Afforestation For Valley Urban Air Pollution Control

Peter C Chu, Naval Postgraduate School

Yuchun Chen and Shihua Lu, Institute of Cold & Arid Environment & Engineering, Chinese Academy of Sciences
Central China

Geography and isobaths

- Yellow River
- Yangtze River
- Urumqi
- Lhasa
- Dunhuang
- Jiuquan
- Lanzhou
- Terim Basin
- QING ZANG PLATEAU

- 80°E 85°E 90°E 95°E 100°E 105°E 110°E 115°E
- 28°N 30°N 32°N 34°N 36°N 38°N 40°N 42°N 44°N 46°N

- Isobaths range from -500 to 4000 meters.
Topography around Langzhou
Lanzhou – One of the Most Polluted Cities in China

In the past two decades, the air pollution problem has been improved.
Total Dustfall Trend in Lanzhou (Wang et al. 2001)
SO2 Trend in Lanzhou
(Wang et al., 2001)

Bold solid curve - the observed data
Thin solid curve – main period, dashed line - trend
CO Trend in Lanzhou
(Wang et al., 2001)

Bold solid curve - the observed data
Thin solid curve – main period, dashed line - trend
TSP Trend in Lanzhou
(Wang et al., 2001)

TSP Concentration (mg/m³)

Bold solid curve - the observed data
Thin solid curve – main period, dashed line - trend
NO$_x$ Trend in Lanzhou
(Wang et al., 2001)

Bold solid curve - the observed data
Thin solid curve – main period, dashed line - trend
Factors Affecting Air Quality

- Meteorological Conditions
 - Stable stratification especially Inversion
 - Low Winds

- Pollution Sources
Mountain-Valley Wind (at Night)
Three Major Tasks in Controlling Air Pollution

- Change Meteorological Conditions (Weakening the Inversion)
- Create Pollutant-Sinks
- Reduce the Pollutant Source-Level
Weakening of the Inversion

- Mountain-slope forestation weakens the mountain-valley circulation and in turn weakens the inversion.
Mountain Slope Afforestation

- Weakens the Inversion
- Creates Pollutant-Sinks
Model Simulation

- Effect of Mountain Slope Forestation Using Regional Atmospheric Modeling System (RAMS)
Model Description

- Nonhydrostatic
- Multi-grid System: 9 km, 3 km, 1 km
- 23 vertical levels, to 50 hPa
- 30”– Topography data
- Assimilation of observational data
- Land surface model
- Integration area: 720 km (E–W), 540 km (N–S)
 Centered at 103.8°E, 36.1°N
Multi-Grid System
Model Integration – Control Run

- Winter Simulation (Dec 5 – 7, 2000)
- Initial Time: 08 BT, Dec 5, 2000
- Initial Conditions (NCEP Reanalysis)
- Lateral Boundary for the Largest Area (Every Six Hours, NCEP Reanalysis)
- \(\Delta t: \) 60 s, 30 s, 10 s
Simulated Wind and Temperature Fields at 800 hPa on: (a) 08, (b) 14, (c) 20, (d) 02 BT
Simulated \((v, w)\) and \(T\) in the north-south cross-section across the GaoLanShan Mountain on: (a) 08, (b) 14, (c) 20, (d) 02 BT
Three Types of Afforestation

- **Green-A**: All area above 2100 m

- **Green-B**: Northern Mountain (below 1800 m) and Valley

- **Green-C**: Northern and Southern Mountains (below 2200 m) with 40 km (E-W) x 26 km (N-S) and centered at Lanzhou
USGS Vegetation 25-Category

- 1 – Urban
- 4 – Mix. Dry/Irrg. C.P.
- 5 – Crop/Grs. Mosaic
- 6 – Crop./Wood Mosc
- 7 – Grassland
- 8 – Shrubland
- 9 – Mix. Shrb./Grs.
- 10 – Savanna

............
Green-B
Green-C
Reduction of Inversion Strength

![Graph showing the reduction of inversion strength over time.](Image)
Reduction of Stability (Lapse Rate) (°C/m)
Green-A minus Control
Reduction of Stability (Lapse Rate) (°C/m)
Green-B minus Control
Reduction of Stability (Lapse Rate) (°C/m)
Green-C minus Control
Lagrange Method

\[X(t + \Delta t) = X(t) + (u + u')\Delta t \]
\[Y(t + \Delta t) = Y(t) + (v + v')\Delta t \]
\[Z(t + \Delta t) = Z(t) + (w + w' + w_p)\Delta t \]

(u,v, w) on Grid
(u’,v’, w’) on Subgrid (Turbulence)
w_p Vertical Velocity caused by external forcing
Topography and TSP Sources in 2000 (1000 kg) in Lanzhou (a Valley City)

(a) Seven Stations (six-angle star)

(b) TSP Sources

◇ Industrial

□ Residential
SO₂ – Sources in 2000 (1000kg)

Topography and isobaths (m), SO₂ Source in 2000 (1000kg)

◇ Industrial □ Residential
NOx Sources in 2000 (1000 kg)

The NOx in 2000 (1000 kg)

◇ Industrial □ Residential
Dust Sources (1000 kg)

The Yan Chen in 2000 (1000 kg)

◇ Industrial □ Residential
CO Sources (1000 kg)

The CO in 2000 (1000 kg)

◇ Industrial □ Residential
Simulated and Observed SO_2 Concentration (mg/m3) on December 25, 2000

Simulated (□), Observed (◇)
TSP Concentration at Two Stations
Simulated (dashed), Observed (Solid)
SO$_2$ Time-Latitude Cross-Section (Dec 17-19, 2000)
SO$_2$ Time-Latitude Cross-Section (December 28-29, 2000)
SO$_2$ (y, z) Cross-Section

101–202

36 36.01 36.02 36.03 36.04 36.05 36.06 36.07 36.08 36.09

0.02 0.035 0.055 0.07 0.085 0.105 0.12 0.14 0.155 0.17 0.19 0.205
NO_x

07h Dec 11, 2000

NOX=100 ug/m^3
13 h, Dec 11, 2000

NO$_x$

NOX=100 ug/m3
22h, Dec 11, 2000

NO\textsubscript{x} = 100 \, \text{ug/m}^3
NONO

07h, Dec 12, 2000

NO\textsubscript{x}

NO\textsubscript{x}=100 \text{ ug/m}^3
TSP

13h, Dec 11, 2000

TSP=300 ug/m³

Sunday
TSP

22h, Dec 16, 2000

TSP = 300 ug/m^3

Saturday
Conclusions

- Afforestation improves the air quality through destabilizing the atmosphere and providing sinks for pollutants.

- RAMS-HYPACT has capability to simulate and predict the transport of the pollutants.