Chapter 6. 2-D and 3-D Plotting and Animation
Outline

• 6.1 Introduction
• 6.2 Anatomy of a 2-D (x−y) Plot in MATLAB
• 6.3 Line Specifications
• 6.4 Accessing and Modifying Properties of the Graphics Objects
• 6.5 Text Strings
• 6.6 Overlays, Legends, Subplots, and Multiple Figures
• 6.7 Special Types of 2-D Plots
• 6.8 3-D Plots
• 6.9 Changing Color Palette
• 6.10 Easy-to-Use Function Plots
• 6.11 Plot Editing
• 6.12 Interactive Plotting and Animation
• 6.13 Requirements to Engineering Plots
Plot’s Anatomy

```
figure
axis
line
title
```

```
ezplot('sin(x)')
```

Default line color: [0.00,0.45,0.74]
(before R2014b used to be [0,0,1])

```
xlabel
xticks
xticklabels
```

Brush/Select Data
Data Tips
Pan
Zoom In
Zoom Out
Restore View

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the Publisher and/or Author. Contact the American Institute of Aeronautics and Astronautics, Professional Development Programs, 12700 Sunrise Valley Drive, Suite 200, Reston, VA 20191-5807.
Plotting Functions Difference

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>plot(X,Y,…)</code></td>
<td>creates a 2-D plot of data in (Y) versus the corresponding values in (X) (this function also creates the figure, axes and line objects)</td>
</tr>
<tr>
<td><code>line(X,Y,…)</code></td>
<td>adds a line defined by vectors (X) and (Y) (or multiple lines if either (X) and (Y), or both are matrices) to the current axes. Unlike the <code>plot</code> function, <code>line</code> does not delete other graphics objects or reset axes properties</td>
</tr>
<tr>
<td><code>ezplot(f,…)</code></td>
<td>plots symbolic expression, equation, or function (f(x)) or (f(x, y)). The default range for (x) or both (x) and (y) is ([-2\pi; 2\pi])</td>
</tr>
<tr>
<td><code>ezplot(funx,funy,…)</code></td>
<td>plots the parametrically defined planar curve (x = \text{fun}_x(t)) and (y = \text{fun}_y(t)) over the default range (0 \leq t \leq 2\pi) (similar function: <code>ezplot3</code>)</td>
</tr>
<tr>
<td><code>fplot(f,…)</code></td>
<td>plots the curve defined by the function (y = f(x)) over the default interval ([-5; 5]) for (x) (similar functions: <code>fsurf</code>, introduced in R2016a)</td>
</tr>
<tr>
<td><code>fplot(funx,funy,…)</code></td>
<td>plots the curve defined parametrically, as (x = f_x(t)) and (y = f_y(t)), over the default interval ([-5; 5]) for (x) (similar functions: <code>fplot3</code> and <code>fsurf</code>, both introduced in R2016a)</td>
</tr>
<tr>
<td><code>fimplicit(f,…)</code></td>
<td>plots the implicit function (f(x,y) = 0) defined by a function handle (f) over the default interval ([-5; 5]) for (x) and (y) (introduced in R2016b) (similar functions <code>fcontour</code> and <code>fimplicit3</code>, introduced in R2016a and R2016b, respectively)</td>
</tr>
</tbody>
</table>
Plotting Basics

```
x=0:pi/20:pi;
y=sin(x);
plot(x,y)
```

```
x=linspace(0,pi,20);
y=sin(x);
plot(x,y)
```

```
plot(0:pi/20:pi,sin(0:pi/20:pi))
line(0:pi/20:pi,sin(0:pi/20:pi))
fplot(@(x)sin(x),[0,pi])
```
ezplot\left('\sin(x)+\sin(y)-\sin(x*y)\right)\)
grid, axis equal

\textbf{ezplot}, \textbf{fplot} & \textbf{fimplicit}\\

fimplicit\left(\leftarrow(x,y)\sin(x)+\sin(y)-\sin(x*y),...\right)
2\pi*[\leftarrow -1 ~1 ~-1 ~1])
grid, axis equal

fplot\left(\leftarrow(t)\sin(2\times t),\leftarrow(t)\sin(2.5\times t))\right)
grid, axis equal

Try this code to change the x-axis tick labels

\begin{itemize}
\item f(x) f(x,y)=0 x(t), y(t)
ax=gca;
S=sym(ax.XLim(1):pi/2:ax.XLim(2));
ax.XTick=double(S);
ax.XTickLabel=arrayfun(@texlabel,S,'UniformOutput',false);
\end{itemize}
Enhancing Plot Readability

axis([xmin xmax ymin ymax]) – sets the minimum and maximum limits of the x- and y-axes. (If you want to specify just one limit but want MATLAB to autoscale the other, use *Inf* or \(-Inf\) for autoscaled limits, or use `xlim` and `ylim` functions.) You may also use one of the following:

- **axis square** – selects the axes’ limits so that the plot will be square
- **axis equal** – assures that x-and y-axes have same tick mark spacing
- **axis tight** – sets the limits to the range of the data
- **axis vis3d** – freezes aspect ratio properties to enable rotation of 3-D objects and overrides stretch-to-fill
- **axis manual** – freezes the scaling at the current limits
- **axis auto** – returns axis scaling to its default autoscaling mode
- **axis ij** – reverses a direction of the y-axis with the values increasing top to bottom

v=axis – returns the current axis scaling in the vector *v* (so that you might use the same scaling for another plot by calling `axis(v)`)

axis off – turns visibility of axes lines and background off

grid – displays gridlines at the tick marks corresponding to the tick labels. Use **grid on** to turn on gridlines and **grid off** to turn off grid lines. When used by itself, **grid** toggles the grid switch on or off.

