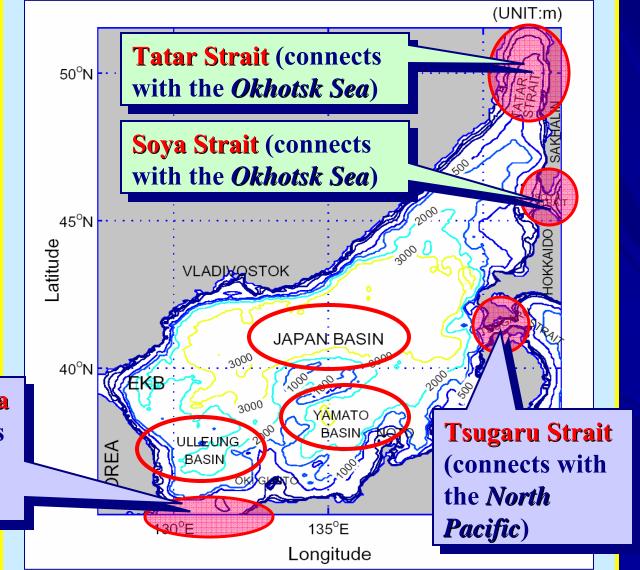
Predictability of Japan / East Sea (JES) System to Uncertain Initial / Lateral Boundary Conditions and Surface Winds

Peter C Chu Chin-Lung Fang Naval Postgraduate School Monterey, CA 93943, USA Email: <u>pcchu@nps.edu</u> <u>http:///www.oc.nps.navy.mil/~chu</u>


International Liege Colloquium: Marine Environmental Monitoring and Prediction
 Liege, Belgium, May 3-7, 2004

Outline

Introduction
Experimental design
Statistical analysis methods
Results
Conclusions

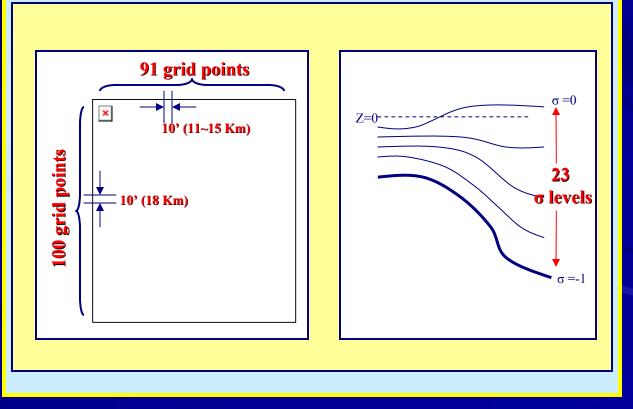
 Three Difficulties
 JES Geography & bottom topography
 Princeton Ocean Model

> Korea/Tsushima Strait (connects with the *North Pacific*)

- Three Difficulties
- JES Geography & bottom topography
- Princeton
 Ocean Model

It is important for us to investigate the response of a ocean model to these uncertainties.

Uncertainty of the *initial* velocity condition


Three Difficulties

JES Geography & bottom topography

Princeton Ocean Model

- General information
- Surface & lateral boundary forcing
- Two step initialization

POM : a time-dependent, primitive equation model rendered on a three-dimensional grid that includes realistic topography and a free surface.

