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Abstract
The impact of assimilating Argo data into an initial field on the short-term forecasting accuracy of temper-
ature and salinity is quantitatively estimated by using a forecasting system of the western North Pacific, on

the base of the Princeton ocean model with a generalized coordinate system (POMgcs). This system uses a
sequential multigrid three-dimensional variational (3DVAR) analysis scheme to assimilate observation da-

ta. Two numerical experiments were conducted with and without Argo temperature and salinity profile data
besides conventional temperature and salinity profile data and sea surface height anomaly (SSHa) and sea

surface temperature (SST) in the process of assimilating data into the initial fields. The forecast errors are
estimated by using independent temperature and salinity profiles during the forecasting period, including

the vertical distributions of the horizontally averaged root mean square errors (H-RMSEs) and the horizontal
distributions of the vertically averaged mean errors (MEs) and the temporal variation of spatially averaged

root mean square errors (S-RMSEs). Comparison between the two experiments shows that the assimila-
tion of Argo data significantly improves the forecast accuracy, with 24% reduction of H-RMSE maximum

for the temperature, and the salinity forecasts are improved more obviously, averagely dropping of 50% for
H-RMSEs in depth shallower than 300 m. Such improvement is caused by relatively uniform sampling of

both temperature and salinity from the Argo drifters in time and space.
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1 Introduction

Data assimilation, required in operational ocean data re-

trieval, has contributed significantly to the success of ocean

prediction. It is to blend modeled variable (xm ) with observa-

tional data (yo ) (Chu et al., 2004; Chu and Fan, 2010; Shu et al.,

2011; Xiao et al., 2006),

xa = xm +W
�

yo −H (xm )
�

, (1)

where xa is the assimilated variable; H is an operator that pro-

vides the model’s theoretical estimate of what is observed at the

observational points: and W is the weight matrix. Difference a-

mong various data assimilation schemes such as optimal inter-

polation (Chu, Amezaga et al., 2007; Chu, Mancini et al., 2007),

Kalman filter (Galanis et al., 2011; Shu et al., 2011), and three-

dimensional variational (3DVAR) methods (Li et al., 2008) is the

different ways to determine the weight matrix W . The data as-

similation process (1) can be considered as the average (in a

generalized sense) of xm and yo . The two parts (xm and yo ) in

the assimilation process usually have very different characteris-

tics in terms of data temporal and spatial distribution: unifor-

m and dense in the modeled data (xm ), and nonuniform and

sparse in the observed data (yo ). Question arises: What is the

impact of data sampling strategies in the assimilation of initial

field on the forecasting accuracy? To answer this question, two

observational data sets are needed with different types of data

distribution patterns in space and time. One is relatively unifor-

m, and the other is not.

The global temperature and salinity profile program (GT-

SPP), as a cooperative international project, has been estab-

lished since 1990 to provide global temperature (T ) and salinity

(S) resources. The GTSPP contains conventional temperature

and salinity profile data such as Nansen bottle, conductivity-

temperature-depth (CTD), and bathythermograph (BT), which

are usually collected from ships. Since the array for real-time

geostrophic oceanography (Argo) is launched into practice, GT-

SPP (T , S) profiles increase rapidly in both quantity and quality.

It becomes possible to monitor the temporal and spatial varia-

tions of the temperature and the salinity simultaneously. Liu et

al. (2004) showed the significant improvement of the tempera-

ture prediction in the central Pacific using a global ocean model

with the Argo data assimilation. Griffa et al. (2006) analyzed the

impact of the Argo data assimilation on a Mediterranean predic-

tion model with a set of idealized experiments, and discussed

the impact of coverage density and locations of Argo data on

assimilation results.
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Owing to the limitation of ship time, the conventional pro-

file data (T , S) are nonuniformly distributed in space and time.

However, the Argo floats drift freely with ocean currents, the Ar-

go data are more uniformly distributed in space and time than

the conventional data. Such difference in the data distributions

between the conventional (nonuniform) and Argo (relatively u-

niform) profile data (T , S) provides an opportunity to study the

effect of the sampling strategies on the ocean prediction accu-

racy. To do so, a numerical forecasting system with 3DVAR in

the western Pacific regional seas (Fig. 1) is constructed with the

capability to assimilate the sea surface height anomaly (SSHa)

from altimeters and the sea surface temperature (SST) from

satellite remote sensors, as well as in situ conventional and Argo

(T , S) profiles in the determining of the initial conditions. A 7 d

forecast is conducted with and without the assimilation of Argo

(T , S) profiles in the initial field. The prediction accuracy is ver-

ified with independent temperature and salinity profiles during

the period of prediction (not used in the data assimilation of the

initial field). Difference between the two forecast experiments

shows the impact of data distribution on the ocean prediction

accuracy.