grid minor – toggles the visibility of the minor grid lines (not, not all types of charts support it)

Use **linkaxes** to synchronize limits of multiple 2-D axes
Enhancing Plot Readability

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>title('text')</code></td>
<td>places text in a title at the top of a plot</td>
</tr>
<tr>
<td><code>title({'First line';'Second line'})</code></td>
<td>creates a two-line title</td>
</tr>
<tr>
<td><code>sgtitle('text')</code></td>
<td>adds a title above the grid of subplots in the current figure (introduced in R2018b)</td>
</tr>
<tr>
<td><code>xlabel('text')</code></td>
<td>places a text label on the x-axis (abscissa)</td>
</tr>
<tr>
<td><code>ylabel('text')</code></td>
<td>places a text label on the y-axis (ordinate)</td>
</tr>
<tr>
<td><code>text(x,y,'text')</code></td>
<td>adds the text in the quotes to location ((x,y)) on the current axes</td>
</tr>
<tr>
<td><code>gtext('text')</code></td>
<td>places the text in Figure window at a point specified by the mouse click</td>
</tr>
<tr>
<td><code>annotation(annotation_type)</code></td>
<td>creates the specified annotation type, such as line, arrow, double arrow, text arrow, textbox, ellipse, and rectangle</td>
</tr>
<tr>
<td><code>xticks(ticks)</code></td>
<td>sets the x-axis tick values for the current axis as a vector of increasing numeric numbers, (\text{ticks}), specifying locations along the x-axis where the tick marks appear. Similarly, the <code>yticks</code> and <code>zticks</code> functions are available</td>
</tr>
<tr>
<td><code>xticklabels(labels)</code></td>
<td>sets the x-axis tick labels for the current axes as a string array or a cell array of character vectors (\text{labels}). Also, see <code>xtickangle</code> and <code>xtickformat</code>. Similar functions exist for y- and z-axis</td>
</tr>
</tbody>
</table>
grid, axis, and Annotations

```matlab
>> t=linspace(0,2*pi);
>> line(cos(t),sin(t)), grid on

>> t=linspace(0,2*pi);
>> line(cos(t),sin(t)), axis equal

>> title('My Plot')
>> xlabel('x-axis'), ylabel('y-axis')
>> text(0.5,0.5,'Text')

>> annotation('arrow',[0.5 0.7],[0.7 0.8])
>> gtext('Chosen Location')
```

Note, by default, the annotation units are normalized to the figure. The lower left corner of the figure maps to (0,0) and the upper right corner maps to (1,1).

Line type annotations: 'line', 'arrow', 'doublearrow', 'textarrow'
Shape type annotations: 'rectangle', 'ellipse', 'textbox'

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the Publisher and/or Author. Contact the American Institute of Aeronautics and Astronautics, Professional Development Programs, 12700 Sunrise Valley Drive, Suite 200, Reston, VA 20191-5807.
Text Strings Modifiers

Stream modifiers:

- **\bf** - bold font
- **\it** - italics font
- **\sl** - oblique font (rarely available)
- **\rm** - normal font
- **\fontname{fontname}** - specify the name of the font family to use
- **\fontsize{fontsize}** - specify the font size (in font units)

(The first four modifiers are mutually exclusive. Stream modifiers remain in effect until the end of the string or only within the context defined by braces {}.)

The subscript character “_” and the superscript character “^” modify the character or substring defined in braces immediately following.

To print the special characters used to define the TeX strings when Interpreter is TeX, prefix them with the backslash “\” character, for instance: _, \{}, \}, _, \^.
Special Symbols

