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First-passage time for stability analysis of the Kaldor model
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Abstract

Every economic model should include an estimate of its stability and predictability. A new measure, the first passage

time (FPT) which is defined as the time period when the model error first exceeds a pre-determined criterion (i.e., the

tolerance level), is proposed here to estimate the model predictability. A theoretical framework is developed to deter-

mine the mean and variance of FPT. The classical Kaldor model is taken as an example to show the robustness of using

FPT as a quantitative measure for identifying the model stability.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

One of the most interesting theories of business cycles in the Keynesian vein is that expounded in a pioneering article

by Kaldor [1]. It is distinguishable from most other contemporary treatments since it utilizes non-linear functions,

which produce endogenous cycles, rather than the linear multiplier-accelerator kind which rely largely on exogenous

factors to maintain regular cycles.

The savings and investment functions in the income-expenditure theory of Keynes are linear. Kaldor [1] proposed

that the treatment of savings and investment as linear curves simply does not correspond to empirical reality. Let (Y,K)

denote gross product and capital stock. The investment function I(Y,K) and savings function S(Y,K) are increasing

functions with respect to Y. Over the savings and investment functions, Kaldor superimposed Keynes�s multiplier the-

ory, namely, that gross product changes to clear the goods market.

Chang and Smyth [2] and Varian [3] translated Kaldor�s trade cycle model into more rigorous context: the former

into a limit cycle and the latter into catastrophe theory. Output, as we saw via the theory of the multiplier, responds to

the difference between savings and investment. If there is excess goods demand (which translates to saying that invest-

ment exceeds savings, I > S), then gross product rises (dY/dt > 0), whereas if there is excess goods supply (which trans-

lates to savings exceeding investment, I < S), then Y falls. The Kaldor system is represented by
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dK
dt

¼ I ; ð1bÞ
where l is the adjustment coefficient in the goods market.

It is widely recognized that the uncertainty can be traced back to three factors: (a) measurement errors, (b) model

errors such as uncertain model parameters, and (c) chaotic dynamics. Measurement errors cause uncertainty in initial

conditions. Discretization causes truncation errors. The chaotic dynamics may trigger a subsequent amplification of

small errors through a complex response.

Traditionally, the small amplitude stability analysis (linear error dynamics) is used to study the model stability. This

method is divided into two steps. First step is to find equilibrium states of the dynamic system. The second step is to

investigate temporal evolution of perturbations relative to the equilibrium states. It is well known that comparative sta-

tic analysis is only valid if there is a tendency of the variables towards the new equilibrium. If such movement does not

take place, the comparative static exercises do not really contribute to the knowledge of the evolution of the economic

systems [9]. In modeling the endogenous business cycles, the macroeconomic equilibrium is never reached, but oscilla-

tory motion is usually found around it. Therefore, it is more appropriate to examine the comparative dynamics of the

systems (1a) and (1b), i.e., to investigate the whole change over time caused by a change in initial conditions, exogenous

parameters or reaction coefficients [4]. In the context of business cycle theory, the change of amplitude of business cycle

is caused by the changes in the parameters and initial conditions.

A question arises: how long is the Kaldor model (1) valid since being integrated from its initial state? This has great

practical significance. For example, if the model validity time shorter than the business cycle, the model does not have

any capability to predict the business cycle. In this paper, probabilistic stability analysis is proposed to investigate the

model valid period. This method is on the base of the first-passage time (FPT) for model prediction.
2. FPT for prediction

Let an N-dimensional vector, x(t) = [x(1)(t), x(2)(t), . . .,x(N)(t)] represent a set of economic variables governed by
dx

dt
¼ fðx; tÞ; ð2Þ
which is the extension of (1a) and (1b). Here f is a functional. Individual economic prediction is to find the solution of

(2) with an initial condition
xðt0Þ ¼ x0. ð3Þ
Uncertainty in economic models leads to the addition of stochastic forcing. For simplicity, a stochastic forcing (f 0) is

assumed to be white multiplicative or additive noise, and (2) becomes
dx̂

dt
¼ fðx̂; tÞ þ f 0ðx̂; tÞ; f 0ðx̂; tÞ ¼ kðx̂; tÞ gðtÞ; ð4Þ
where k(x,t) and g(t) are the forcing covariance matrix {kij} (dimension of N · N) and the vector delta-correlated pro-

cess (dimension of N), respectively.

