

Wave Effect on the Gas Fluxes at Ocean Surface

Peter C Chu, K. F. Cheng, and Y.C. Chen

Naval Ocean Analysis and Prediction Laboratory Department of Oceanography Naval Postgraduate School Monterey, California, USA <u>pcchu@nps.edu</u>

http://www.oc.nps.navy.mil/~chu

Gas Transfer

Flux Parameterization Issues (Fairall el al. 2005)

- Representation in GCM
 - Most observations are point time averages
 - Concept of gustiness sufficient?
 - Mesoscale variable? Precip, convective mass flux, ...
- Strong winds
 - General question of turbulent fluxes, flow separation, wave momentum input
 - Sea spray influence
- Waves
 - Stress vector vs wind vector (2-D wave spectrum)
 - z_o vs wave age & wave height
- Breaking waves
 - Gas and particle fluxes
 - Distribution of stress and TKE in ocean mixed layer
- Gas fluxes
 - Bubbles
 - Surfactants (physical vs chemical effects)
 - Extend models to chemical reactions

Gas Deposition Velocity

 $V_{d} = \langle w'c' \rangle / (c-c_{p}) = (r_{a} + r_{b})^{-1}$

Two parameters: $r_a \sim aerodynamic resistance$ $r_b \sim surface resistance$

$$\frac{1}{r_a} = C_D \bar{u}$$

Surface Resistance

The surface resistance r_b depends on

- Roughness length: z₀
- Roughness Reynolds number: $Re = u^* z_0 / v$
- Schmidt number: $Sc = v/D_i$
- *v* is the molecular viscosity, D_i is the diffusion coefficient

$$r_b = \int_{z_0}^{z_i} (D_i + K)^{-1} dz = \frac{(u_{z_0} + B_i^{-1})}{u_*}$$

Kramm & Dlugi (1994)

Asman (1994)

$$z_{e} = 30 (v/u_{*}) \exp(-13.6 \text{ k S}_{e}^{2/3})$$
; for $R_{e} < 0.13$
 $z_{e} = 20 z_{o} \exp(-7.3 \text{ k R}_{e}^{1/4} \text{ S}_{e}^{1/2})$; for $R_{e} > 0.13$

• Waves
$$\rightarrow z_0 \rightarrow C_D \rightarrow r_a$$

• Waves
$$\rightarrow z_0 \rightarrow (\text{Re, Sc}) \rightarrow r_b$$

• WaveWatch-3 for the South China Sea as an example

Cp = phase speed at peekfrequency

$z_0^* \equiv g z_0 / u_*^2 = f(c_p / u_*)$

UNCLASSIFIED

Nondimensional Roughness Length

Without Wave Effects Charnock (1955)

 $z_0^* = \beta_*$ $\beta_* = 0.0185$ (Wu 1980) 0.035 (Kitaigorodskii and Volkov 1965) 0.0144 (Garratt 1977) 0.0192 (Geernaert et al. 1986)

Kitaigorodskii (1968)
$$z_0^2 = A^2 \int_0^\infty F(k) \exp\left(-\frac{2\kappa c}{u_*}\right) dk$$

 $c = c(k)$
Kitaigorodskii with $z_0^* = 0.012 \Phi(x_0)$
 $F(\omega) = \beta g^2 \omega^{-5}$
 $\beta = 0.012$ $\Phi(x_0) \equiv \left[1 - e^{-x_0} \left(1 + x_0 + \frac{x_0^2}{2} + \frac{x_0^3}{6}\right)\right]^{1/2}$
 $x_0 \equiv 2\kappa c_p u_*$
Kitaigorodskii with $z_0^* = 0.014 \Phi(x_0)$
 $F(\omega) = \alpha_s g u_* \omega^{-4}$
 $\alpha_s = 0.062$ $\Phi(x_0) \equiv \left[1 - e^{-x_0} \left(1 + x_0 + \frac{x_0^2}{2} + \frac{x_0^3}{6}\right)\right]^{1/2}$
 $x_0 \equiv 2\kappa c_p u_*$
Kitaigorodskii
 (1970) $z_0^* = 0.068 \left(\frac{u_*}{c_p}\right)^{-3/2} \exp\left(-\kappa \frac{c_p}{u_*}\right)$