<table>
<thead>
<tr>
<th>Character Sequence</th>
<th>Symbol</th>
<th>Character Sequence</th>
<th>Symbol</th>
<th>Character Sequence</th>
<th>Symbol</th>
<th>Character Sequence</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>\alpha</td>
<td>α</td>
<td>\nu</td>
<td>ν</td>
<td>\Gamma</td>
<td>Γ</td>
<td>\equiv</td>
<td>Ξ</td>
</tr>
<tr>
<td>\beta</td>
<td>β</td>
<td>\xi</td>
<td>ξ</td>
<td>\Delta</td>
<td>Δ</td>
<td>\leq</td>
<td>≤</td>
</tr>
<tr>
<td>\gamma</td>
<td>γ</td>
<td>\pi</td>
<td>π</td>
<td>\Theta</td>
<td>Θ</td>
<td>\geq</td>
<td>≥</td>
</tr>
<tr>
<td>\delta</td>
<td>δ</td>
<td>\varpi</td>
<td>σ</td>
<td>\Lambda</td>
<td>Λ</td>
<td>\neq</td>
<td>≠</td>
</tr>
<tr>
<td>\epsilon</td>
<td>ε</td>
<td>\rho</td>
<td>ρ</td>
<td>\Xi</td>
<td>Ξ</td>
<td>\clubsuit</td>
<td>♣</td>
</tr>
<tr>
<td>\zeta</td>
<td>ζ</td>
<td>\sigma</td>
<td>σ</td>
<td>\Pi</td>
<td>Π</td>
<td>\diamondsuit</td>
<td>♦</td>
</tr>
<tr>
<td>\eta</td>
<td>η</td>
<td>\varsigma</td>
<td>ζ</td>
<td>\Sigma</td>
<td>Σ</td>
<td>\heartsuit</td>
<td>♥</td>
</tr>
<tr>
<td>\theta</td>
<td>θ</td>
<td>\tau</td>
<td>τ</td>
<td>\Upsilon</td>
<td>Υ</td>
<td>\spadesuit</td>
<td>♠</td>
</tr>
<tr>
<td>\vartheta</td>
<td>ϑ</td>
<td>\upsilon</td>
<td>υ</td>
<td>\Phi</td>
<td>Φ</td>
<td>\leftrightarrow</td>
<td>←→</td>
</tr>
<tr>
<td>\iota</td>
<td>ϊ</td>
<td>\phi</td>
<td>φ</td>
<td>\Psi</td>
<td>ψ</td>
<td>\leftarrow</td>
<td>←</td>
</tr>
<tr>
<td>\kappa</td>
<td>κ</td>
<td>\chi</td>
<td>χ</td>
<td>\Omega</td>
<td>Ω</td>
<td>\uparrow</td>
<td>↑</td>
</tr>
<tr>
<td>\lambda</td>
<td>λ</td>
<td>\psi</td>
<td>ψ</td>
<td>\Im</td>
<td>ℑ</td>
<td>\rightarrow</td>
<td>→</td>
</tr>
<tr>
<td>\mu</td>
<td>μ</td>
<td>\omega</td>
<td>ω</td>
<td>\Re</td>
<td>ℜ</td>
<td>\downarrow</td>
<td>↓</td>
</tr>
</tbody>
</table>
Special Symbols

<table>
<thead>
<tr>
<th>Character Sequence</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>\otimes</td>
<td>\otimes</td>
<td>\forall</td>
<td>\forall</td>
<td>\circ</td>
<td>\circ</td>
<td>\aleph</td>
<td>\aleph</td>
<td>\exists</td>
<td>\exists</td>
<td>\pm</td>
<td>\pm</td>
<td>\wp</td>
<td>\wp</td>
</tr>
<tr>
<td>\cap</td>
<td>\cap</td>
<td>\exists</td>
<td>\exists</td>
<td>\pm</td>
<td>\pm</td>
<td>\wp</td>
<td>\wp</td>
<td>\exists</td>
<td>\exists</td>
<td>\pm</td>
<td>\pm</td>
<td>\wp</td>
<td>\wp</td>
</tr>
<tr>
<td>\supset</td>
<td>\supset</td>
<td>\ni</td>
<td>\ni</td>
<td>\sim</td>
<td>\sim</td>
<td>\oslash</td>
<td>\oslash</td>
<td>\subseteq</td>
<td>\subseteq</td>
<td>\supseteq</td>
<td>\supseteq</td>
<td>\subseteq</td>
<td>\subseteq</td>
</tr>
<tr>
<td>\int</td>
<td>\int</td>
<td>\approx</td>
<td>\approx</td>
<td>\partial</td>
<td>\partial</td>
<td>\subset</td>
<td>\subset</td>
<td>\subseteq</td>
<td>\subseteq</td>
<td>\supseteq</td>
<td>\supseteq</td>
<td>\subseteq</td>
<td>\subseteq</td>
</tr>
<tr>
<td>\lceil</td>
<td>\lceil</td>
<td>\oplus</td>
<td>\oplus</td>
<td>\bullet</td>
<td>\bullet</td>
<td>\circ</td>
<td>\circ</td>
<td>\oplus</td>
<td>\oplus</td>
<td>\bullet</td>
<td>\bullet</td>
<td>\circ</td>
<td>\circ</td>
</tr>
<tr>
<td>\perp</td>
<td>\perp</td>
<td>\cup</td>
<td>\cup</td>
<td>\div</td>
<td>\div</td>
<td>\nabla</td>
<td>\nabla</td>
<td>\perp</td>
<td>\perp</td>
<td>\cup</td>
<td>\cup</td>
<td>\div</td>
<td>\div</td>
</tr>
<tr>
<td>\wedge</td>
<td>\wedge</td>
<td>\subseteq</td>
<td>\subseteq</td>
<td>\infty</td>
<td>\infty</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\wedge</td>
<td>\wedge</td>
<td>\subseteq</td>
<td>\subseteq</td>
<td>\infty</td>
<td>\infty</td>
</tr>
<tr>
<td>\rceil</td>
<td>\rceil</td>
<td>\in</td>
<td>\in</td>
<td>\cdot</td>
<td>\cdot</td>
<td>\prime</td>
<td>\prime</td>
<td>\rceil</td>
<td>\rceil</td>
<td>\in</td>
<td>\in</td>
<td>\cdot</td>
<td>\cdot</td>
</tr>
<tr>
<td>\vee</td>
<td>\vee</td>
<td>\lceil</td>
<td>\lceil</td>
<td>\neg</td>
<td>\neg</td>
<td>\0</td>
<td>\0</td>
<td>\vee</td>
<td>\vee</td>
<td>\lceil</td>
<td>\lceil</td>
<td>\neg</td>
<td>\neg</td>
</tr>
<tr>
<td>\langle</td>
<td>\langle</td>
<td>\rangle</td>
<td>\rangle</td>
<td>\times</td>
<td>\times</td>
<td>\mid</td>
<td>\mid</td>
<td>\langle</td>
<td>\langle</td>
<td>\rangle</td>
<td>\rangle</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>\surd</td>
<td>\surd</td>
<td>\copyright</td>
<td>\copyright</td>
<td>\circ</td>
<td>\circ</td>
<td>\mid</td>
<td>\mid</td>
<td>\surd</td>
<td>\surd</td>
<td>\copyright</td>
<td>\copyright</td>
<td>\circ</td>
<td>\circ</td>
</tr>
</tbody>
</table>
Adding Equations to the Plot

```matlab
fplot('0.25*exp(-.006*t)*sin(0.2*t)',[0 900])
a = '\textit{Ae}^\alpha \sin \beta';
b = '\alpha < \beta';
title(strcat(a, b))
xlabel('\textit{Time}, \mu\text{sec}')
ylabel('Amplitude')
t1 = '\Delta \tau = \frac{\tau_f}{N-1}';
text(0.1, 0.7, ['$\$' t1 ' $$'], ...
    'Interpreter','latex')
t2 = ['{\bf A}_1 = \begin{bmatrix}
-1 & 0 \\
1 & -1 \\
-1 & 0
\end{bmatrix}'];
text(0.35, 0.7, ['$\$' t2 ' $$'], ...
    'Interpreter','latex')
t3 = '\dot{x}(t) = \frac{dx}{d\tau}\frac{d\tau}{dt} = x''(\tau)\lambda(\tau)';
text(0.65, 0.7, ['$\$' t3 ' $$'], ...
    'Interpreter','latex')
axis off
```