Let x̂ðtÞ be the reference solution which satisfies (3) with the initial condition, x̂ðt0Þ ¼ x0. The model error z is deter-

mined as
zðtÞ ¼ x̂ðtÞ � x0ðtÞ; ð5Þ
where x 0(t) is one of individual prediction. Two vectors x̂ðtÞ and x 0(t) are considered as reference and prediction points

in the N-dimensional phase space.

To quantify FPT, we first define two model error limits. First, the forecast error cannot be less than a minimum scale

d, which depends on the intrinsic noises existing in the model. Second, the forecast error cannot be more than a max-

imum scale (tolerance level)e. The prediction is valid if the reference point x̂ðtÞ is situated inside the ellipsoid (Se, called

tolerance ellipsoid) with center at x 0(t) and size e. When x̂ðtÞ coincides with x 0(t), the model has perfect prediction. The

prediction is invalid if the reference point x̂ðtÞ touches the boundary of the tolerance ellipsoid at the first time from the



Fig. 1. Phase space trajectories of model prediction y (solid curve) and reality x (dashed curve) and error ellipsoid Se(t) centered at y.

The positions of reality and prediction trajectories at time instance are denoted by ‘‘*’’ and ‘‘s’’ respectively. A valid prediction is

represented by a time period (t � t0) at which the error first goes out of the ellipsoid Se(t).
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initial state that is FPT for prediction (Fig. 1). FPT is a random variable when the model has stochastic forcing or initial

condition has random error. Its statistics such as the probability density function, mean and variance can represent how

long the model can predict. The FPT, s = t � t0, depends on the initial model error, z0 � z(t0), tolerance level e, and
model parameters. The longer the FPT, the more stable of the economic model is.
3. Backward Fokker–Planck equation

The conditional probability density function (PDF) of FPT with a given initial error,P[(t � t0)jz0], satisfies the back-
ward Fokker–Planck equation [5,6]
oP
ot

�
XN
i¼1

f 0
i �

dx̂i
dt

� �
oP
oz0i

� 1

2

XN
i¼1

XN
j¼1

XN
l¼1

kilklj
o2P

oz0i oz
0
j

¼ 0; ð6Þ
where the coefficients kij are the components of the forcing covariance matrix j(x, t) and (z01; z
0
2; . . . z

0
N ) are the compo-

nents of the initial error z0. Integration of PDF over t leads to
Z 1

t0

P ½ðt � t0Þjz0�dt ¼ 1. ð7Þ
The kth FPT moment (k = 1, 2, . . .) is calculated by
skðz0Þ ¼ k
Z 1

t0

P ½ðt � t0Þjz0� t � t0ð Þk�1
dt; k ¼ 1; . . . ;1. ð8Þ
If the initial error z0 reaches the tolerance level, the model loses prediction capability initially (i.e., FPT is zero)
P ½ðt � t0Þjz0� ¼ 0 at Jðz0Þ ¼ e2; ð9aÞ
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which is the absorbing type boundary condition. Here J(z0) denotes the norm of z0. If the initial error reaches the noise

level the boundary condition becomes [6]
oP ½ðt � t0Þjz0�
ozðjÞ0

¼ 0 at Jðz0Þ ¼ d2; ð9bÞ
which is the reflecting boundary conditions. Here, n is the noise level. Usually,
d � e.
Mean, variance, skewness, and kurtosis of the FPT are calculated from the first four moments
hsi ¼ s1; ð10aÞ

hds2i ¼ s2 � s21; ð10bÞ

hds3i ¼ s3 � 3s2s1 þ 2s31; ð10cÞ

hds4i ¼ s4 � 4s3s1 þ 6s2s
2
1 � 3s41; ð10dÞ
where the bracket denotes the ensemble average over realizations generated by stochastic forcing.
4. Kaldor model

4.1. Average method

The Kaldor model (1) can be written by
d

dt

Y

K

� �
¼ A

Y

K

� �
þ

f1ðY ;KÞ
f2ðY ;KÞ

� �
; ð11Þ
where
A ¼
a11 a12
a21 a22

� �
¼

lðIY � SY Þ lðIK � SKÞ
IY IK

� �
ðY � ;K�Þ

ð12Þ
is the Jacobian matrix evaluated at the equilibrium (Y*,K*) = (0,0), and f1 and f2 are nonlinear terms. Here, the sub-

scripts denote the partial differentiation; �IK is the depreciation coefficient; IY is the coefficient for reinvested profits.

