C-Vector for Identification of Oceanic Secondary Circulation Across Arctic Fronts in Fram Strait

Peter C Chu Naval Postgraduate School Monterey, California

Chu 2002 (GRL) http://www.oc.nps.navy.mil/~chu Secondary Circulation

• Ageotrophic

• Impact on Biological Productivity

• Various Scales

• Not Easy to Identify

Can the secondary circulation be identified from routine oceanography observation such as CTD?

Fram Strait and GIN Seas

Bottom Topography of Fram Strait and GIN Seas

Circulation in Fram Strait and GIN Seas

CTD Measurements on R/V Valdivia 54 3/11-4/11, 1987 (Quadfasel and Ungewiss)

Potential Density Excess Along the North Lag (~78.2°N) Cross-Section

STATION

Potential Density Excess Along the South Lag (~76.1-77.3°N) Cross-Section

STATION

What is the secondary circulation around the density fronts?

Geostrophic Balance

Flow Decomposition

• U = Ug + Uag

• V = Vg + Vag

• (Uag, Vag) ~ Ageostrophic Velocity

Quasi-Geostrophic

$$-fv_{ag} = \frac{1}{\rho_0} \frac{\partial X}{\partial z} - (\frac{\partial}{\partial t} + \mathbf{V}_g \cdot \nabla) u_g,$$

$$fu_{ag} = \frac{1}{\rho_0} \frac{\partial Y}{\partial z} - (\frac{\partial}{\partial t} + \mathbf{V}_g \cdot \nabla) v_g,$$

$$N^2 w_{ag} = \frac{\partial B}{\partial z} - \left(\frac{\partial}{\partial t} + \mathbf{V}_g \cdot \nabla\right) b ,$$

Pseudo-Vorticity (Xu 1992, JAS)

$$\frac{\partial}{\partial y}(N^2 w_a) - \frac{\partial}{\partial z}(f^2 v_a) = 2C_x,$$

$$\frac{\partial}{\partial z}(f^2 u_a) - \frac{\partial}{\partial x}(N^2 w_a) = 2C_y,$$

$$\frac{\partial}{\partial x}(f^2 v_a) - \frac{\partial}{\partial y}(f^2 u_a) = 2C_z,$$

C-Vector

$$C_x = -f \frac{\partial(u_g, v_g)}{\partial(y, z)} + \frac{1}{2} \frac{\partial}{\partial z} \left(f \frac{\partial X}{\partial z} + \frac{\partial B}{\partial y} \right),$$

$$C_{y} = -f \frac{\partial(u_{g}, v_{g})}{\partial(z, x)} + \frac{1}{2} \frac{\partial}{\partial z} (f \frac{\partial Y}{\partial z} - \frac{\partial B}{\partial x}),$$

$$C_{z} = -f \frac{\partial(u_{g}, v_{g})}{\partial(x, y)} - \frac{f}{2} \frac{\partial}{\partial z} \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y}\right) - \frac{\beta}{2} \frac{\partial Y}{\partial z},$$

C-Vector Ageostrophic Vortex Line

C –Vector Ageostrophic Vortex Line

Turbulent Momentum & Buoyancy Fluxes (Mixed Layer Model)

$$(X,Y) = (\tau_x, \tau_y) + [(\tau_x, \tau_y) - (X,Y)_{-h} \frac{z}{h}],$$

$$B = B_0 + (B_0 - B_{-h})\frac{z}{h}$$
, for $z > -h$,

 $(X, Y, B) \simeq 0$ for z < -h,

$$\frac{\partial^2 X}{\partial z^2} = 0, \quad \frac{\partial^2 Y}{\partial z^2} = 0,$$

C_x/f² Along the North Cross-Section in Fram Strait

STATION

Potential Density Excess Along the North Lag (~78.2°N) Cross-Section

STATION

C-Vector for Large-Scale Secondary Circulations (Thermohaline Circulation)

$$C_{x} = -f \frac{\partial(u_{g}, v_{g})}{\partial(y, z)} + \frac{1}{2} \frac{\partial}{\partial z} \left(\frac{\partial B}{\partial y}\right),$$

$$C_{y} = -f \frac{\partial(u_{g}, v_{g})}{\partial(z, x)} - \frac{1}{2} \frac{\partial}{\partial z} \left(\frac{\partial B}{\partial x}\right),$$

Turbulent Buoyancy Flux Neglected

 $\frac{\partial}{\partial z}(\frac{\partial B}{\partial y}) = 0, \quad \frac{\partial}{\partial z}(\frac{\partial B}{\partial x}) = 0,$

Conveyor Belt

Figure I-8: A two-layer thermohaline conveyor belt summary taken schematically from Broecker (1987, 1991) by Schmitz (1995).

This downward motion is the major sinking of the "great ocean conveyor belt".

Use of NODC T, S Data

(Levitus 1994)

 C_x (in 10⁻²) values in the 30°W meridional cross section.

Conclusion

• C-Vector - an effective method to identify vertical circulation such as secondary circulation and thermohaline circulation.