The frame of the paper is outlined as follows. Section 2

shows the basic features of conventional and Argo profile data.

Section 3 describes the ocean dynamic model and the ocean da-

ta assimilation scheme. Section 4 gives the experiment design

and the quantitative analysis on the improvement of ocean pre-

diction using the Argo data assimilation. Section 5 presents the

conclusions.

Fig.1. Geography of the western north Pacific. The dots

indicate the numerical grid points.

2 Data

Ocean observational data (January-December 2008) in-

clude the SSHa from multi-satellite altimeters and the SST from

satellite remote sensors, and (T , S) profiles (conventional and

Argo) from the GTSPP. The satellite SSHa and SST data are on

the horizontal resolution of 0.25◦ and the time increment of 1 d.

Quality control is conducted on both conventional and the Argo

profile data before assimilating them into the initial field of the

numerical forecasting. For the conventional data, it includes

position/time check, depth duplication check, depth inversion

check, temperature and salinity range check, excessive gradien-

t check, and stratification stability check. For the Argo floats, it

includes duplicate float test, land position test, float drafting ve-

locity test, pressure range test, temperature and salinity coher-

ence test, pressure level duplication test and pressure inversion

test, spike test, salinity and temperature gradient test, and strat-

ification stability test, etc. In addition, the calibration method

developed by Wong et al. (2003) is employed to calibrate the

sensor drift of salinity measurements in the Argo data.

Figure 2 shows the horizontal distribution of (T , S) profile

data. From January to December 2008, there are 60 634 tem-

perature profiles and 52 638 salinity profiles from the conven-

tional observations, 5 323 temperature profiles and 5 210 salin-

ity profiles from the Argo floats. That is to say, the Argo data

are near one-tenth of the conventional data. The conventional

(T , S) profiles are distributed nonuniformly in horizontal with

most profiles around Japan and east of Taiwan Island and much

fewer profiles in the other regions, and existence of some data-

void areas. The Argo (T , S) profiles are distributed uniformly

(relative) over the whole area. Figure 3 shows the vertical dis-

tributions of the numbers of observations for the temperature

and the salinity from conventional and Argo data. The conven-

tional temperature (salinity) observations decrease slowly from

57 597 (48 595) data points near the surface to about 40 000 (T

and S) data points at near 700 m depth, and reduce drastically to

around 2 000 (T and S) data points below 700 m depth (Fig. 3a).

The Argo temperature (salinity) observations have 5 299 (5 186)

data points from near surface to about 420 m depth, decrease

almost linearly to 2 000 (T and S) data points at about 1 500 m

depth, keep 2 000 (T and S) data points from 1 500 to 1 800 m

depth, and reduce to less than 100 data points at 2 000 m depth

(Fig. 3b).

Two (T , S) data sets are used to investigate the impact of

the sampling strategies on the ocean prediction accuracy. The

first data set (called “WITH−ARGO”) contains Argo profile da-

ta besides the conventional profiles, the SSHa and the SST and

represents horizontally uniform (relative) sampling. The sec-

ond data set (called “NO−ARGO”) contains only the conven-

tional profile data, the SSHa and SST and represents horizon-

tally nonuniform sampling.

3 Ocean prediction system

3.1 Ocean model

The ocean model used in this study is the Princeton ocean

model with a generalized coordinate system (POMgcs). The

study domain covers from 99◦ to 150◦E in longitude, and from

10◦ to 52◦N in latitude (see Fig. 1), with a variable horizontal

resolution starting from (1/12)◦ near the coastal waters of Chi-

na and the Kuroshio, and telescoping to (1/2)◦ in other areas.

