

DEPTH OF BURIAL OF UXO IN ESTUARY ENVIRONMENTS MR23-C1-3855

Dr. Magued Iskander (PI)

New York University Dept Civil & Urban Engineering Specialist in Project Management, Geotechnical Engineering

Dr. Stephan Bless (Co-Pl)

New York University Dept Civil & Urban Engineering Specialist in Penetration Mechanics

Dr. Mehdi Omidvar (Co-PI)

Manhattan College Dept Civil Engineering Specialist in Experimental, Numerical, and Theoretical Soil Mechanics

Dr. Peter Chu (Co-Pl)

Navel Postgraduate School, Dept of Oceanography Specialist in Underwater Mechanics

Dr. Tarek Abdoun (Senior Personnel)

New York University Abu Dhabi and Rensselaer Polytechnic Institute Providing Expertise in Geotechnical Centrifuge Operation and Modeling

Technical Background

To develop methodology for predicting the Depth of Burial (DOB) of underwater UXOs using site specific geotechnical, hydrodynamic, and munition data.

- Soil: at NYU
- Water: at NPS

MR23-C1-3855 combines water + Soil to develop a user-friendly methodology factoring in the effect of interfaces and projectile AoA and Obliquity

New Facilities Have Been Put in Place

Gravity-aligned impact range

Impact range at MC

Transparent soils

Horizontal displacements

Displacement vectors

Two-channel Photon Doppler Velocimeter

Direct measurement of penetration resistance.

Precise target preparation techniques

Sand pluviator for preparing loose, dense samples under dry, wet conditions.

DOF Code Upgrades

UnUXO modifications

- Forces are now described by constant drag and lift coefficients.
- We will take out gravity and replace the drag and lift coefficients (*f*_{drag}, *f*_{lift}) with GeoPoncelet expressions that are derived from CPT measurements.

We can likely reduce number of degrees of freedom.

$$m\frac{d\mathbf{V}}{dt} = \left(\rho\Pi - m\right)g\mathbf{k} + f_{drag}\mathbf{e}_d + f_{lift}\mathbf{e}_l$$

$$\mathbf{I} \bullet \frac{d\mathbf{\Omega}}{dt} = \mathbf{r}_{v} \times \mathbf{f}_{b} + \mathbf{r}_{f} \times \left(\mathbf{f}_{drag} + \mathbf{f}_{lift}\right) + \mathbf{M}_{r}$$

Equations describing translation and rotation

Experiments in Soil and Water

Measure drag and lift coefficients.

- Drag comes from deceleration driven by penetration resistance.
- Lift results from transverse forces when AoA is not zero, which causes lateral motion and rotation. Experiments will be in water, sediment, and transparent soil

Refine Model