You may also try `text(.3,.3,texlabel('\beta_{12} e^{-\alpha t}'))`, which uses the `texlabel` function to convert Greek variable names into a character vector that is displayed as Greek letters: $\beta_{12} e^{-\alpha t}$.
Examples of using LaTeX Syntax

The easiest way to visualize what additional capabilities the LaTeX interpreter of MATLAB offers is to click on the Insert equation icon of the Live Editor's Insert tab, which opens the Equation tab.
Markers and Line Styles

```matlab
>> x=linspace(0,pi); xm=linspace(0,pi,20);
>> plot(x,cos(6*x).*exp(-x),xm,cos(6*xm).*exp(-xm), '^')
```

```matlab
>> x=-pi:pi; y=sin(x);
>> plot(x,y.^2, '--sb', 'MarkerSize', 10,...
      'MarkerFaceColor', 'r')
```

```matlab
>> x=-pi:pi; y=sin(x);
>> line(x,y,'Color','r','Marker','p',...
      'LineWidth',3,'MarkerSize',7)
```
LineSpec Options

The `plot(x,y,LineSpec)` function in MATLAB allows you to specify line styles, markers, and colors.

<table>
<thead>
<tr>
<th>Line Types</th>
<th>Data Markers†</th>
<th>Colors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid line</td>
<td>Dot (.)</td>
<td>Red r</td>
</tr>
<tr>
<td>Dashed line</td>
<td>Asterisk (*)</td>
<td>Green g</td>
</tr>
<tr>
<td>Dash-dotted line</td>
<td>Cross (x)</td>
<td>Blue b</td>
</tr>
<tr>
<td>Dotted line</td>
<td>Plus sign (+)</td>
<td>Cyan c</td>
</tr>
<tr>
<td></td>
<td>Circle (o)</td>
<td>Magenta m</td>
</tr>
<tr>
<td></td>
<td>Square (□)</td>
<td>Yellow y</td>
</tr>
<tr>
<td></td>
<td>Diamond (◇)</td>
<td>Black k</td>
</tr>
<tr>
<td></td>
<td>Pentagram (star)</td>
<td>White w</td>
</tr>
<tr>
<td></td>
<td>Hexagram (star of David)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Left triangle (◄)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Up triangle (▲)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right triangle (►)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Down triangle (▼)</td>
<td></td>
</tr>
</tbody>
</table>

† Note that circle and all following markers are filled markers (you may fill them with color)

- **LineWidth** – specifies the width of the line (in points)
- **MarkerEdgeColor** – specifies the color of the marker or the edge color for filled markers
- **MarkerFaceColor** – specifies the color of the face of filled markers
- **MarkerSize** – specifies the size of the marker (in points)

Example:

```
plot(x,y,'m--h','LineWidth',3)
```
Properties of Line Object

AlignVertexCenters: 'off'
Annotation: [1x1 ... Annotation]
BeingDeleted: 'off'
BusyAction: 'queue'
ButtonDownFcn: ''
Children: [0x0 GraphicsPlaceholder]
Clipping: 'on'
Color: [0 0.4470 0.7410]
CreateFcn: ''
DataTipTemplate: [1x1 ... DataTipTemplate]
DeleteFcn: ''
DisplayName: ''
HandleVisibility: 'on'
HitTest: 'on'
Interruptible: 'on'
LineJoin: 'round'
LineStyle: '-'
LineWidth: 0.5000
Marker: 'none'
MarkerEdgeColor: 'auto'
MarkerFaceColor: 'none'
MarkerIndices: [1 2 3 4 5 6 7 8 9 10]
MarkerSize: 6
Parent: [1x1 Axes]
PickableParts: 'visible'
Selected: 'off'
SelectionHighlight: 'on'
Tag: ''
Type: 'line'
UIContextMenu: [0x0 GraphicsPlaceholder]
UserData: []
Visible: 'on'
XData: [1 2 3 4 5 6 7 8 9 10]
XDataMode: 'auto'
XDataSource: ''
YData: [10 9 8 7 6 5 4 3 2 1]
YDataSource: ''
ZData: [1x0 double]
ZDataSource: ''
Properties of Axes Object