The vertical coordinate is a combination of sigma and z -level

with a maximum depth of 5 035 m, discretized by 35 model lev-

els. In the vicinity of the upper mixed layer and the thermocline,

z -coordinate is adopted in order to get a higher vertical resolu-

tion. In the shallow water and the area near a bottom boundary,

the terrain-following σ-coordinate is used. Sea surface forcing

fields consist of winds, air temperatures, humidity and clouds

from the National Centers for Environmental Prediction (NCEP)

reanalysis. Sea surface heat fluxes are calculated by a bulk for-
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Fig.2. Spatial distribution of temperature (a) and salinity (b) profiles from GTSPP during January-December 2008 (The red dot is

the conventional data and blue dot is the argo data).

Fig.3. Vertical distributions of numbers of observations for temperature (red) and salinity (blue) from conventional (a) and Argo

data (b).

mula, and open boundary conditions are provided by the simu-

lation results of a Massachusetts Institute of Technology gener-

al circulation model (MITgcm, Marshall et al., 1997), including

daily sea level, temperature, salinity, and currents. These open

boundary data are interpolated to the grid and time step of the

forecasting system.

3.2 Ocean data assimilation scheme

The ocean data assimilation scheme used in the system

is a sequential three-dimensional variational (3DVAR) analysis

scheme designed to assimilate the temperature and the salini-

ty using a multigrid framework (Li et al., 2008). This sequential

3DVAR analysis scheme can be performed in three dimensional

spaces and can retrieve resolvable information from longer to

shorter wavelengths for a given observation network and yield

multiscale analysis. The basic idea of this data assimilation

scheme can be referred to Li et al. (2008) and Li et al. (2010).

The data assimilation is carried out in the upper 1 000 m.

The basic idea proposed by Troccoli et al. (2002) is employed to

make salinity adjustment for the background field after temper-
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ature data are assimilated. The area extent of adjustment is lim-

ited between the latitude of 30◦S–30◦N and depths of 50–1 000

m. It needs firstly to establish a T −S relationship by using an

interpolation algorithm based on the instant model T −S table.

Then the background field of the salinity is adjusted on the ba-

sis of the T −S relationship and the temperature analysis result.

In addition, an idea of converting satellite altimeter SSHa into

T −S “pseudo profiles” based on the 3DVAR scheme is adapted

((Zhu and Yan, 2006; He et al., 2010).

Figure 4 shows the flow chart for data assimilation proce-

dure: (1) Based on the 24 h forecasting (T , S) values, obtain the

T − S relationship at every grid point through using the T −S

relationship module; (2) convert altimeter SSHa into the “pseu-

do profiles” of the temperature and the salinity; (3) assimilate

the temperature data to obtain the temperature analysis field;

(4) adjust 24 h forecasting salinity field on the base of the T −S

relationship and the temperature analysis result, and take the

adjusted salinity field as the background field for the salinity as-

similation; (5) assimilate the salinity data to obtain the salini-

ty analysis field; and (6) the temperature and salinity analysis

fields are used as the initial conditions of next 7 d forecast.

Fig.4. Flow chart of multigrid 3DVAR operational procedure.

3.3 Experiment design

Two forecast experiments are designed. The first exper-

iment (called “NO−ARGO”) assimilates all available observati-

ons (conventional T , S profiles and SSHa and SST) except

the Argo profile data. The second experiment (called “WITH−
ARGO”) assimilates all available observations including the Ar-

go profile data. The same sea-surface forcing fields and open

boundary conditions were used in both experiment. The Chi-

na ocean reanalysis (CORA) fields of January 1, 2008 (Han et

al., 2011, http://www.cora.net.cn) are used as initial conditions.

First, a 7 d forecast is performed for both experiments. Second,

the data assimilation is performed using 24 h forecast values

as the background field. Taking the assimilated fields as ini-

tial conditions, the next 7 d forecast is performed. This proce-

dure (forecast-assimilation-forecast) is cycled 365 times to ob-

tain 24, 48, 72, 96, 120, 144, 168 h forecast values of temperature

and salinity fields every day in 2008. The time window of as-

similating SST and SSHa data in both experiments is set to 1 d,

namely, assimilating satellite data within 1 d before initial fore-

casting time. Since the spatial distributions of the convention-

al observations and the Argo data are sparse, both experiments

adopt the 3.5 d time window, namely, assimilating the ocean (T ,

S) profile data within the 3.5 d before initial forecasting time.