The Jacobian matrix A has a determinant:
jAj ¼ lðIY � SY ÞIK � lðIK � SKÞIY ¼ lðSKIY � IKSY Þ; ð13Þ
where, since IK < 0 and SK, SY, IY > 0 then jAj > 0, thus we have regular (non-saddle point) dynamics.

Following Chiarella�s [7] approach of using the polar coordinates, Y ¼ r cos h; K ¼ r sin h, the Kaldor model is

transformed into
dr
dt

¼ r½a11cos2hþ a22sin
2hþ ða12 þ a21Þ cos h sin h� þ g1ðr; hÞ cos hþ g2ðr; hÞ sin h; ð14aÞ

dh
dt

¼ a21cos2h� a12sin
2hþ ða22 � a11Þ sin h cos hþ

½g2ðr; hÞ cos h� g1ðr; hÞ sin h�
r

; ð14bÞ
where
giðr; hÞ ¼ fiðr cos h; r sin hÞ; i ¼ 1; 2.
The right-hand sides of Eqs. (14a,b) are periodic in h and can be expanded into Fourier series with desired degree of

accuracy. The first term of this expansion is obtained by averaging the right-hand sides of Eqs. (14a) and (14b) with

respect to h on the interval [0,2p]. In this way, the equation for averaged amplitude of the business cycle [7]
dq
dt

¼ TrðAÞ
2

qþ GðqÞ; TrðAÞ ¼ lðIY � SY Þ þ IK > 0; ð15Þ
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where q is the first-order approximation to r and
GðqÞ ¼ 1

2p

Z 2p

0

½g1ðq; hÞ cos hþ g2ðq; hÞ sin h�dh. ð16Þ
The nonlinear term G(q) may have several different forms. Here, we use the profit-capital-accumulation dynamic model

as an example for illustration. Semmler [8] developed an endogenous cycle model of profit and capital accumulation

dynamics on the base of the Kaldor dynamics. The Kaldor nonlinear term G(q) has the following form [9]:
GðqÞ ¼ � l
8
q3. ð17Þ
The coefficients (l, IY, IK, SY) in Eq. (15) are usually difficult to measure. This may lead to the addition of stochastic

forcing to the business cycle model. For simplicity, the stochastic forcing is assumed to be white multiplicative or addi-

tive noise, and Eq. (15) becomes
dq
dt

¼ rqþ GðqÞ þ mðtÞq; r � TrðAÞ
2

; ð18aÞ
where m(t) is a random parameter with zero mean and pulse-type variance,
hmðtÞi ¼ 0; hmðtÞmðt0Þi ¼ q2Dðt � t0Þ; ð18bÞ
where the bracket indicates the ensemble average; q represents the strength of the uncertainty in coefficients in r (such as

in the depreciation coefficient and the coefficient for reinvested profits); and D(t) is a delta function.
4.2. FPT moments

Let q̂ðtÞ be the reference solution which satisfies (18a) with the initial condition, q(t0) = q0. The forecast error Z is

determined as
ZðtÞ ¼ q̂ðtÞ � q0ðtÞ;
where q 0(t) is one of individual prediction corresponded to perturbing initial condition and/or stochastic forcing. The

backward Fokker–Planck Eq. (6) for this case is simplified to
oP
ot

� rZ0 �
l
8
Z3
0

h i oP
oZ0

� 1

2
q2

o
2P

oZ2
0

¼ 0. ð19Þ
We multiply Eq. (19) by (t � t0)
n, integrate with respect to t from t0 to 1, use the condition (7), and obtain the equa-

tions of the nth moment of FPT
q2q2
0

2

d2sn
dZ2

0

þ rZ0 �
l
8
Z3
0

h i dsn
dZ0

¼ �nsn�1; s0 ¼ 1. ð20Þ
Eq. (20) is linear, time-independent, and second-order differential equations with the initial error Z0 as the only inde-

pendent variable. Two boundary conditions for s1 and s2 can be derived from (9a) and (9b)
sk ¼ 0; for jZ0j ¼ e; ð21aÞ
osk
oZ0

¼ 0; for jZ0j ¼ d. ð21bÞ
Analytical solution of (20) with the boundary conditions (21a) and (21b) is
snðz0; n; e; r; q2Þ ¼
2

q2

Z 1

z0

y
�2r

q2 exp
e2l
8q2

y2
� � Z y

n
nsn�1ðxÞx

2r
q2
�2

exp � e2l
8q2

x2
� �

dx
� �

dy; ð22Þ
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where s0 � 1, and
Fig. 2.