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALim</td>
<td>[0 1]</td>
</tr>
<tr>
<td>ALimMode</td>
<td>'auto'</td>
</tr>
<tr>
<td>ActivePositionProperty</td>
<td>'outerposition'</td>
</tr>
<tr>
<td>AlphaScale</td>
<td>'linear'</td>
</tr>
<tr>
<td>Alphamap</td>
<td>[1x64 double]</td>
</tr>
<tr>
<td>AmbientLightColor</td>
<td>[1 1 1]</td>
</tr>
<tr>
<td>BeingDeleted</td>
<td>'off'</td>
</tr>
<tr>
<td>Box</td>
<td>'on'</td>
</tr>
<tr>
<td>BoxStyle</td>
<td>'back'</td>
</tr>
<tr>
<td>BusyAction</td>
<td>'queue'</td>
</tr>
<tr>
<td>ButtonDownFcn</td>
<td>''</td>
</tr>
<tr>
<td>CLim</td>
<td>[0 1]</td>
</tr>
<tr>
<td>CLimMode</td>
<td>'auto'</td>
</tr>
<tr>
<td>CameraPosition</td>
<td>[5.5000 5.5000 17.3205]</td>
</tr>
<tr>
<td>CameraPositionMode</td>
<td>'auto'</td>
</tr>
<tr>
<td>CameraTarget</td>
<td>[5.5000 5.5000 0]</td>
</tr>
<tr>
<td>CameraTargetMode</td>
<td>'auto'</td>
</tr>
<tr>
<td>CameraUpVector</td>
<td>[0 1 0]</td>
</tr>
<tr>
<td>CameraUpVectorMode</td>
<td>'auto'</td>
</tr>
<tr>
<td>CameraViewAngle</td>
<td>6.6086</td>
</tr>
<tr>
<td>CameraViewAngleMode</td>
<td>'auto'</td>
</tr>
<tr>
<td>Children</td>
<td>[1x1 Line]</td>
</tr>
<tr>
<td>Clipping</td>
<td>'on'</td>
</tr>
<tr>
<td>ClippingStyle</td>
<td>'3dbox'</td>
</tr>
<tr>
<td>Color</td>
<td>[1 1 1]</td>
</tr>
<tr>
<td>ColorOrder</td>
<td>[7x3 double]</td>
</tr>
<tr>
<td>ColorOrderIndex</td>
<td>2</td>
</tr>
<tr>
<td>ColorScale</td>
<td>'linear'</td>
</tr>
<tr>
<td>Colormap</td>
<td>[64x3 double]</td>
</tr>
<tr>
<td>CreateFcn</td>
<td>''</td>
</tr>
<tr>
<td>CurrentPoint</td>
<td>[2x3 double]</td>
</tr>
<tr>
<td>DataAspectRatio</td>
<td>[4.5000 4.5000 1]</td>
</tr>
<tr>
<td>DataAspectRatioMode</td>
<td>'auto'</td>
</tr>
<tr>
<td>DeleteFcn</td>
<td>''</td>
</tr>
<tr>
<td>FontAngle</td>
<td>'normal'</td>
</tr>
<tr>
<td>FontName</td>
<td>'Helvetica'</td>
</tr>
<tr>
<td>FontSize</td>
<td>10</td>
</tr>
<tr>
<td>FontSizeMode</td>
<td>'auto'</td>
</tr>
<tr>
<td>FontSmoothing</td>
<td>'on'</td>
</tr>
<tr>
<td>FontUnits</td>
<td>'points'</td>
</tr>
<tr>
<td>FontWeight</td>
<td>'normal'</td>
</tr>
<tr>
<td>GridAlpha</td>
<td>0.1500</td>
</tr>
<tr>
<td>GridAlphaMode</td>
<td>'auto'</td>
</tr>
<tr>
<td>GridColor</td>
<td>[0.1500 0.1500 0.1500]</td>
</tr>
<tr>
<td>GridColorMode</td>
<td>'auto'</td>
</tr>
<tr>
<td>GridLineStyle</td>
<td>'-'</td>
</tr>
<tr>
<td>HandleVisibility</td>
<td>'on'</td>
</tr>
<tr>
<td>HitTest</td>
<td>'on'</td>
</tr>
<tr>
<td>Interactions</td>
<td>[1x1 ...DefaultAxesInteractionSet]</td>
</tr>
<tr>
<td>Interruptible</td>
<td>'on'</td>
</tr>
<tr>
<td>LabelFontSizeMultiplier</td>
<td>1.1000</td>
</tr>
<tr>
<td>Legend</td>
<td>[0x0 GraphicsPlaceholder]</td>
</tr>
</tbody>
</table>

