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Reconstruction of processes and fields from noisy data is to solve a set of linear algebraic equa-
tions. Three factors affect the accuracy of reconstruction: (a) a large condition number of the
coefficient matrix, (b) high noise- to-signal ratio in the source term, and (c) no a priori knowledge
of noise statistics. To improve reconstruction accuracy, the set of linear algebraic equations is
transformed into a new set with minimum condition number and noise-to-signal ratio using the
rotation matrix. The procedure does not require any knowledge of low-order statistics of noises.
Several examples including highly distorted Lorenz attractor illustrate the benefit of using this

procedure.
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1. Introduction Euclidean norm and

Reconstruction (reproduction from noisy data) of - ~] - ~processes and fields in modern physics, geophysics, 171 - IIQYII' 172 - p'

astrophysics, plasma physics and other disciplinary ( .
1 1 f A). . t 1 . 11 d 1. al b . max smgu ar va ues 0

SCIences IS 0 so ve an 1 -pose mear ge ralC 173 = . . ,
equation, mm( smgular values of A)

be the noise-to-signal ratio, dimension ratio and
Aa = QY, (1) condition number of the matrix A. For a particular

system, 172 is given.
where a is the estimated state vector (L- Usually, 171 and 173 are large (called "imper-
dimensional) for the exact state vector a; A is a fect"),
P x L coefficient matrix, Q is a P x P square matrix
(P> L); Y is a P-dimensional observation vector, 171 ~ 1, 173» 1,

consisting of a signal Y and a noise Y', which makes (1) difficult to solve. Besides, the low-
order noise statistics and the norm of the exact

- ,Y = Y + Y . state vector (ilall) are unknown. Reduction of 171
and 173 (i.e. reduction of imperfection) without

The two known matrices A and Q are determined a priori knowledge of noise statistics and Iiall is an
by the physical process or field. Let II.. .11 be the important step toward solving (1) accurately. If the
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matrix A has no noise, the accuracy in determining where IIAII is the spherical norm of the matrix A.
a is given by [Tikhonov et ai" 1990], Substitution of (5) into (6) leads to

11'"\1112 = l~!!l: < 'rJ2'rJ2 (2) J - IIAI1 2 -2 [1+ 2(SQY*SQY') -2], IIal12 - ,,1,,3. 1- -173 IISQYI12+171 -+ max,

Traditional regularization methods (e.g. (7)
[Tikhonov & Arsenin, 1979; Bennett, 1992]) trans- .. . .,
I'

(1) . t t .th t bl 1 t . t 11 WhICh IS the procedure to obtain mmlmum values of
lorm m 0 a sys em WI s a e so u Ion 0 sma - -. ,2tb t . . Q d Y H th 1 d t 171 and 173 wIthout knowmg Iiall . Here, the symbol
per ur a Ions m an . owever, ey ea 0 "*,,. d. al . .
b.ased t .mat. A I' d d t t m Icates the sc ar product m the EuclIdean

1 es 1 Ions a lor a an 0 no guaran ee 1;1 h. . Y ' hspace. ror a w Ite noIse, we ave
a -+ a as 171 -+ o. (SQY*SQY') -+ 0 as P -+ 00 .

Further~ore, th~ t:aditional regularization meth- The maximization of 11 using (7) is then equivalent
ods requIre a pnon knowledge of Iiall . , to the minimization (4). Note that this minimiza-

To overcome these weaknesses, a new rotation tion is not necessarily the same as
method for 172 < 1 is developed in this study to -2' -2 .
change (1) into a new system with possibly min- 173 -+ mm, 171 -+ mm .
imum coefficient matrix and noise-to-signal ratio
without a priori knowledge of noise statistics, 3. Accuracy