Three Difficulties

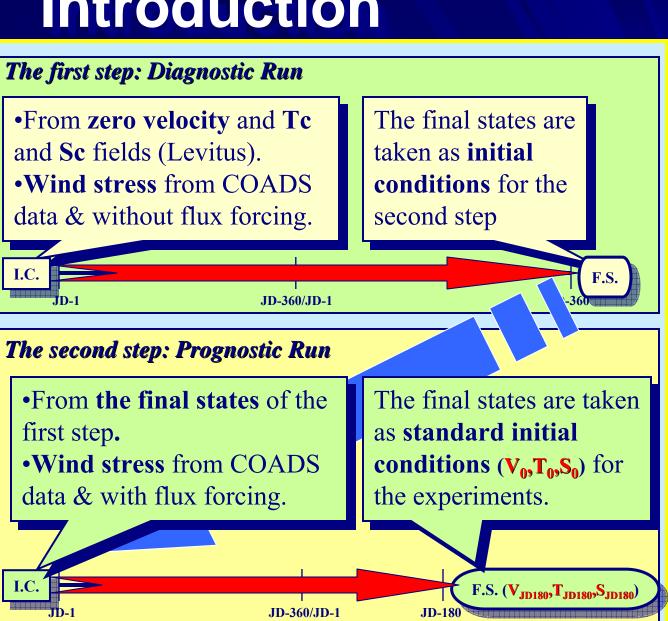
JES
 Geography & bottom
 topography

Princeton Ocean Model

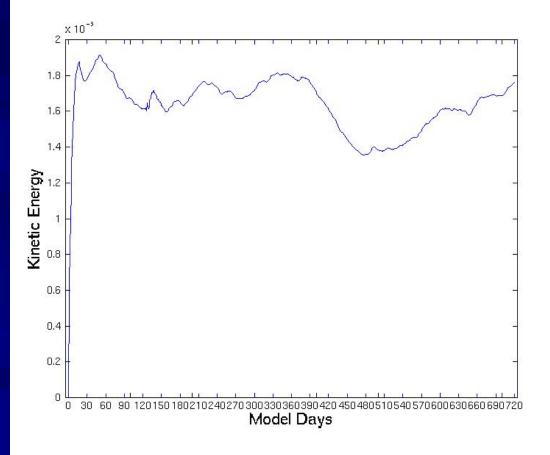
> General information

 Surface & lateral boundary forcing

 Two step initialization • Wind stress at each time step is interpolated from monthly mean climatological wind stress from COADS (1945-1989).


• Volume transports at open boundaries are specified from historical data.

Month	Feb	Apr	Jun.	Aug	Oct	Dec
Tatar strait (<i>inflow</i>)	0.05	0.05	0.05	0.05	0.05	0.05
Soya strait (<i>outflow</i>)	-0.1	-0.1	-0.4	-0.6	-0.7	-0.4
Tsugaru strait (o <i>utflow</i>)	-0.25	-0.35	-0.85	-1.45	-1.55	-1.05
Tsushima strait (<i>inflow</i>)	0.3	0.4	1.2	2.0	2.2	1.4
Unit: Sv, 1 Sv = $10^6 \text{ m}^3\text{s}^{-1}$						

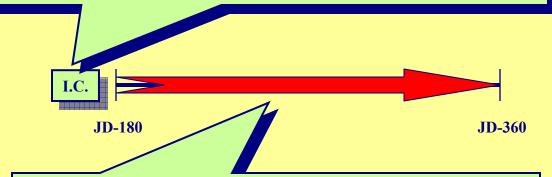

Three Difficulties JES Geography & bottom topography

Princeton Ocean Mode

- General information
- Surface & lateral boundary forcing
- Two step initialization

Temporal Variation of the Kinetic Energy During the First Stage

Experimen t	Property
0	<u>Control run</u>
1	
2	Uncertain velocity initialization
3	processes
4	
5	
6	Uncertain <u>wind stress</u>
7	
8	Uncertain <u>lateral boundary transport</u>
9	
10	Combination of uncertainty
11	


Control Run

Uncertain
 Initial
 Conditions

Uncertain Wind Forcing

Uncertain
 Lateral
 Transport

Combined Uncertainty •From the standard initial conditions $(V_0 = V_{JD180}, T_0 = T_{JD180}, S_0 = S_{JD180})$. •Lateral transport from historical data and Wind stress from COADS data & with flux forcing.

The simulated **temperature** and **salinity** fields and **circulation pattern** are **consistent with observational studies** (*Chu et al. 2003*).

Control Run

 Uncertain Initial Conditions

Uncertain Wind Forcing

Uncertain
 Lateral
 Transport

Experime nt	ne Initial Wind Conditions Forcing		Lateral Boundary Conditions
1	$V_0 = 0$, $T_0 = T_{JD180}$, $S_0 = S_{JD180}$	Same as Run-0	Same as Run-0
2	$V_0 = V_{30D}^{(Diag)}$ $I_0 = T_{JD180},$ $S_0 = S_{JD180}$	Same as Run-0	Same as Run-0
3	$V_{0} = V_{60D}^{(Diag)},$ $T_{0} = T_{JD180},$ $S_{0} = S_{JD180}$	Same as Run-0	Same as Run-0
4	$V_0 = V_{90D}^{(Diag)},$ $T_0 = T_{JD180},$ $S_0 = S_{JD180}$	Same as Run-0	Same as Run-0

