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For uncertainFor uncertain velocity initial conditionsvelocity initial conditions ::

The model errors The model errors decreases decreases with time. with time. 
The model errors with and without The model errors with and without diagnostic diagnostic 
initializationinitialization are quite are quite comparable and significantcomparable and significant. . 
The The magnitude of model errorsmagnitude of model errors is is less dependentless dependent
on the on the diagnostic initialization perioddiagnostic initialization period no matter it is no matter it is 
30 day,60 day or 90 day30 day,60 day or 90 day. . 

25%25% near the near the 
surfacesurface

70%70% near the near the 
surfacesurface50%50%20%20%

For uncertainFor uncertain
velocity initial velocity initial 

conditionsconditions

180180thth DayDay55thth DayDayMax.Max.Min.Min.

Max. RRMSEMax. RRMSE
Vertically Vertically 
averaged averaged 
RRMSERRMSEExperimentExperiment



ConclusionsConclusions
For uncertainFor uncertain wind forcingwind forcing ::

The The model errormodel error increases with increases with timetime and and noise noise 
intensityintensity. . 

50%50% near the near the 
surfacesurface

35%35% near the near the 
surfacesurface19%19%8%8%

ForFor 0.5 m/s0.5 m/s
noise noise 

intensityintensity

80%80% near the near the 
surfacesurface

60%60% near the near the 
surfacesurface28%28%11%11%

For For 1.0 m/s1.0 m/s
noise noise 

intensityintensity

180180thth DayDay55thth DayDayMax.Max.Min.Min.

Max. RRMSEMax. RRMSE
Vertically Vertically 
averaged averaged 
RRMSERRMSEExperimentExperiment



ConclusionsConclusions
For uncertainFor uncertain lateral boundary transportlateral boundary transport ::

The The model errormodel error increases with increases with timetime and and noise noise 
intensityintensity. . 

18%18% near the near the 
bottombottom

14%14% near the near the 
bottombottom20%20%9%9%

ForFor noise noise 
intensity as intensity as 5% 5% 

ofof transporttransport

28%28% near the near the 
bottombottom

24%24% near the near the 
bottombottom34%34%17%17%

ForFor noise noise 
intensity as intensity as 

10% 10% ofof
transporttransport

180180thth DayDay55thth DayDayMax.Max.Min.Min.

Max. RRMSEMax. RRMSE
Vertically Vertically 
averaged averaged 
RRMSERRMSEExperimentExperiment



ConclusionsConclusions
For For combined uncertainty :combined uncertainty :

35%35% near near 
the the 

bottombottom

65%65% near near 
the the 

bottombottom
50%50%27%27%

For uncertainFor uncertain initial initial 
conditioncondition andand

lateral boundary lateral boundary 
transporttransport

77%77% near near 
the the 

surfacesurface

70%70% near near 
the the 

surfacesurface
52%52%20%20%

For uncertainFor uncertain initial initial 
conditioncondition andand
wind forcingwind forcing

78%78% near near 
the the 

surfacesurface

73%73% near near 
the the 

surfacesurface
55%55%30%30%

For uncertainFor uncertain initial initial 
conditioncondition, , wind wind 

forcingforcing andand lateral lateral 
boundary boundary 
transporttransport

180180thth DayDay55thth DayDayMax.Max.Min.Min.

Max. RRMSEMax. RRMSE
Vertically Vertically 
averaged averaged 
RRMSERRMSEExperimentExperiment


