An initialization process can produce balanced initial conditions that do not excite inertial-gravity oscillations in a model integration. In this paper, I will present the recently developed P-vector method (Chu, 1995; Chu et al., 1998a,b) for initializing 3-D ocean velocity field from initial temperature and salinity data with geostrophic and hydrostatic balance. This method can be applied to any ocean numerical model: z-coordinate, sigma-coordinate, or isopycnal coordinate models. Here, I use the initialization of the South Chian Sea isopycnal surface circulation from Navy’s Monthly GDEM T, S data as an example for illustration (Chu, 2000; Chu and Li, 2000). The representative pattern is a persistent basin-scale cyclonic circulation away from the surface, and a seasonally varying circulation with a weak anticyclicgyre in the summer and a strong cyclonic gyre in the winter near the surface. This pattern is consistent with a classic view of mean cyclonic circulation in large stratified lakes and semi-enclosed marginal seas by Emery and Csanady and with a recent numerical simulation using the Navy's Layered Ocean Model (NLOM) by Metzger and Hurlburt. The difference of circulations between z-level and isopycnal level will also be discussed.

Reference

1. 2000
 Spring Meeting

2. 06969396

3.(a) P C Chu
 NPS, OC/Cu
 Monterey, CA
 93943
 (b) 831-656-3688
 (c) 831-656-3686
 (d) chu@nps.navy.mil

4. AS
5. A07, Data
 Assimilation

6. Oral

7. 0%

8. $50 check enclosed

9. C

10. None

11. No