Hsu (1974)	$z_0^* = 0.144 \left(\frac{u_*}{c_p}\right)^{1/2}$
Toba and Koga (1986)	$z_0^* = \Omega\left(\frac{u_*}{c_p}\right)^{-1}$
	$\Omega = 0.025$ (Toba and Koga 1986) . 0.015 (Toba et al. 1990)
Huang et al. (1986)	$z_0^* = 0.085 \left(\frac{u_*}{c_p}\right)^{1/2} \Phi(x_0)$
	$\Phi(x_0) \equiv \left[1 - e^{-x_0} \left(1 + x_0 + \frac{x_0^2}{2} + \frac{x_0^3}{6}\right)\right]^{1/2}$
	$x_0 \equiv 2\kappa c_{\rm p}/u_{*}.$
Geernaert, Larsen and Hansen (1987)	$z_0^* \equiv \frac{10g}{u_*^2} \exp\left(-3.65 \left(\frac{u_*}{c_p}\right)^{1/3}\right)$
	$C_D = 0.012 \left(\frac{u_*}{c_p}\right)^{2/3}$

With Wave Effect

Masuda and Kusaba (1987)	$z_0^* = 0.0129 \left(\frac{u_*}{c_p}\right)^{1.10}$
Donelan (1990) Field	$z_0^* = 0.42 \left(\frac{u_*}{c_p}\right)^{1.03}$
Donelan (1990) Lab	$z_0^* = 0.047 \left(\frac{u_*}{c_p}\right)^{0.68}$
Toba et al. (1990) [TIKEJ]	$z_0^* = 0.020 \left(\frac{u_*}{c_p}\right)^{1/2}$
Mast, Kraan and Oost (1991)	$z_0^* = 0.8 \left(\frac{u_*}{c_p}\right)$
Nordeng (1991)	$z_0^* = 0.11 \left(\frac{u_*}{c_p}\right)^{3/4} \Phi(x_0)$
	$\Phi(x_0) \equiv \left[1 - e^{-x_0} \left(1 + x_0 + \frac{x_0^2}{2} + \frac{x_0^3}{6} \right) \right]^{1/2}$
	$x_0 \equiv 2\kappa c_{\rm p}/u_*$
Smith et al. (1992)	$z_0^* = 0.48 \left(\frac{u_*}{c_p}\right)$

,

,

NOAA WaveWatch-III Third Generation Wave Model (Tolman 1999)

$$\frac{\partial N}{\partial t} + \frac{1}{\cos\phi} \frac{\partial}{\partial\phi} \dot{\phi} N \cos\theta + \frac{\partial}{\partial\lambda} \dot{\lambda} N + \frac{\partial}{\partial k} \dot{k} N + \frac{\partial}{\partial\theta} \dot{\theta}_g N = \frac{S}{\sigma}$$
$$S = S_{in} + S_{nl} + S_{ds} + S_{bot}$$
$$\dot{\phi} = \frac{c_g \cos\theta + U_{\phi}}{R} \qquad \dot{\lambda} = \frac{c_g \sin\theta + U_{\phi}}{R \cos\phi}$$

$$\dot{\theta}_{g} = \dot{\theta} - \frac{c_{g} \tan \phi \cos \theta}{R}$$

South China Sea

Monsoon Winds (from QuikScat Data)

\SSIFIED

STATISTICAL EVALUATION OF WAVEWATCH-3

Significant Wave Height (2000)

January

July

Total Deposit Velocity of CO₂ in January 2000

Without Wave Effect (Charnock 1955)

Total Deposit Velocity of CO₂ in July 2000

Without Wave Effect (Charnock 1955)

Total Deposit Velocity of O₂ in January 2000

Without Wave Effect (Charnock 1955)

Without Wave Effect (Charnock 1955)

Total Deposit Velocity of NH₃ in January 2000

Without Wave Effect (Charnock 1955)

With Wave Effect (Toba & Koga 1986)

Without Wave Effect (Charnock 1955)

Conclusions

- (1) Waves increase the gas deposit velocity V_d (up to twice)
- (2) It is important to include a wave model into gas transfer model.