Control Run

Uncertain
 Initial
 Conditions

Uncertain Wind Forcing

 Uncertain Lateral Transport

Experime Initial nt Conditions		Wind Forcing	Lateral Boundary Conditions
5	Same as Run-0	Adding Gaussian random noise with zero mean and 0.5 m/s noise intensity	Same as Run-0
6	Same as Run-0	Adding Gaussian random noise with zero mean and 1.0 m/s noise intensity	Same as Run-0

Control Run

Uncertain
 Initial
 Conditions

Uncertain
 Wind
 Forcing

 Uncertain Lateral Transport

Experime nt	Initial Conditions	Wind Forcing	Lateral Boundary Conditions
7	Same as Run-0	Same as Run-0	Adding Gaussian random noise with the zero mean and noise intensity being 5% of the transport (control run)
8	Same as Run-0	Same as Run-0	Adding Gaussian random noise with the zero mean and noise intensity being 10% of the transport (control run)

Control Run

 Uncertain Initial Conditions

Uncertain Wind Forcing

Uncertain
 Lateral
 Transport

Experime nt	Initial conditions	Wind forcing	Lateral Boundary Conditions
9	$V_0 = V_{30D}^{(Diag)},$ $T_0 = T_{JD180},$ $S_0 = S_{JD180}$	Adding Gaussian random noise with 1.0 m/s noise intensity	Same as Run-0
10	$V_0 = V_{30D}^{(Diag)},$ $T_0 = T_{JD180},$ $S_0 = S_{JD180}$	Same as Run-0	Adding Gaussian random noise with noise intensity being 10% of the transport (control run)
11	$V_0 = V_{30D}^{(Dag)},$ $T_0 = T_{JD180},$ $S_0 = S_{JD180}$	Adding Gaussian random noise with 1.0 m/s noise intensity	Adding Gaussian random noise with noise intensity being 10% of the transport (control run)

Statistical Analysis Methods


 $\Delta \psi(x, y, z, t) = \psi_c(x, y, z, t) - \psi_e(x, y, z, t)$ Model Error : **Root Mean Square Error** (*RMSE*) :

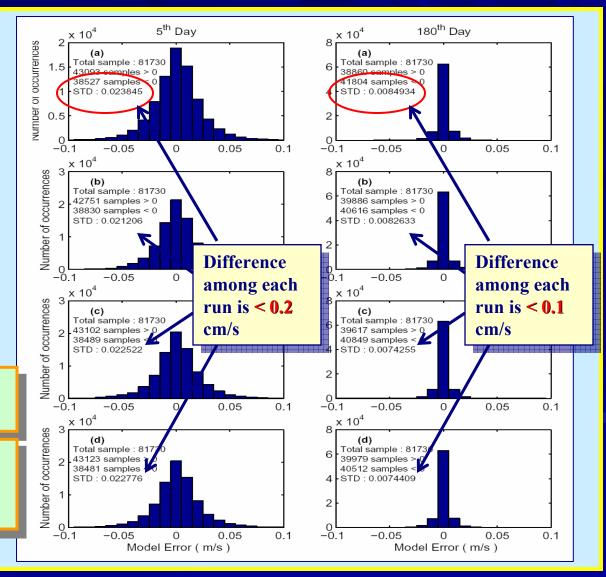
$$RMSE(z,t) = \sqrt{\frac{1}{My \times Mx} \sum_{j=1}^{M_y} \sum_{i=1}^{M_x} \left[\Delta \psi_u(x_i, y_j, z, t)^2 + \Delta \psi_v(x_i, y_j, z, t)^2 \right]}$$

Relative Root Mean Square Error (RRMSE) :

$$RRMSE(z,t) = \frac{\sqrt{\sum_{j=1}^{M_{y}} \sum_{i=1}^{M_{x}} \left[\Delta \psi_{u}(x_{i}, y_{j}, z, t)^{2} + \Delta \psi_{v}(x_{i}, y_{j}, z, t)^{2} \right]}}{\sqrt{\sum_{j=1}^{M_{y}} \sum_{i=1}^{M_{x}} \left[\psi_{c_{u}}(x_{i}, y_{j}, z, t)^{2} + \psi_{c_{v}}(x_{i}, y_{j}, z, t)^{2} \right]}}$$

