias of the chemical spill pattern is not crucial because it is largely affected by the winds.

• The tides impact on the estuarine circulation with imbalanced ebb and flood periods.