The last 17 lines are repeated for Y and Z axes
Properties of Figure Object

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alphamap</td>
<td>[1x64 double]</td>
</tr>
<tr>
<td>BeingDeleted</td>
<td>'off'</td>
</tr>
<tr>
<td>BusyAction</td>
<td>'queue'</td>
</tr>
<tr>
<td>ButtonDownFcn</td>
<td>''</td>
</tr>
<tr>
<td>Children</td>
<td>[1x1 Axes]</td>
</tr>
<tr>
<td>Clipping</td>
<td>'on'</td>
</tr>
<tr>
<td>CloseRequestFcn</td>
<td>'closereq'</td>
</tr>
<tr>
<td>Color</td>
<td>[0.9400 0.9400 0.9400]</td>
</tr>
<tr>
<td>Colormap</td>
<td>[64x3 double]</td>
</tr>
<tr>
<td>CreateFcn</td>
<td>''</td>
</tr>
<tr>
<td>CurrentAxes</td>
<td>[1x1 Axes]</td>
</tr>
<tr>
<td>CurrentObject</td>
<td>[0x0 GraphicsPlaceholder]</td>
</tr>
<tr>
<td>CurrentPoint</td>
<td>[0 0]</td>
</tr>
<tr>
<td>DeleteFcn</td>
<td>''</td>
</tr>
<tr>
<td>DockControls</td>
<td>'on'</td>
</tr>
<tr>
<td>FileName</td>
<td>''</td>
</tr>
<tr>
<td>GraphicsSmoothing</td>
<td>'on'</td>
</tr>
<tr>
<td>HandleVisibility</td>
<td>'on'</td>
</tr>
<tr>
<td>InnerPosition</td>
<td>[1440 918 560 420]</td>
</tr>
<tr>
<td>IntegerHandle</td>
<td>'on'</td>
</tr>
<tr>
<td>Interruptible</td>
<td>'on'</td>
</tr>
<tr>
<td>InvertHardcopy</td>
<td>'on'</td>
</tr>
<tr>
<td>KeyPressFcn</td>
<td>''</td>
</tr>
<tr>
<td>KeyReleaseFcn</td>
<td>''</td>
</tr>
<tr>
<td>MenuBar</td>
<td>'figure'</td>
</tr>
<tr>
<td>Name</td>
<td>''</td>
</tr>
<tr>
<td>NextPlot</td>
<td>'add'</td>
</tr>
<tr>
<td>Number</td>
<td>1</td>
</tr>
<tr>
<td>NumberTitle</td>
<td>'on'</td>
</tr>
<tr>
<td>OuterPosition</td>
<td>[1432 910 576 513]</td>
</tr>
<tr>
<td>PaperOrientation</td>
<td>'portrait'</td>
</tr>
<tr>
<td>PaperPosition</td>
<td>[1.3333 3.3125 5.8333 4.3750]</td>
</tr>
<tr>
<td>PaperPositionMode</td>
<td>'auto'</td>
</tr>
<tr>
<td>PaperSize</td>
<td>[8.5000 11]</td>
</tr>
<tr>
<td>PaperType</td>
<td>'usletter'</td>
</tr>
<tr>
<td>PaperUnits</td>
<td>'inches'</td>
</tr>
<tr>
<td>Parent</td>
<td>[1x1 Root]</td>
</tr>
<tr>
<td>Pointer</td>
<td>'arrow'</td>
</tr>
<tr>
<td>PointerShapeCData</td>
<td>[16x16 double]</td>
</tr>
<tr>
<td>PointerShapeHotSpot</td>
<td>[1 1]</td>
</tr>
<tr>
<td>Position</td>
<td>[1440 918 560 420]</td>
</tr>
<tr>
<td>Renderer</td>
<td>'opengl'</td>
</tr>
<tr>
<td>RendererMode</td>
<td>'auto'</td>
</tr>
<tr>
<td>Resize</td>
<td>'on'</td>
</tr>
<tr>
<td>Scrollable</td>
<td>'off'</td>
</tr>
<tr>
<td>SelectionType</td>
<td>'normal'</td>
</tr>
<tr>
<td>SizeChangedFcn</td>
<td>''</td>
</tr>
<tr>
<td>Tag</td>
<td>''</td>
</tr>
<tr>
<td>ToolBar</td>
<td>'auto'</td>
</tr>
<tr>
<td>Type</td>
<td>'figure'</td>
</tr>
<tr>
<td>UICustomMenu</td>
<td>[0x0 GraphicsPlaceholder]</td>
</tr>
<tr>
<td>Units</td>
<td>'pixels'</td>
</tr>
<tr>
<td>UserData</td>
<td>[]</td>
</tr>
<tr>
<td>Visible</td>
<td>'on'</td>
</tr>
<tr>
<td>WindowButtonDownFcn</td>
<td>''</td>
</tr>
<tr>
<td>WindowButtonMotionFcn</td>
<td>''</td>
</tr>
<tr>
<td>WindowButtonDownFcn</td>
<td>''</td>
</tr>
<tr>
<td>WindowKeyPressFcn</td>
<td>''</td>
</tr>
<tr>
<td>WindowKeyReleaseFcn</td>
<td>''</td>
</tr>
<tr>
<td>WindowScrollWheelFcn</td>
<td>''</td>
</tr>
<tr>
<td>WindowState</td>
<td>'normal'</td>
</tr>
<tr>
<td>WindowStyle</td>
<td>'normal'</td>
</tr>
</tbody>
</table>

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the Publisher and/or Author. Contact the American Institute of Aeronautics and Astronautics, Professional Development Programs, 12700 Sunrise Valley Drive, Suite 200, Reston, VA 20191-5807.
Multiple Plots and Line Specifications

```matlab
x=0:pi/20:pi;
y1=sin(x); y2=cos(x);
plot(x,y1), hold on
plot(x,y2)
legend('sin', 'cos')
```

```matlab
x=0:pi/20:pi;
y1=sin(x); y2=cos(x);
plot(x,y1, x,y2)
legend('sin', 'cos')
```

```matlab
x=0:pi/20:pi;
y1=sin(x); y2=cos(x);
plot(x,y1, x,y2, '-.sm')
legend('sin', 'cos')
```

Line colors are automatically cycled.

