Determined of Volume Transport From Hydrographic and Wind Data Using the Ekman-Munk Model

> Peter Chu and Chenwu Fan Naval Postgraduate School, USA chu@nps.navy.mil

Western Boundary Currents and Indonesian Throughflow (Fine et al 1994)

Figure 1. Map of the western tropical Pacific Ocean and Indonesian Seas showing the major geographic names and surface to intermediate depth currents, including the Kuroshio, Mindanao Current (MC), North Equatorial Current (NEC), North Equatorial Countercurrent (NECC), New Guinea Coast Current (NGCC), South Equatorial Current (SEC), South Equatorial Countercurrent (SEC), East Australia Current (EAC), South Java Current (SJC), and the Leeuwin Current (LC). The subsurface currents are the New Guinea Coastal Undercurrent (NGCUC), Equatorial Undercurrent (EUC), Northern and Southern Sub-surface Countercurrents (NSCC and SSCC), Mindano Undercurrent (MUC), and Great Barrier Reef Undercurrent (GBRUC). The Mindanao Eddy (ME) and Halmahera Eddy (HE) are also indicate. Solid lines indicate surface flow, thick dashed lines indicate the flow of Antarctic Intermediate Water (AAIW). The inset shows the region of Vitiaz Strait east of New Guinea at 5°S, 148°E [after *Fine et al.*, 1994].

Estimates of Mean Indonesian Throughflow Transport (Godfrey 1996)

Table 1. Estimates of Mean Indonesian Throughflow Transport

Reference	Method	Result, 10 ⁶ m ³ s ⁻¹	Remarks
Wyrtki [1961]	geostrophy	1.7	top 200 m
Godfrey and Golding [1981]	geostrophy, 11 Indian Ocean sections	10	sections unclosed. 32°S
Wunsch et al. [1983]	inverse calculation, 43°S and 28°S Pacific sections	<<10	
Piola and Gordon [1984]	freshwater budget, Pacific and Indian Oceans	14	
Fine [1985]	tritium budget	5	top 300 m
Fu [1986]	inverse calculation, Australia-Timor	7	Timor Strait only
Toole et al. [1988]	salinity budget, West Pacific	<5	sensitive to Indonesian salinity
Murray and Arief [1988]	current meter survey	1.5	Lombok Strait only
Godfrey [1989]	geostrophy, Australia- Sumatra, Levitus annual mean data	12	boundary currents unresolved -
Toole and Warren [1993]	inverse estimate, Indian Ocean 32°S	7	
Wijffels et al. [1992]	heat budget, closed box, 14°S-165°E-10°N	0-8	
Fieux et al. [1994]	geostrophy, Australia- Bali,	18.6±7	August 1989 snapshot
	plus current meters		
Fieux et al. [this issue]	geostrophy, Australia- Bali, plus current meters	-2.6±7	February-March 1992 snapshot
Meyers et al. [1995]	time series from expendable bathythermograph sections	5	top 400 m

What is the simplest model to determining the Throughflow transport?

The Ekman-Munk Model

Dynamical System

$$-f(v - v_g) = A_z \frac{\partial^2 u}{\partial z^2} + A_h \nabla^2 u$$
$$f(u - u_g) = A_z \frac{\partial^2 v}{\partial z^2} + A_h \nabla^2 v$$
$$\frac{\partial p}{\partial z} = -\rho g$$

$$u_g = -\frac{1}{f\rho_0}\frac{\partial p}{\partial y}, \quad v_g = -\frac{1}{f\rho_0}\frac{\partial p}{\partial x}$$

- A_h ~ 5 X 10⁵ m²/s
- Extra-Tropical: E ~ 0.125
 - (Small Horizontal Diffusion)
- Tropical (8°S- 8°N): E > 0.5

Extra-Tropical (Ekman Model)

Small Horizontal Diffusion

$$-f(v-v_g) = A_z \frac{\partial^2 u}{\partial z^2}$$
$$f(u-u_g) = A_z \frac{\partial^2 v}{\partial z^2}$$

Tropical (Munk Model)

Large Horizontal Diffusion

$$\beta v = A_z \frac{\partial^2}{\partial z^2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) + A_h \nabla^2 \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)$$