The accuracy of the reconstruction (1) is estimated
2. Rotation Method by (2) with the given norm of the exact state vec-
When the dimension ratio 172« 1.0) is given, large tor Iiali. Sin~e Iiall is not a priori k~own, ~~ e~ect.ive
values of 171 and 173 (called "imperfect" data), norm Ilaeffllis defined by the followmg Ill1mmlzatlon

prQcess,
171 ~ 1, 173» 1 ,

I IIal12 I . . 12 = - 1 -+ mm 8
make (1) dIfficult to solve. Note that the low-order IIaeffl12 ' ( )

noise statistics and the norm of the exact solution Simple analysis on (4)-(8) shows that two norms
(1Ialj) are us~ally u~known. ~educ~ion of 171 ~nd Ila:ffll and Ila:lrll (generally Ila:ffll ~ Ila:lrll) exist
1]3 (I.e. reduction of ImperfectIon) wIthout knowmg that the functionals 1 and J reach their maxim mnois~ statistics and Iiall is an important step toward values, respectively, a~d 2 u

solvmg (1).
Nonsingular orthogonal transformation is con- II all ~ Ila:ffll, Ila:lrll ~ 211all.

duct~d throu?h multiplication of (1) by a plane If Iiall -+ Ila:ffll then 11,112 -+ o. When Iiall -+ Ila:lrll
rotatIon matrIX S from the left, we have

SAa= SQY, (3) 11,112 -+
[1- ~ ] 2 .

which changes the coefficient matrix and the source Iiall
term from (A, QY) to (SA, SQY) and provides Therefore, replacement of Iiall by Ila:lrll will not
the opportunity to minimize the imperfection of the deteriorate the accuracy of the solution of (1).
new system (3), A similar replacement of Iiall is also suggested

-2(1 -2). (4) for colored noises and deterministic perturbations.
173 + 171 -+ mm , However, the reconstruction accuracy might dete-

-*

where riorate because the scalar product (SQY SQY')
- - IISQY'II - - IISQYII does not tend to 0 for P -+ 00.

171 = -iiSQYi!' 173 = --w-. (5) . .
4. ApplIcatIons

Minimization (4) is obtained by the following max-
imization [Strakov, 1991; Ivanov et ai" 2001] The new tra~sformed system (3) can be solved by

usual algebraic methods such as the Gauss method.
1 = IIAI12 _ll~9~ -+ max (6) For simplicity, we restrict the reconstruction to data

1 IIal12 ' distorted by the white noise only.
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4.1. Example 1: Linear scalar 0.45 )/11

process ",,' .'

Consider a temporally varying linear scalar process, 0.35 ..",,'
",-

Y(t) = a + {3t, t E [0, T] ,.-"",
0.25 ,,"

perturbed by a white noise Y'(t). The noisy data ",.'"
are represented by ,~'

0.15 I'

Y(t) = Y(t) + Y'(t). 1,1

Ie
The Fourier series 0.05 ,III

38' '1.

X( ) ~ [ . (i7rt) (i7rt )] 0.0 1.0 2.0 3.0
t = ao + f=i' ai sm T + ai+19 cos T ' (a)

(9) 2.0 X

is used to recover the signal Y(t). The reconstruc- - -:-::::::11 0 ,-, 3t . . t d . th . d t . ","-..
Ion IS 0 etermme e estImate s ate vector /,::::,;/' -'-:::::.- """ """ "/" "

A - ( ) L - /;;-:§i::,;;;:i-=-==:;"
a- a1,a2,...,aL, -38, 00 -'//'~-'-~--'/,'- . ,,;.' -~:,'

such that the temporally integrated difference be-
tween X(t) and Y(t) reaches the minimum value, -1.0

J = (T [X(t) - Y(t)]2dt -t min. (10) -2.0 f
Jo 0.0 1.0 2.0 3.0

(b)
Substitution of (9) into (10) leads to Eq. (1) of a F ' 1 R t t . f th d. . al 1.. . . . 19.. econs ruc Ion 0 e one- lmenslon mear pro-
WIth a very hIgh condItIon number for the coeffi- cess: (a) upper panel: reconstruction accuracy, and (b) lower
cient matrix. panel: comparison between Y(t) (solid line) and recon-

The noisy dataset Y(t) is generated in such a structed processes X(t) (dashed curves) with 1, 2, 3, 4 and 5
way that the sensitivity of reconstruction quality to corresponding to 1/1 = 0.6, 1.2, 1.8, 2.4, and 3.0.