R2014b
Adding Reference Lines

The Statistics and Machine Learning Toolbox features `refline` and `refcurve` for adding a straight line or polynomial in the current axis, `lsline` superimposing a least-squares line on each scatter plot, and `gline` drawing a line segment by clicking the pointer at the two endpoints.

What about basic MATLAB?

```matlab
function y=horline(Y,sp)
def='k--'; % default settings
if nargin==0; Y=0; end % no input arguments
if nargin<=1; sp=def; end % less than two input arg.
linecolors='rgbcmykw'; % define line colors
[c,n]=intersect(sp,linecolors); % find color spec.
if isempty(n), c=def(1); else, sp(n)=[]; end % no color
if isempty(sp), sp=def(2:3); end % no line style
yy=xlim; % find x-limits
line(yy,Y*[1 1],'Color',c,'LineStyle',sp)
a=randn(50,1); plot(a,'o')
horline(mean(a),':r')
horline(mean(a)+2*std(a),'b-.')
horline(mean(a)-2*std(a),'-.b')
horline
```

```matlab
function y=yline(Y,sp)
def='k--'; % default settings
if nargin==0; Y=0; end % no input arguments
if nargin<=1; sp=def; end % less than two input arg.
linecolors='rgbcmykw'; % define line colors
[c,n]=intersect(sp,linecolors); % find color spec.
if isempty(n), c=def(1); else, sp(n)=[]; end % no color
if isempty(sp), sp=def(2:3); end % no line style
yy=xlim; % find x-limits
line(yy,Y*[1 1],'Color',c,'LineStyle',sp)
```

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the Publisher and/or Author. Contact the American Institute of Aeronautics and Astronautics, Professional Development Programs, 12700 Sunrise Valley Drive, Suite 200, Reston, VA 20191-5807.

21 out of 58
Legend and its Location

legend(lbl1,...,lbln,['Location',Lcn]) adds a legend with legend with(lbl1, ..., lbln) text strings in the specified location, Lcn, with respect to the axes, where Lcn may be one of the following character vectors (or string scalars):

- 'North' ('n') inside plot box near top
- 'South' ('s') inside bottom
- 'East' ('e') inside right
- 'West' ('w') inside left
- 'NorthEast' ('ne') inside top right (default)
- 'NorthWest' ('nw') inside top left
- 'SouthEast' ('se') inside bottom right
- 'SouthWest' ('sw') inside bottom left
- 'NorthOutside' ('no') outside plot box near top
- 'SouthOutside' ('so') outside bottom
- 'EastOutside' ('eo') outside right
- 'WestOutside' ('wo') outside left
- 'NorthEastOutside' ('neo') outside top right
- 'NorthWestOutside' ('nwo') outside top left
- 'SouthEastOutside' ('seo') outside bottom right
- 'SouthWestOutside' ('swo') outside bottom left
- 'Best' ('b') least conflict with data in plot
- 'BestOutside' ('bo') least unused space outside plot

Prior to R2014b
Legend’ Options

legend(subset,labels,...)

Only includes items in the legend for the data series listed in a vector of graphics objects **subset** (labels can be a single cell array of character vectors, a string array, or a character array labels)

If needed, you can create the group objects (which includes multiple graphics objects, as a child of the current axes) using the **hggroup** function

legend([GrObj1, GrObj2, ...],labels,...)

Specifies label properties via name-value pair arguments

```
h1=fplot(@sin,'-.'); hold
fplot(@(x)sin(x).*cos(x),':');
h2=fplot(@cos,'--');
legend([h1 h2],{"sin(x)" "cos(x)"})
hlgd=findall(gcf,'type','legend');
hlgd.AutoUpdate='off';
fplot(@(x)sin(x)+cos(x))
```
h1=fplot(@sin,'-.'); hold
fplot(@(x)sin(x).*cos(x),':');
h2=fplot(@cos,'--');
legend([h1 h2],{"sin(x)" "cos(x)"},'AutoUpdate','off')
fplot(@(x)sin(x)+cos(x))
hlgd=findall(gcf,'type','legend')
hlgd.Color='y';

Starting from R2017a, the legend automatically updates when you add or remove data series from the axes, unless... you set the 'AutoUpdate' property of the legend to 'off'.
Utilizing Two y-axes

Prior to R2014b

```matlab
x=linspace(0,15,200);
y1=10*exp(-0.36*x).*sin(2.7*x);
y2=200*exp(-0.05*x).*sin(0.8*x);
[ax,h1,h2]=plotyy(x,y1,x,y2);
set(get(ax(1),'Ylabel'),'String','Short Period Motion (\alpha, ^o)')
set(get(ax(2),'Ylabel'),'String','Phugoid Motion (h, ft)')
set(h2,'LineStyle',':')
xlabel('Time, s')
title('T-37 Longitudinal Dynamics')
```

Starting from R2016a

```matlab
x=linspace(0,15,200);
y1=10*exp(-0.36*x).*sin(2.7*x);
y2=200*exp(-0.05*x).*sin(0.8*x);
yyaxis left, plot(x,y1); ylabel('Short Period Motion (\alpha, ^o)')
yyaxis right, plot(x,y2,:) ; ylabel('Phugoid Motion (h, ft)')
xlabel('Time, s')
title('T-37 Longitudinal Dynamics')
```