Since all temperature and salinity observational data during the

period of forecasting are not assimilated into background fields

(the initial field of the numerical forecasting), they are taken as

independent data to be used to check the forecast result. Based

on these independent observation data, the errors of the 24, 48,

72, 96, 120, 144, and 168 h forecast values of the temperature

and the salinity at each grid point every day in 2008 can be es-

timated. The vertical distributions of the forecast errors are ob-

tained by averaging the errors in the horizontal direction. The

horizontal distributions of the forecast errors are obtained by

averaging the errors in the vertical direction. The difference of

the forecast errors between the two experiments shows the ef-

fect of sampling strategies on the ocean prediction accuracy.

4 Effect of Argo data

4.1 Whole 3-D domain

To quantify the impact of assimilating Argo data on the

ocean prediction errors, the horizontally averaged root mean
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square error (H-RMSE, eh−rms) between the predicted and ob-

served values for the whole horizontal region at depth z k and

time tm is calculated by

e
(ψ)

h−rms(z k , tm ) =
s

1

N

N
∑

n=1

�

ψp(xn , yn , z k , tm )−ψo(xn , yn , z k , tm )
�2

, (2)

where xn and yn indicate the zonal and latitudinal coordi-

nates of the nth observation point, respectively; z k is the depth

of the k th level; tm is the mth forecasting time; N is total

number of observation points at the tm time and z k depth;

ψp(xn , yn , z k , tm ) and ψo(xn , yn , z k , tm ) respectively denote the

predicted and ground-truth values at the tm time and z k depth

for the point (xn , yn ). In the study,ψ indicates the temperature

(T ) or the salinity (S). e
(ψ)

h−rms(z k , tm ) can be used to evaluate the

overall performance for the whole depths.

Figures 5a and b show the vertical distribution of e
(T )

h−rms for

t1=24 h and t2=168 h forecasts with and without Argo profiles

assimilation. Since the high resolution and the horizontally u-

niform satellite remote sensing the SST data are assimilated, the

inclusion of the Argo data does not improve the accuracy of the

SST prediction.

e
(T )

h−rms at time t1 and t2 increases with the depth from the

surface to its maximum value at around 158 m depth, where is

the mean thermocline location, reduce drastically to 0.5 ◦C at

around 1 000 m depth, and reduce gradually to 0.25 ◦C to 2 000

m depth. The low value of e
(T )

h−rms below 1 000 m depth for all

cases may be caused by the low variability.

For 24 h forecast (Fig. 5a), the maximum value of e
(T )

h−rms is

2.1 ◦C without the Argo data assimilation and 1.6 ◦C with Argo

data the assimilation (24% error reduction). The improvement

of the ocean prediction is very evident until 1 000 m depth. S-

ince the value of e
(T )

h−rms below 1 000 m depth is already small

(0.25–0.5 ◦C), the improvement with the Argo data is not notice-

able. Such improvement in upper 1 000 m especially at around

158 m depth is still evident in 168 h forecast (Fig. 5b).

Fig.5. Vertical dependence of temperature (a, b) and salinity (c, d) H-RMSEs in 24 h forecast (a, c) and 168 h forecast (b, d) with

and without Argo data assimilation.
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Figures 5c and d show the vertical distribution of e
(S)

h−rms for

t1=24 h and t2=168 h forecasts with and without the Argo pro-

file data assimilation. Similar to the temperature prediction, the

eh−rms of salinity for all cases reduces evidently from the surface

to the depth around 1 200 m, and reduces gradually below 1 200

m. The low value of e
(S)

h−rms below 1 200 m depth is related to

the low variability. Without the Argo data assimilation, e
(S)

h−rms

at time t1 and t2 is very large, with more than 0.50 for depths

shallower than 300 m. With the Argo data assimilation, they de-

crease drastically to less than 0.23 for 24 h forecast and 0.25 for

168 h forecast with the error reduction more than 50%. Below

1 200 m depth, e
(S)

h−rms at time t1 and t2 is quite small with slight-

ly larger values in the “WITH−ARGO” experiment than in the

“NO−ARGO” experiment. This may be related that the depth of

assimilating date is limited to upper 1 000 m. A further study is

needed to explain such phenomena.

4.2 Near thermocline

The mean errors (ME, ē ) within the layers between z k 1 and

z k 2 at time tm is calculated using Eq. (3) to identify the forecast

system performance.

ē
(ψ)

k1 ,k2
(xn , yn , tm ) =

1

K

k2
∑

k=k1

�

ψp(xn , yn , z k , tm )−

ψo(xn , yn , z k , tm )
�

, (3)

where all letters express the same means as the ones in the Eq.