Model Errors Due To Initial Conditions

Model Errors Due To Initial Conditions

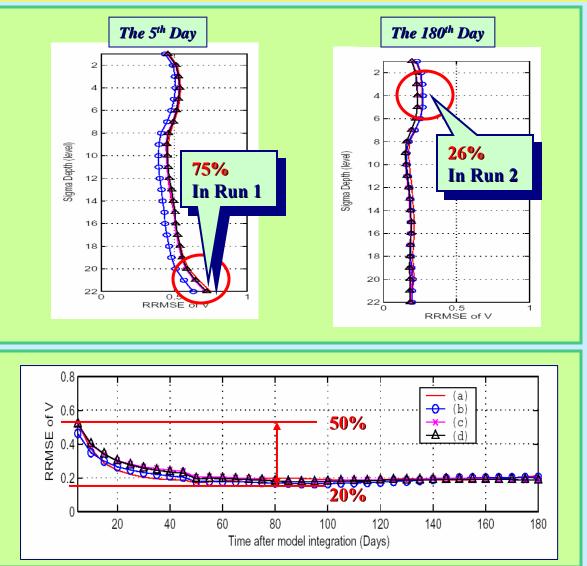

Model Error Distribution

- Horizontal distributio n
- Histogram

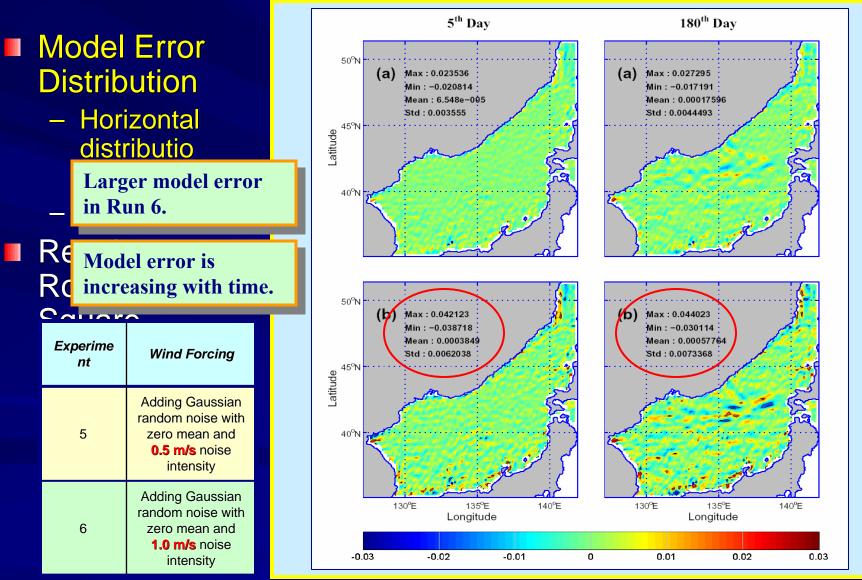
Relative Root Mean Square Error

Model error is decreasing with time.

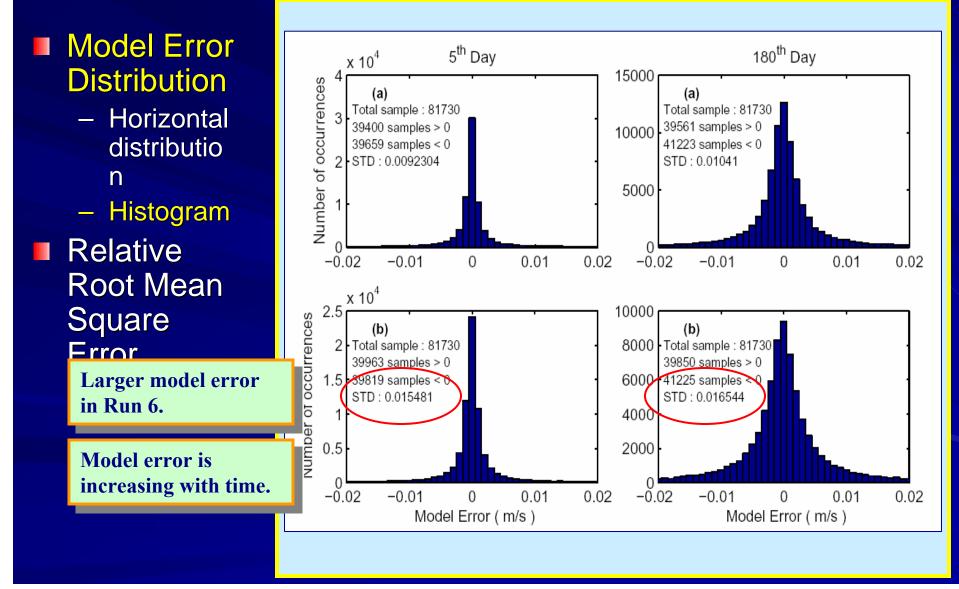
Difference among the four runs is not significant.


