Development and Verification of IMPACT35

Peter Chu, C. Fan, and NPS Students (U.S. Naval Officers)
Naval Postgraduate School
Peter Fleischer, Ron Betsch
Naval Oceanographic Office
Phil Valent, Paul Elmore, Andre Abelev, Mike Richardson
Naval Research Lab

Fifth Annual ONR Mine Burial Prediction Workshop
Kailua-Kona, Island of Hawaii, January 31 – February 2, 2005
References

• Chu, P.C., A. Gilles, and C.W. Fan, 2005: Experiment of falling cylinder through the water column. Experimental and Thermal Fluid Sciences, in press.

Comparison Between IMPACT28 and IMPACT35 Using Carderock Data
Major Features of IMPACT35

(1) Three-Dimensional, Full Physics

(2) Triple Coordinate Systems
 - E-Coordinate: Momentum Equations
 - M-Coordinate: Moment of Momentum Equations
 - F-Coordinate: Hydrodynamic (drag/lift) Forces and Torques

(3) Drag/Lift Coefficients Depends on Reynolds Number and L/D ratio

(4) Cavitation

(5) Sediment Resistant Force (Bearing Strength and Pore-Water Pressure)
Mine Parameters
Triple Coordinate Transform

- Earth-fixed coordinate (E-coordinate)

- Cylinder’s main-axis following coordinate (M-coordinate)

- Hydrodynamic force following coordinate (F-coordinate).
$\mathbf{j}_M = \mathbf{k} \times \mathbf{i}_M$, \hspace{1cm} \mathbf{k}_M = \mathbf{i}_M \times \mathbf{j}_M$
F-Coordinate System
Transform Between E- and M-Coordinate Systems

\[E_M R(\psi_2, \psi_3) \equiv \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} \cos \psi_3 & -\sin \psi_3 & 0 \\ \sin \psi_3 & \cos \psi_3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \psi_2 & 0 & \sin \psi_2 \\ 0 & 1 & 0 \\ -\sin \psi_2 & 0 & \cos \psi_2 \end{bmatrix}, \]
E- and F-Coordinate Transform

\[i_F = i_M = \begin{bmatrix} r_{11} \\ r_{21} \\ r_{31} \end{bmatrix}, \quad j_F = \mathbf{V}_2/|\mathbf{V}_2|, \quad k_F = i_F \times j_F. \]

\[^E_F R(\psi_2, \psi_3, \phi_{MF}) = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}, \]
Momentum Equation in E-Coordinate System

\[
\frac{d}{dt} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = - \begin{bmatrix} 0 \\ 0 \\ (1 - \rho_w / \bar{\rho}) g \end{bmatrix} + \frac{1}{\rho \Pi} \begin{bmatrix} F_x \\ F_y \\ F_z \end{bmatrix},
\]
Moment of Momentum Equation in M-
Coordinate System

\[J \cdot \frac{d\omega}{dt} = -2J \cdot (\Omega \times \omega) + M_{nh} + M_h \]
M-Coordinate

The moment of gyration tensor for the axially Symmetric cylinder is a diagonal matrix

\[
\mathbf{J} = \begin{bmatrix}
J_1 & 0 & 0 \\
0 & J_2 & 0 \\
0 & 0 & J_3
\end{bmatrix},
\]
Moment of Momentum Equations

\[\frac{d \omega_1}{dt} = -a_1 \omega_1 , \]

\[\frac{d}{dt} \begin{bmatrix} \omega_2 \\ \omega_3 \end{bmatrix} = -B \cdot \begin{bmatrix} \omega_2 \\ \omega_3 \end{bmatrix} + a_2 , \]
Sediment Resistant Forces
(Bearing Strength and Pore-Water Pressure)

IMPACT28

Bearing Strength
= 10 X Shear Strength

IMPACT35

More Realistic
Model Verification Using Carderock Data

COM at $t = 0.4$ s

IMPACT35 (x, y, z)

IMPACT28 (x, z)
Model Verification Using Carderock Data

COM at $t = 0.8$ s

IMPACT35 (x, y, z)

IMPACT28 (x, z)
Model Verification Using Carderock Data

COM at $t = 1.4$ s

IMPACT35 (x, y, z)

IMPACT28 (x, z)

Experiment X(m)

Model X(m)

Time = 1.4(s)

Total number: 34

Experiment X(m)

Model X(m)

Experiment Y(m)

Model Y(m)

Experiment Z(m)

Model Z(m)

Time = 1.6(s)

Total number: 30

Experiment X(m)

Model X(m)

Experiment Y(m)

Model Y(m)

Experiment Z(m)

Model Z(m)
Model Verification Using Carderock Data

COM at $t = 1.8 \text{ s}$

IMPACT35 (x, y, z)

IMPACT28 (x, z)
Model Verification Using Carderock Data
Orientation t = 0.4 s

IMPACT35 (psi2, psi3)

IMPACT28 (psi2)

Experiment
Model

Time = 0.4(s)
Total number: 42

Experiment ψ_2 ($^\circ$)
Model ψ_2 ($^\circ$)
Number

Experiment ψ_3 ($^\circ$)
Model ψ_3 ($^\circ$)
Number
Model Verification Using Carderock Data
Orientation $t = 0.8$ s

IMPACT35 (ψ_2, ψ_3)

IMPACT28 (ψ_2)
Model Verification Using Carderock Data
Orientation $t = 1.4$ s

IMPACT35 (ψ_2, ψ_3)

IMPACT28 (ψ_2)

Total number: 42
Model Verification Using Carderock Data
Orientation $t = 2 \text{ s}$

IMPACT28 (psi2)

IMPACT35 (psi2, psi3)
Temporally Varying RMSE
IMPACT28

- Observation Number
- X
- Z
- Ψ_2
Temporally Varying RMSE IMPACT35

- Observation Number
- X
- Y
- Z
- PSI$_2$
- PSI$_3$
Gravity Cores During MIBEX (5/21/2000)
Predicted Burial Depth Comparison Using MIBEX Data
Predicted Burial Depth Comparison Using MIBEX Data

![Graph showing predicted burial depth comparison using MIBEX data. The graph displays penetration depth (m) against drop number. The data is compared to experiment and Impact35, Impact28 models.](image-url)
Conclusions

- IMPACT35 has capability to predict the COM position and mine orientation in the water column.

- The sediment part of IMPACT35 needs improvement
Future Work

• (1) Extensive Model Verification
 • NRL (Drs. Phil Valent, Paul Elmore, Andre Abelev)
 • JHU-APL (Drs. Alan Brandt, Sarah Rennie)
 • FWG (Dr. Thomas Wever)

• (2) Extension the IMPACT35 for Cylindrical Mines to Non-Cylindrical Mines for Naval Operational Mines
 • Manta, Rockan
 • Korean Mines, Bowen Mines, Psi Mines
 • KW36, KW52, KWDST, KWGE, KWIT
 • Mark36N, Mark52 …