(2); k1 and k2 represents the k1th and k2th level, respectively; K

equals to k1 −k2. Here, to evaluate the forecast performance n-

ear the mean thermocline, the depths of the k1th and k2th level

are 100 m and 300 m, respectively, and the tm is 24 h.

Figures 6 a and b show the horizontal distributions of the

vertically (100–300 m) averaged temperature mean errors in 24

h forecast without and with the Agro data assimilation, respec-

tively. Without the Agro data assimilation, the predicted tem-

peratures are lower than the observations in most areas. In the

east areas of Japan, the predicted temperatures are 0.8◦C higher

than the observations. With the Argo data assimilation, the pre-

dicted temperatures are significantly improved, and the fore-

cast errors are 0.1◦C or less in the whole areas. Therefore, the

assimilation of Argo data can reduce errors of temperature fore-

cast dramatically near the mean thermocline.

Figures 6 c and d show the horizontal distributions of the

vertically (100–300 m) averaged salinity mean errors in 24 h

forecast without and with the Agro data assimilation, respec-

tively. Without the Agro data assimilation, the predicted salinity

is significantly lower than the observations in most areas. For

example, the predicted salinity is over 0.50 lower than the obser-

vation in the area of 15◦–35◦N. However, the predicted salinity is

significantly higher than the observation in the small east area

of Japan. It indicates that an obvious bias exists for the salinity

forecast without the Argo data assimilation. With the Argo da-

ta assimilation, the predicted salinity is significantly improved,

and the forecast errors are 0.20 or less in the whole areas. There-

Fig.6. Horizontal distribution of vertically (100–300 m) averaged temperature (a, b) and salinity (c, d) prediction errors in 24 h

forecast without Argo profiles assimilation(a, c) and with Argo profiles assimilation (b, d).
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fore, the assimilation of Argo data can reduce errors of the salin-

ity forecast dramatically near the mean halocline.

4.3 Error evolution

The spatially averaged root mean square error (S-RMSE,

es−rms) between the predicted and observed values for the whole

horizontal region within the layers between z k 1 and z k 2 and at

time tm ,

e
ψ
s−rmsk1 ,k2 (tm ) =
√

√

√

√

1

N K

k2
∑

k=k1

N
∑

n=1

�

ψp(xn , yn , z k , tm )−ψo(xn , yn , z k , tm )
�2

(4)

is also used for the evaluation. Just as Eq. (3), all letters in the

Eq. (4) express the same means as the ones in Eq. (2).

The S-RMSEs of temperature are calculated using Eq.(4)

for the upper (0–50 m) and lower (50–1 000 m) layers to analyze

the errors growth (Fig. 7). The e
(T )
s−rms is generally lager and grows

faster in the upper layer than in the lower layer. For the upper

layer, without the Argo data assimilation, the e
(T )
s−rms is 1.33 ◦C

for 24 h forecast, and 1.51 ◦C for 168 h forecast (14% increas-

ing). With the Argo data assimilation, the e
(T )
s−rms is 1.26 ◦C for

24 h forecast, and 1.49 ◦C for 168 h forecast (18% increasing). For

the lower layer, without the Argo data assimilation, the e
(T )
s−rms

is 1.15 ◦C for 24 h forecast, and 1.18 ◦C for 168 h forecast (3%

increasing). With the Argo data assimilation, the e
(T )
s−rms is 0.93

◦C for 24 h forecast, and 1.03 ◦C for 168 h forecast (11% increas-

ing).

Fig.7. Temporal variation of temperature S-RMSEs (◦C) for the layers of 0–50 m (a) and 50–1 000 m (b) in 24 h forecast with and

without the Argo data assimilation.

With the Argo data assimilation, the accuracy of temper-

ature forecasts is significantly improved. However, it is worthy

note that the forecast errors in the “WITH−ARGO” experimen-

t grow a little faster compared with those in the “NO−ARGO”

experiment. This is because the assimilation of the Agro data

just improves the accuracy of initial conditions and cannot cor-

rect the model systematic bias. As a result, the forecast error

around the initial forecast time in the “WITH−ARGO” experi-

ment is mainly determined by the accuracy of initial conditions

and much lower than the ones in the “NO−ARGO” experiment,

and with the increase of the forecast time, the forecast error is

mainly affected by the model systematic bias so that the fore-

cast error with the assimilation of Argo data increases sharply.