(171, 1}2) can be investigated: 60-100 points (varying
P and time step ~t) uniformly distributed into the ~

interval [0, T] are used to g~t Y(t), and white noises 171 = 0 [Fig~l(a)]. The reconstructed process X(t)
Y'(t) with 171 ranging from 0 to 3 are added to Y(t). is closer to Y(t) as 171 reduces [Fig. 1(b)].

Here, T /60 ~ ~t ~ T /100.
The three nondimensional parameters 171, 172 4.2. Example 2: Two dimensional

and 173 vary within the following ranges, field

0 ::;: 171 ::;: 3; 0.4::;: 172 ::;: 0.6; 173 ~ 106. (11) Eremeev et at. [1992] reconstructed the Black Sea
summer climatological surface temperature field

For such a high condition number, Eq. (1) cannot (Tclim) using the traditional regularization method
be solved directly. The rotation matrix S is calcu- [Bennett, 1992]. The nondimensional parameters
lated using the maximization procedure depicted in (171, 172, 173) vary within the following intervals:
Sec. 2. The condition number of the coefficient ma-
trix of the new system (3) reduces to 0 ::;: 171 ::;: 4, 0.025::;: 172 ::;: 0.67, (12)

- 3 x 104 ::;: 173 ::;: 3 X 107 .
173 ~ 1.5.

For large values of (171, 173), the accuracy of the tra-

The reconstructed accuracy II'YII reduces with the ditional regularization methods is not very good.
decrease of 171 (noise-to-signal ratio before the rota- Consider that the climatological surface tem-
tion) monotonically from 4.0 for 171 = 3.0 to 0 for perature field Tclim(X, y) is perturbed by white
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Fig. 2. Dependence of the accuracy 11'111 on 771 with different 772-values for the two-dimensional temperature field in the Black

Sea. Note that 11'111 is usually smaller than 771.

noises T'(x, y). The noisy data are represented by number of the coefficient matrix of the new system

IT' ( ) '7' ( ) T '( ) ( ) (3) reduces to.Ldata x, Y = .Lclim X, Y + x, y, x, YEn,

where n is the Black Sea. The generalized Fourier 1]3 ~ 5.0 .
series, The reconstructed accuracy 11,11 of our recon-

T( ) - ~ .'I/J.() (13) struction scheme is up bounded by 171 (noise-to-
x, y - ~ a~ ~ x, y , signal ratio before the rotation)

~=1

is used to recover the signal Tclim(X, y), Here, the 11,11 ~ 171 ,
basis functions {'l/Ji(X, y), i = 1,2".., 30} are the .,
eigenfuctions of the plane von Neumann operator an~ usually decreases wIth decreasmg 171. and 172
with homogeneous boundary conditions for the do- (FIg. 2). Note that the approach does not Improve
main n [Eremeev et al., 1992]. The reconstruction the reco~struct~on accu~acy for 172 ~ 0.045. For
is to determine the estimated state vector large nolse-to-slgnal ratIo (171 > 3.0), the recon-

A struction accuracy improves when the dimension
a = (aI, a2,"', aL), L = 30, ratio 172 increases from 0.3 to 0.67.

such that the spatially integrated difference between
Tdata (x, y) and T(x, y) reaches the minimum value, 4 3 E l 3 L Att t.. xamp e : orenz roc or
J = J i [T(x, y) - Tdata(X, y)]2dx dy ~ min. (14) Lorenz system, a truncated three-component atmo-

n spheric convection model, is represented by a three-
Substitution of (13) into (14) leads to Eq. (1) of a dimensional vector
with a very high condition number for the coeffi-
cient matrix [see (12)]. [ Xl ]After applying the rotation matrix S with the X == X2 ,

maximization procedure [Eq. (7)], the condition X3
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which satisfies the following nonlinear ordinary An iterative algorithm [Eykhoff, 1973] and the

differential equation with the initial condition initial condition~ = F(X, a), X(to) = Xo, (15) X(to) = Y(to), (20)