param
z0 �
Z0

e
; n � d

e
ð23Þ
are non-dimensional initial error and noise level scaled by the tolerance level e. The moments of FPT depend on two

types of parameters: (a) prediction parameters (z0,n, e), and (b) model parameters (r,q2,l), It is convenient to use the

two lowest order statistics, mean FTP (s1) and the standard deviation of FTP s ¼
ffiffiffiffiffiffiffiffiffiffiffi
hds2i

ph i
, to analyze the stability of

the Kaldor model.
5. Model predictability

The first two moments s1 and s2 can be taken as the stability measure of the dynamic system. The longer the mean

FPT, the more the stable of the system is. The dependence of s1and s2 on the two types of parameters is investigated

separately. The three model parameters are taken as q2 = 0.2, r = 1.0, l = 1.
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Contour plots of s1(z0,n, e) versus (z0,n) for four different values of e (0.1,0.2,1.0, 2.0) using the Kaldor model with given model

eters r = 1.0, q2 = 0.2, l = 1. The contour plot covers the half domain due to z0 P n.
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Fig. 3. Contour plots of s2(z0,n,e) versus (z0,n) for four different values of e (0.1,0.2,1.0,2.0) using the Kaldor model with given model

parameters r = 1.0, q2 = 0.2, l = 1. The contour plot covers the half domain due to z0 P n.
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Figs. 2 and 3 show the contour plots of s1(z0,n, e) and s2(z0,n, e) versus (z0,n) for four different values of e (0.1, 0.2,
1.0, and 2.0). Following features can be obtained: (a) for given values of (z0,n) [i.e., the same location in the contour

plots], both s1 and s2 increase with the tolerance-level e. (b) For a given value of tolerance-level e, both s1 and s2 are
almost independent on the noise level n (contours are almost paralleling to the horizontal axis) when the initial error (z0)

is much larger than the noise level (n). This indicates that the effect of the noise level (n) on s1 and s2 becomes evident

only when the initial error (z0) is close to the noise level (n). (c) For given values of (e,n), both s1 and s2 decrease with
increasing initial error z0.

Figs. 4 and 5 show the curve plots of s1(z0,n, e) and s(z0,n, e) versus z0 for four different values of tolerance level, e
(0.1, 1, 2, and 3) and four different values of random noise n (0.1, 0.2, 0.4, and 0.6). Following features are obtained: (a)

s1 and s decrease with increasing z0, which implies that the higher the initial error, the shorter the mean FPT (or lower

model predictability) and the smaller the s (or lower variability of the model predictability) are; (b) s1 and s decrease

with increasing noise leveln, which implies that the higher the noise level, the lower the FPT and its variability are; and

(c) s1 and s increase with increasing e, which implies that the higher the tolerance level, the longer the FPT (or higher
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model predictability) and the larger the s (or higher variability of the model predictability). For the same values of

model parameters, the standard deviation of FTP is much smaller than the mean FTP. Note that the results presented

in this subsection is for a given values of growth rate (r = 1.0), stochastic forcing (q2 = 0.2), and the Kaldor model

parameter (l = 1) only.
6. Dependence of s1 and s on the Kaldor model parameters

6.1. Dependence on the growth rate r

To investigate the sensitivity of s1 and s to the model parameter r, the other two model parameters are kept

unchanged (q2 = 0.2, l = 1). The model parameter r takes values of 0.25, 0.5, and 1.0. Figs. 6 and 7 show the

curve plots of s1(z0,n,r) and s(z0,n,r) versus z0 for two tolerance levels (e = 0.05,0.25), two noise levels
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(n = 0.1,0.6), and three different values of r (0.25, 0.5, and 1.0). s1 and s decrease with increasing r for all com-

binations of noise level (n = 0.1,0.6) and tolerance level (e = 0.05,0.25). This indicates that increase of Tr(A) [i.e.,

r] destabilizes the Kaldor model (decreasing s1) and decreases the variability of the model predictability (decreas-

ing s); and decrease of Tr(A) stabilizes the Kaldor model (increasing s1) and increases the variability of the model

predictability (increasing s).
6.2. Dependence on the stochastic forcing q2

To investigate the sensitivity of s1 and s to stochastic forcing q2 and the Kaldor model parameter l, the growth rate

is kept unchanged (r = 1). Figs. 8 and 9 show the curve plots of s1 (z0, n, q
2) and s(z0,n,q