The same as the temperature, the S-RMSEs of salinity are

calculated using Eq. (4) for upper (0–300 m) and lower (300–

1 000 m) layers to identify the errors growth (Fig. 8). e
(S)
s−rms

is generally lager in the upper layer than in the lower layer. For

the upper layer, without the Argo data assimilation, the e
(S)
s−rms is

near 0.50 for the whole prediction period. With the Argo data

assimilation, the e
(S)
s−rms is 0.17 for 24 h forecast, and 0.22 for 168

h forecast, much less than 50% of that without Argo data assim-

ilation. For the lower layer, without the Argo data assimilation,

the e
(S)
s−rms is near 0.15 for the whole prediction period. With the

Argo data assimilation, the e
(S)
s−rms is 0.07 and 0.09 for 72 h and

Fig.8. Temporal variation of salinity S-RMSEs for the layers of 0–300 m (a) and 300–1 000 m (b) in 24 h forecast with and without

the Argo data assimilation.
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longer forecast, and the e
(S)
s−rms reduces around 40% relative to

that without the Argo data assimilation. So, with the Argo data

assimilation, the accuracy of the salinity forecasts is significant-

ly improved.

4.4 Vertical cross-sections

A set of CTD temperature measurements (not being used

in the data assimilation) are used for the evaluation. They were

conducted on 23 February 2008 along 129◦E south of Japan. Fig-

ure 9a gives the distribution of the observational temperatures

for the 129◦E cross-section, while Figs. 9b and c show the re-

sults of 24 h forecast for both experiments. The temperature

field with the Argo data assimilation is closer to the observa-

tions than that without the Argo data assimilation.

The section along 38.5◦E east of Japan during 8 May 2008

is used for illustration. Figure 10a gives the distribution of ob-

servational salinity, while Figs. 10b and c show results of 24 h

forecast for both experiments. Just as the temperature section,

salinity field with Argo data assimilation is closer to observa-

tions than that without Argo data assimilation.

Fig.9. Vertical temperature cross-section along 129◦E south of Japan on 23 February 2008. a. Observation (dark dots: stations),

b. 24 h forecast without assimilating Argo profiles, and c. 24 h forecast with assimilating Argo profiles.

Fig.10. Vertical salinity cross-section along 38.5◦N east of Japan on 8 May 2008. a. Observation (dark dots: stations), b. 24 h

forecast without assimilating Argo profiles, and c. 24 h forecast with assimilating Argo profiles.

5 Conclusions

A forecast system based on the Princeton ocean model

with generalized coordinate system (POMgcs) and the sequen-

tial multigrid 3DVAR analysis scheme is developed for the west-

ern Pacific marginal seas to investigate the impact of sampling

strategies on the ocean prediction through using two (T , S) pro-

file data sets. The first data set contains both conventional and

Argo profile data (called “WITH−ARGO”) and represents hori-

zontally uniform (relative) sampling. The second data set con-

tains only the conventional profile data (called “NO−ARGO”)

and represents horizontally nonuniform sampling.

Without the Argo data assimilation (i.e., nonuniform sam-

pling), the temperature and salinity forecasts have obvious bi-

ases. Especially in the area of 15◦–35◦N the predicted temper-

ature and salinity are obviously smaller than the observations.

With the Argo data assimilation, these biases are corrected.

Based on the detailed comparison of horizontally averaged root

mean square error (H-RMES) between the two experiments, it is

known that the temperature H-RMSE maximum drops by 24%

and the salinity H-RMSEs in depth shallower than 300 m drop

averagely by 50% if the Argo data are assimilated into the initial

fields, and the accuracy of the salinity forecast is improved more

obviously than the temperature forecast. With the Argo data as-

similation, the temperature or salinity distribution along some

vertical cross sections is nearer to the observations than those

without the Argo data assimilation. It indicates that the assimi-

lation of Argo data plays an important role in the process of con-

structing the initial fields, and it can significantly improve the

temperature and salinity forecasts. It is worthy to noting that al-

though the forecast errors within assimilation depth (shallower

than 1 000 m) can be sharply reduced though assimilating the

Argo data into the initial filed, the errors below 1 000 m depth
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change very small, or even can slightly increase. A further study

is needed to explain such phenomena.
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