. are used. Let the parameter vector be estimated by
where the vector functIonal F and state parameter A(n-l) & h ( 1) h . . I . f ht d fi d b [L 1963] a lor ten - t IteratIon. ntegratlon 0 t e
vec or are e ne y orenz, Lorenz system

[ -alXl + alX2 ] [ al ] dX F = -XlX2 + a2Xl - X2 , a == a2 . ~ = F(X, a) (21)

XlX2 - a3X3 a3

(16) 30.0

The initial condition (Xo) and the parameter vector
(a) affect the characteristics of the Lorenz system. 20.0
Chu [1999] showed that boundary condition was
represented by the model parameter. We integrate
Eq. (15) with the time step /It = 0.01 and 10.0

[ 0.1] (1°]28 0.0 Xo = ~:~ ' a == ~' (17)

3 -10.0

to obtain the famous butterfly pattern for the track
in the phase space (Xl, X2) [Fig. 3(a)] and unstable -20.0
oscillation for temporal variation of X 3 [Fig. 3(b)].

The observation vector of the Lorenz sys-
tem [Y(t)] contains signal [Y(t)] and white noises -30.0

[Y'(t)], Y(t) = ~(t) + Y'(t) (a)

with 111 = 0.6. The butterfly pattern is totally de- 50.
stroyed in the phase space (YI, Y2) [Fig. 4(a)]. The
time series of the third component (Y3) shows a
stochastic process [Fig. 4(b)]. 40The signal ~(t) is recovered from the noisy .

data [Yl(t), Y2(t), Y3(t)] (Fig. 4) through accurate
estimation of the parameter vector a and effective 30.
reduction of noises. Estimation of the state vector

a=(al,...,aL), L=3,
is conducted using the minimization of the tempo- 20.

rally integrated difference between X(t) and Y(t),

J = i T [X(t) - Y(t)]*[X(t) - Y(t)]dt -t min. 10.

to
(18)Different from Example 2, there is no explicit re- 0.0 t

I t . h. b t X(t) d Th ... t . 0.0 5.0 10.0 15.0 20.0 25.0 30.0
a Ions lp e ween an a. e mmlmlza Ion (b)

(18) becomes Fig. 3. Lorenz attractor without white noise: (a) butter-
!!.:!- = 0. (19) fly pattern of track in (Xl, X2) phase space, (b) time series

oaj of X3.
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Fig. 4. Lorenz attract or distorted by white noise with 171 = Fig. 5. Reconstructed Lorenz attract or from the "noisy
0.6: (a) noisy track in (Y1, Y2) phase space with no butterfly data" with 171 = 0.6 us~g t.!:e rotation method: (a) butter-
pattern, (b) time series of Y 3. flY.2.attern of track in (Y 1, Y 2) phase space, (b) time series

ofY3.

gives the state vector x(n-l){t) for the (n - l)th is selected such that Eq. (19) is satisfied, this leads

iteration. If the estimated parameter vector a(n-l) to

has an increment Aa, the state vector has a corre- i T
sponding increment, (ut)(n-l)u(n-l) * Aadt

to
Ax(n-l){t) = u(n-l) Aa, (22) = i T (ut)(n-l) * (y - x(n-l»)dt. (23)

to

where U is the sensibility matrix defined by Uij = The temporally integrated difference between Y{t)

8Xi/8aj; i, j = 1, 2, 3. When the increment Aa and x(n-l){t) + u(n-l) Aa, reaches the minimum
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[see (18)]. Here, the matrix Ut is the transpose of (SQY*SQY') -+ 0 determines the effectiveness of
the matrix U. The estimated parameter vector at noise reduction. Besides, it can be easily general-
the nth iteration is taken as ized on stochastic signals if there is no correlation

a(n) = a(n-l) + Lla. (24) between Y and Y'.

We solve Eq. (21) with a(n) and get the state vector
at the nth iteration, X(n)(t). Acknowledgments
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