Model Errors Due To Initial Conditions

 Model Error Distribution
 Relative Root Mean Square Error (RRMSE)


- Vertical Variation
- Temporal

Effects to the horizontal velocity prediction are quite significant.

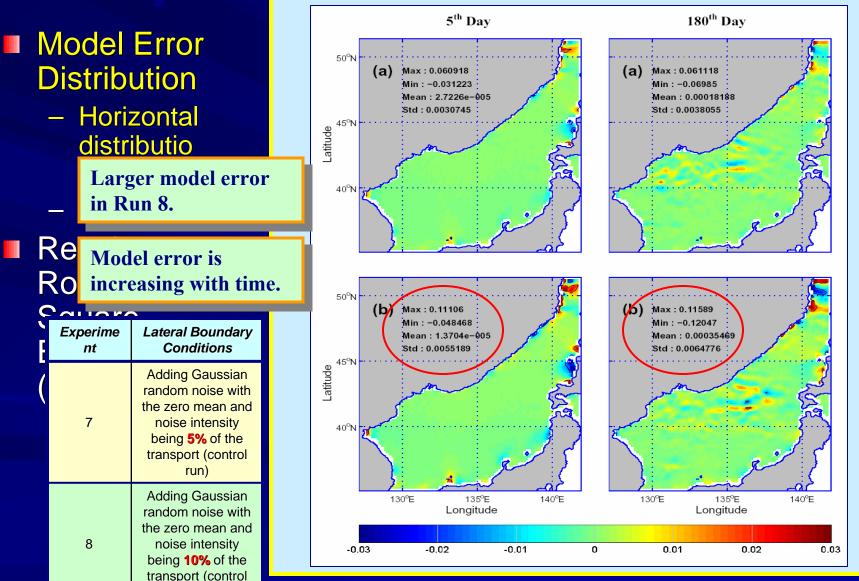

No obvious difference among these four runs.

Model Errors Due To Wind Forcing

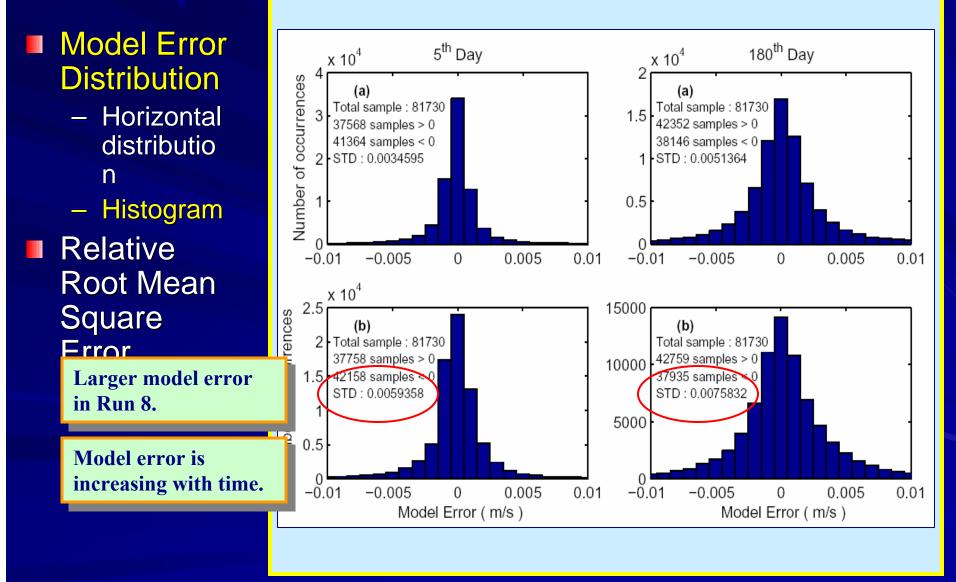
Model Errors Due To Wind Forcing

Model Errors Due To Wind Forcing

 Model Error Distribution
 Relative Root Mean Square Error (RRMSE)