2) versus z0 for two adjustment

coefficients (l = 0.01, 10), two noise levels (n = 0.1, 0.6), and three different values of q2 (0.1, 0.25, and 0.5) representing

weak, normal, and strong stochastic forcing. Two regimes are found: (a) s1 and s decrease with increasing q2 for large
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noise level (n = 0.6), (b) s1 and s increase with increasing q2 for small noise level (n = 0.1) and (c) both relationships

(increase and decrease of s1 and s with increasing q2) are independent of l.
7. Stabilizing and destabilizing regimes

This indicates the existence of stabilizing and destabilizing regimes of the dynamical system depending on stochastic

forcing. For a small noise level, the stochastic forcing stabilizes the dynamical system and increase the mean FPT. For a

large noise level, the stochastic forcing destabilizes the dynamical system and decreases the mean FPT. The two regimes
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Fig. 7. Dependence of s(z0,n,q
2) on the initial condition error z0 for three different values of r (0.25,0.5,1.0) and given values of q2

(=0.2) and l(=1) using the Kaldor model with two different values of e (0.05,0.25) and two different values of noise level n (0.1,0.6).

Note that the standard deviation of FTP is not sensitive to r.
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can be identified analytically for small tolerance level (e ! 0). The initial error z0 should also be small (z0 � e). The solu-
tions (22) becomes
Lim
e!0

s1ðz0; n; e; r; q2Þ ¼
1

r� q2=2
ln

1

z0

� �
� q2

2r� q2
n

2r
q2
�1 1

z0

� �2r
q2
�1

� 1

" #( )
. ð24Þ
The Lyapunov exponent is identified as (r� q2=2) for dynamical system (16) [4]. For a small noise level (n� 1), the

second term in the bracket of the right-hand of (24)
R ¼ � q2

2r� q2
n

2r
q2
�1 1

z0

� �2r
q2
�1

� 1

" #
; ð25Þ
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is negligible. The solution (24) becomes
Lim
e!0

s1ðz0; n; e; r; q2Þ ¼
1

r� q2=2
ln

1

z0

� �
; ð26Þ
which shows that the stochastic forcing (q 5 0), reduces the Lyapunov exponent (r � q2/2), stabilizes the

dynamical system (15), and in turn increases the mean FPT. On the other hand, the initial error z0 reduces the mean

FPT.

For a large noise level n, the second term in the bracket of the right-hand of (24) is not negligible. For a positive

Lyapunov exponent, 2r� q2 > 0, this term is always negative [see (25)]. The absolute value of R increases with increas-

ing q2 (remember that n < z0 < 1). Thus, the term (R) destabilizes the stochastic Kaldor system (15), and reduces the

mean FPT.
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Fig. 9. Dependence of s(z0,n,q
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8. Conclusions

(1) The Kaldor model stability and predictability are not only affected by the model parameters such as the depre-

ciation coefficient, the coefficient for reinvested profits [i.e., Tr(A)], the adjustment, but also by the prediction

parameters (such as initial error, tolerance level, and noise level. The capability of the FPT approach in evalu-

ating model stability and predictability is demonstrated using the nonlinear Kaldor model.

(2) Uncertainty in economic models is caused by uncertain measurements, computational accuracy, and uncertain

model parameters. This motivates to the inclusion of stochastic forcing in economic models such as the Kaldor

model. The backward Fokker–Planck equation can be used for evaluation of economic model stability and pre-

dictability through the FPT calculation.

(3) A theoretical framework was developed in this study to determine various FPT moments ðskÞ, which satisfy time-

independent second-order linear differential equations with given boundary conditions. This is a well-posed prob-

lem and the solutions are easily obtained.
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(4) For the Kaldor model, the following features are detected from the FPT calculation: (a) decrease of s1 and s with

increasing initial condition error (or with increasing random noise), (b) slow increase of s1 and s with increasing

tolerance level e, (c) For the same values of model parameters, the standard deviation of FTP is much smaller

than the mean FTP, which indicates that the first moment is a reliable indicator of the model stability.

(5) Both stabilizing and destabilizing regimes are found in the Kaldor model depending on stochastic forcing. For a

small noise level, the stochastic forcing stabilizes the Kaldor system and increases the mean FPT. For a large

noise level, the stochastic forcing destabilizes the Kaldor system and decreases the mean FPT.

(6) Model stability depends on Tr(A). Increase of Tr(A) destabilizes the Kaldor model (decreasing s1) and decrease of

Tr(A) stabilizes the Kaldor model (increasing s1). The model stability does not depend on the Kaldor model

parameter l.
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