Vertically Integrated Velocity & Transport Streamfunction

$$(U,V)=\int_{-H}^{\eta}(u,v)dz,$$

$$U = -\frac{\partial \Psi}{\partial y}, \quad V = \frac{\partial \Psi}{\partial x}$$

Ekman-Munk Model $\nabla^2 \Psi = \Pi$

• Extra-Tropoical Region (Ekman Model): • $\Pi = \Pi_1 + \Pi_2 + \Pi_3$

• Tropical Region (Munk Model) • $\nabla^2 \Pi = \beta V/A_h - [\partial/\partial x(\tau_y/\rho_0) - \partial/\partial y(\tau_x/\rho_0)]/A_h$

$$\Pi_1 = (\frac{\partial \widehat{V}_g}{\partial x} - \frac{\partial \widehat{U}_g}{\partial y})$$

$$\Pi_{2} = \left(\frac{\partial V_{r}}{\partial x} - \frac{\partial U_{r}}{\partial y}\right)$$
$$\Pi_{3} = -\left[\frac{\partial}{\partial x}\left(\frac{\tau_{x}}{f\rho_{0}}\right) + \frac{\partial}{\partial y}\left(\frac{\tau_{y}}{f\rho_{0}}\right)\right]$$

....

Π -Terms (Continued)

 Integrated Baroclinic Geostrophic Velocity (Relative to the Bottom)

$$(\widehat{U}_g, \widehat{V}_g) = \frac{g}{f\rho_0} (\int_{-H}^{\eta} \int_{-H}^{z} \frac{\partial \rho}{\partial y} dz' dz, -\int_{-H}^{\eta} \int_{-H}^{z} \frac{\partial \rho}{\partial x} dz' dz).$$

Integrated Barotropic Geostrophic Velocity

$$U_{r} = H u_{-H} - \frac{C_{D}}{f} \sqrt{u_{-H}^{2} + v_{-H}^{2}} u_{-H},$$

$$V_r = H v_{-H} + \frac{C_D}{f} \sqrt{u_{-H}^2 + v_{-H}^2} v_{-H}.$$

Climatological Values of the Π -Terms

- T, S (Levitus 1994) 1°× 1°
 - Π_1 (Geostrophic)
 - Π₂ (P-Vector Inverse Method)
- Winds (COADS) 1°× 1°
 Π₃

Climatological Values of the Π -Terms in Extra-Tropics (Noisy)

Boundary Conditions for $\nabla^2 \Pi$ = Forcing (Tropics)

Climatological Values of the Π -Terms in the Tropics ($\nabla^2 \Pi$ = Forcing)

/s7/psi_d/paper/ 05-May-2000

Boundary Conditions for $\nabla^2 \psi = \Pi$

 $\Psi = C_{2}$

Determination of ψ - values for Continents/Islands

Annual

Error Estimation

Gaussian-Type Random Error (0 mean, 0.2°C standard Deviation) Introduced into 3D T
 Fi⁻¹⁻⁴

Error Estimation

 Gaussian-Type Random Error (0 mean, 0.05N/m² standard Deviation) Introduced into the Surface Wind Data

Vertically Integrated Velocity Vector Field

Monthly Throughflow Transport Computed Using the Ekman-Munk Model

Comparing to Earlier Estimates (Fieux et al. 1994)

Table II-14: Australia-I	Bali Section Transports
(in Sverdrups; adapted)	from Fieux et al., 1994)

Layers	Transport*	
0–200 db	-23.1	
200–500 db	-2.7	
Total 0–500 db	-25.8	
500–2000 db	+9.6	
Total 0–2000 db	-16.2	

Transport Through Drake Passage

Weddell Sea Double Gyres

Kuroshio Transport (Sv)

Kuroshio Intrusion into the South China Sea

Circulation in the Australian Meditterrean

fig16

Bazil-Malvinas Confluence

Agulhas Retroflection

Monthly Volume Transport Through the Mozabique Channel

Conclusions

- The Ekman-Munk model has the capability to determine the volume transport from the hydrographic and wind data.
- The model uses realistic topography.
- The model contains two integrations of the Poisson equation. Thus, the model has the capability to filter out noises in the input data.