 Vertical Variation
 Temporal

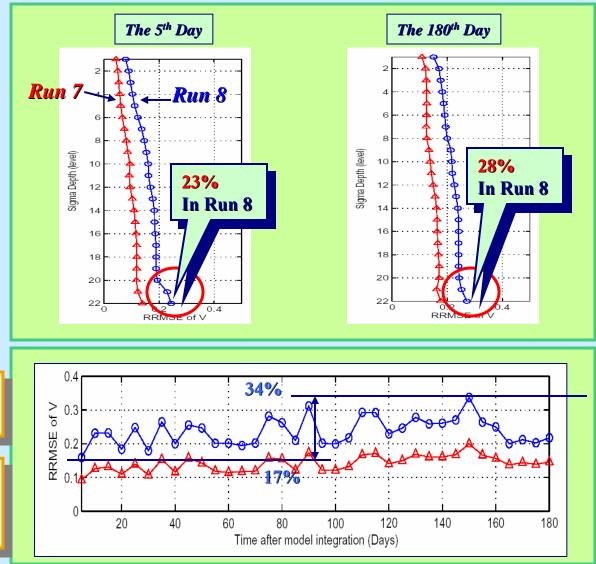
 Larger model error in Run 6.


Effects to the horizontal velocity prediction are quite significant.

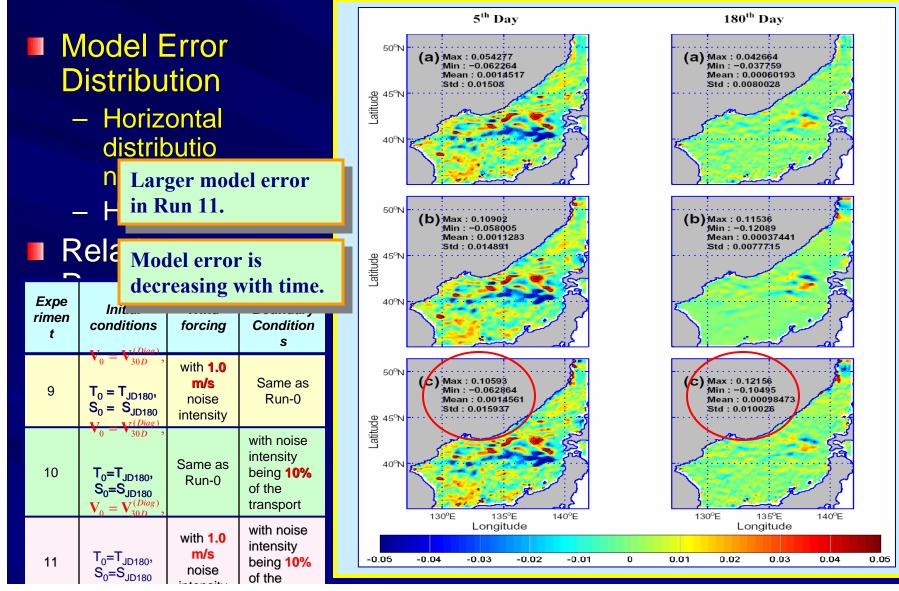
Model Errors Due To Open Boundary Conditions

Model Errors Due To Open Boundary Conditions

Model Errors Due To Open Boundary Conditions


 Model Error Distribution
 Relative Root Mean Square Error (RRMSE)

 Vertical Variation


– Temporal

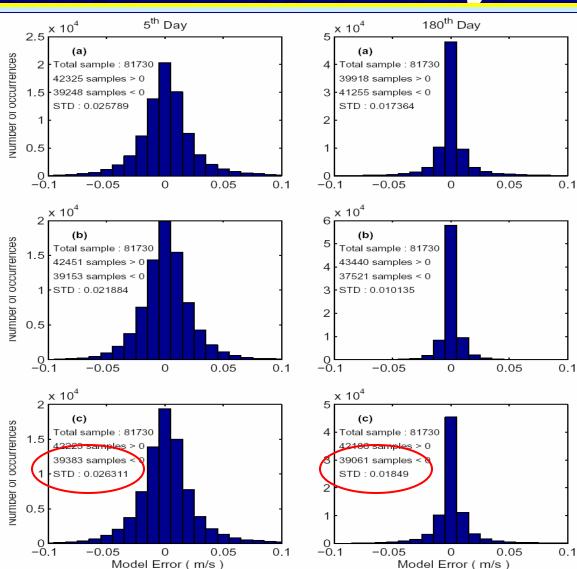
Larger model error in Run 8.

