

Effect of Wave Boundary Layer on Sea-to-Air Dimethylsulfide (DMS) Transfer Velocity during Typhoon Passage

Peter C Chu, and Kuofeng Cheng

Naval Ocean-Atmospheric Prediction Laboratory Department of Oceanography Naval Postgraduate School Monterey, California, USA <u>pcchu@nps.edu</u>

http://www.oc.nps.navy.mil/~chu

References

• Chu, P.C., and K.F. Cheng, 2006: Effect of wave boundary layer on the sea-to-air dimethylsulfide transfer velocity during typhoon passage. Journal of Marine Systems, in press.

The dominant natural source of sulfur to the atmosphere is the oceanic DMS

(Bates et al., 1992; Gondwe et al., 2003).

DMS changes the radiation budget in the atmosphere and in turn changes the climate.

Flux Parameterization Issues (Fairall el al. 2005)

- Representation in GCM
 - Most observations are point time averages
 - Concept of gustiness sufficient?
 - Mesoscale variable? Precip, convective mass flux, ...
- Strong winds
 - General question of turbulent fluxes, flow separation, wave momentum input
 - Sea spray influence
- Waves
 - Stress vector vs wind vector (2-D wave spectrum)
 - z_o vs wave age & wave height
- Breaking waves
 - Gas and particle fluxes
 - Distribution of stress and TKE in ocean mixed layer
- Gas fluxes
 - Bubbles
 - Surfactants (physical vs chemical effects)
 - Extend models to chemical reactions

What is the effect of the wave boundary layer (WBL) on the sea-to-air DMS transfer?

$$u(z) = \frac{u_*}{\kappa} \ln\left(\frac{z}{z_0}\right)$$

$$z_0 = z_r \exp(-\frac{\kappa}{\sqrt{C_D}})$$

$$Z_r = 10 \text{ m}$$
 $C_D = u_*^2 / u_r^2$

Nondimensional Roughness Length

$$z_{0*} = z_0 g / u_*^2$$

Effect of WBL on Momentum Transfer

- Without WBL: Charnock (1955) parameter
- With WBL: Chalikov (1995) parameterization

$$C_D = \kappa^2 \left[R - \ln C_D \right]^2$$

$$z_{0*} = 0.0144$$

$$R = \ln\left(\frac{z_{\gamma}g}{\gamma\sqrt{\mu_{p}}u_{\gamma}}\right)$$

$$\mu_p = 0.57 \left(\frac{u_*}{c_p}\right)^{3/2}$$

$$C_p$$
 is the peak phase speed.

• Waves
$$\rightarrow z_0 \rightarrow C_D \rightarrow k_a$$

• Waves
$$\rightarrow z_0 \rightarrow (\text{Re, Sc}) \rightarrow k_w$$

• WaveWatch-3 for the South China Sea as an example

,

,

NOAA WaveWatch-3 Third Generation Wave Model (Tolman 1999)

$$\frac{\partial N}{\partial t} + \frac{1}{\cos\phi} \frac{\partial}{\partial\phi} \dot{\phi} N \cos\theta + \frac{\partial}{\partial\lambda} \dot{\lambda} N + \frac{\partial}{\partial k} \dot{k} N + \frac{\partial}{\partial\theta} \dot{\theta}_g N = \frac{S}{\sigma}$$
$$S = S_{in} + S_{nl} + S_{ds} + S_{bot}$$
$$\dot{\phi} = \frac{c_g \cos\theta + U_{\phi}}{R} \qquad \dot{\lambda} = \frac{c_g \sin\theta + U_{\phi}}{R \cos\phi}$$

$$\dot{\theta}_{g} = \dot{\theta} - \frac{c_{g} \tan \phi \cos \theta}{R}$$

WaveWatch-3 was evaluated using T/P (a) crossover points and (b) tracks in the SCS (Chu et al., 2003, JTECH)

South China Sea

Typhoon 23W (Wukong) Sept 5-11, 2000 Maximum Sustained Wind: 38 m/s

Effect of WBL on z_{0*}

Nondimensional Peak Wave Frequency

 $\omega_{p^*} \equiv \omega_p u_* / g$

Sea-to-Air DMS Flux (McGillis et al., 2000)

- Air transfer velocity k_a
- Water transfer velocity k_w
- DMS concentrations at airside (C_a)
- DMS concentrations at waterside (C_w)

$$H = \frac{k_w}{1 + \alpha k_w / k_a} (C_w - \alpha C_a)$$

$$\alpha = \exp\left[\frac{3525}{T} - 9.464\right]$$

$$k_a = k_{H_2O} (M / M_{H_2O})^{-1/2}$$

$$k_{H_tO} = 659 \ u_r$$

Waterside DMS Transfer Velocity (Jahne et al., 1987; McGillis et al., 2000)

• Waterside transfer velocity (n = 0.58)

$$k_{\psi} = \sqrt{\rho_a / \rho_{\psi}} \beta^{-1} \mathrm{Se}^{-n} u,$$

 $Sc \equiv \mathbf{v} / D$

- Schmidt Number = 720 (DMS at 300 K)
- DMS Diffusion coefficient (Saltzman et al., 1993)

Roughness Reynolds Number

$$D = 1.1 \times 10^{-2} \exp\left[-\frac{1896}{T}\right] \quad \text{(unit: cm}^2/\text{s)}$$
$$\beta = 0.55 \,\text{Re}_r^{1/4}$$
$$\text{Re}_r \equiv u_r z_0 / \nu$$

• Waves
$$\rightarrow z_0 \rightarrow C_D \rightarrow k_a$$

• Waves
$$\rightarrow z_0 \rightarrow (\text{Re, Sc}) \rightarrow k_w$$

• WaveWatch-3 for the South China Sea as an example

Relative Difference of k_w

Conclusions

- (1) WBL increases C_D and in turn enhances the momentum flux.
- (2) WBL decreases k_w and in turn weakens the sea-to-air DMS transfer.
- (3) Such opposite WBL effects are evident for minor typhoon (Wukong, max wind ~ 38 m/s)
- (4) Such opposite WBL effects on the climate should be further investigated.