Effects to the horizontal velocity prediction are quite significant.

Model Errors Due To Combined Uncertainty

Model Errors Due To Combined Uncertainty

 Model Error Distribution
 Horizontal distributio


n

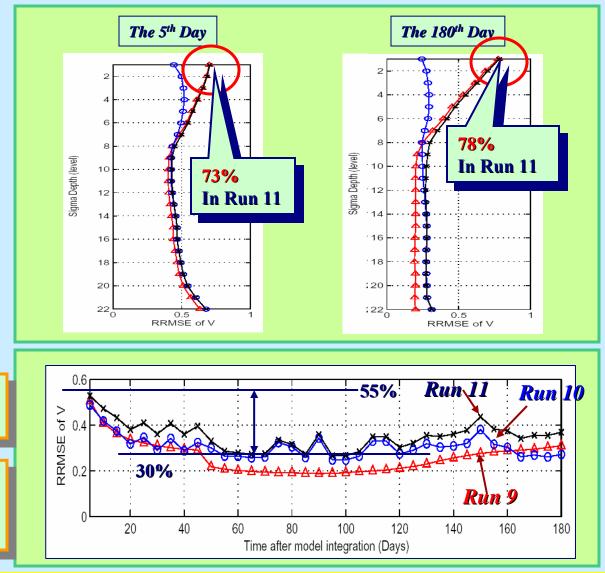
- Histogram

Relative Root Mean Square Error

Larger model error in Run 11.

Model error is decreasing with time.

Model Errors Due To Combined Uncertainty


 Model Error Distribution
 Relative Root Mean Square Error (RRMSE)

> Vertical Variation

– Temporal

Larger model error in Run 11.

Effects to the horizontal velocity prediction are quite significant.

For uncertain velocity initial conditions :

- The model errors decreases with time.
- The model errors with and without diagnostic initialization are quite <u>comparable and significant</u>.
- The magnitude of model errors is less dependent on the diagnostic initialization period no matter it is <u>30 day,60 day or 90 day</u>.

	Experiment	Vertically averaged RRMSE		Max. RRMSE		
		Min.	Max.	5 th Day	180 th Day	
	For uncertain velocity initial conditions	<u>20%</u>	<u>50%</u>	<u>70% near the</u> <u>surface</u>	<u>25% near the</u> <u>surface</u>	

For uncertain wind forcing :

The model error increases with <u>time</u> and <u>noise</u> intensity.

Experiment	Vertically averaged RRMSE		Max. RRMSE		
	Min. Max.		5 th Day	180 th Day	
For 0.5 m/s noise intensity	<u>8%</u> <u>19%</u>		<u>35% near the</u> <u>surface</u>	<u>50% near the</u> <u>surface</u>	
For 1.0 m/s noise intensity	<u>11%</u>	<u>28%</u>	<u>60% near the</u> <u>surface</u>	80% near the surface	

For uncertain lateral boundary transport :

The model error increases with <u>time</u> and <u>noise</u> intensity.

Experiment	Vertically averaged RRMSE		Max. RRMSE		
	Min. Max.		5 th Day	180 th Day	
For noise intensity as 5% of transport	<u>9%</u>	<u>20%</u>	<u>14% near the</u> <u>bottom</u>	<u>18% near the</u> <u>bottom</u>	
For noise intensity as 10% of transport	<u>17%</u>	<u>34%</u>	<u>24% near the</u> <u>bottom</u>	<u>28% near the</u> <u>bottom</u>	

For combined uncertainty :

Experiment	aver	ically aged MSE	Max. RRMSE	
	Min.	Max.	5 th Day	180 th Day
For uncertain <u>initial</u> <u>condition</u> and <u>wind forcing</u>	<u>20%</u>	<u>52%</u>	70% near the surface	77% near the surface
For uncertain <u>initial</u> <u>condition</u> and <u>lateral boundary</u> <u>transport</u>	<u>27%</u>	<u>50%</u>	<u>65% near</u> <u>the</u> <u>bottom</u>	<u>35% near</u> <u>the</u> <u>bottom</u>
For uncertain <u>initial</u> <u>condition</u> , <u>wind</u> <u>forcing</u> and <u>lateral</u> <u>boundary</u> transport	<u>30%</u>	<u>55%</u>	<u>73% near</u> <u>the</u> <u>surface</u>	<u>78% near</u> <u>the</u> <u>surface</u>