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the Publisher and/or Author. Contact the American Institute of Aeronautics and Astronautics, Professional Development Programs, 12700 Sunrise Valley Drive, Suite 200, Reston, VA 20191-5807.
Finding a Graphics Object

```
>> x = linspace(-pi,pi,50);
>> hp = plot(x,sin(x),'b-',x,cos(x),'rp',x,sin(x).*cos(x),'m+:' );
>> legend([hp(1) hp(3)],'f_1=sin(x) ','f_2=sin(x)*cos(x) ','location','se')

>> h1 = findobj('Marker','p');
>> delete(h1)
>> h2 = findobj('Tag','legend');
>> set(h2,'Color','g')
  or
>> h2.Color='g';
```

Comments:

a) The \texttt{findobj} call returns handles of the root object and all its descendants
b) The \texttt{get(gcf,'children')} call returns 2-by-1 graphics array composed of the Legend and Axes objects
c) Try \texttt{allchild(gcf)}, \texttt{findall(gcf)}, \texttt{allchild(gca)}, and \texttt{findall(gca)}
The subplot Function

```matlab
subplot(2,2,1), ezplot('sin(x)')
subplot(2,2,2), ezplot('cos(x)')
subplot(223), ezplot('sin(x).^2')
subplot(224), ezplot('cos(x).^2')
```

```
subplot(2,2,1), ezplot('sin(x)')
subplot(2,2,2), ezplot('cos(x)')
subplot(2,2,[3 4]), ezplot('sin(x).*cos(x)')
```
More About the Grids

H=subplot(221); ezplot('sin(x)')

creates an Axes object H enabling modifying any property, e.g.

H.GridColor='r';

<table>
<thead>
<tr>
<th>Axes Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTick, YTick, ZTick</td>
<td>Location of tick marks and major grid lines for each axis direction</td>
</tr>
<tr>
<td>XGrid, YGrid, ZGrid</td>
<td>Display of major grid lines for each axis direction</td>
</tr>
<tr>
<td>XMinorGrid, YMinorGrid, ZMinorGrid</td>
<td>Display of minor grid lines for each axis direction</td>
</tr>
<tr>
<td>LineWidth</td>
<td>Line width of grid lines, axes box outline, and tick marks</td>
</tr>
<tr>
<td>GridLineStyle</td>
<td>Major grid line style</td>
</tr>
<tr>
<td>MinorGridLineStyle</td>
<td>Minor grid line style</td>
</tr>
<tr>
<td>MinorGridColor</td>
<td>Minor grid line color</td>
</tr>
<tr>
<td>GridAlpha</td>
<td>Major grid line transparency</td>
</tr>
<tr>
<td>MinorGridAlpha</td>
<td>Minor grid line transparency</td>
</tr>
<tr>
<td>Layer</td>
<td>Location of grid lines in relation to the plotted data</td>
</tr>
</tbody>
</table>

When working with Cartesian axes

<table>
<thead>
<tr>
<th>PolarAxes Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ThetaTick, RTick</td>
<td>Location of tick marks and major grid lines for each axis direction</td>
</tr>
<tr>
<td>ThetaGrid, RGrid</td>
<td>Display of major grid lines for each axis direction</td>
</tr>
<tr>
<td>ThetaMinorGrid, RMinorGrid</td>
<td>Display of minor grid lines for each axis direction</td>
</tr>
<tr>
<td>LineWidth</td>
<td>Width of outline, tick marks, and grid lines</td>
</tr>
<tr>
<td>GridLineStyle</td>
<td>Major grid line style</td>
</tr>
<tr>
<td>MinorGridLineStyle</td>
<td>Minor grid line style</td>
</tr>
<tr>
<td>GridColor</td>
<td>Major grid line color</td>
</tr>
<tr>
<td>MinorGridColor</td>
<td>Minor grid line color</td>
</tr>
<tr>
<td>GridAlpha</td>
<td>Major grid line transparency</td>
</tr>
<tr>
<td>MinorGridAlpha</td>
<td>Minor grid line transparency</td>
</tr>
<tr>
<td>Layer</td>
<td>Location of grid lines in relation to the plotted data</td>
</tr>
</tbody>
</table>

When working with polar axes

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the Publisher and/or Author. Contact the American Institute of Aeronautics and Astronautics, Professional Development Programs, 12700 Sunrise Valley Drive, Suite 200, Reston, VA 20191-5807.
Date Tick Labels

%% Hourly air and dew point temperatures
A=[
 60 42
 63 42
 ...];

%% Hourly sky condition
B=[
 "Fair"
 "Fair"
 "Fair"
 ...];

C=nan(length(A),1); C(B~="Fair")=3;

stime=datenum('02-01-2018 00:54');
etime=datenum('02-03-2018 23:54');
t=linspace(stime,etime,3*24);
plot(t,A,'.-.',t,A(:,1)-A(:,2),'m.--'), grid, hold
bar(t,C,'y')
datetick('x','HH:MM PM')
xlabel('Time'), ylabel('Temperature, \(^\circ\)F')
legend('Air','Dew point','\Delta T','Overcast','Location','E')
Variety of the 2-D Plots

- loglog
- semilogx
- semilogy
- area
- pie
- barh
- hist
- errorbar
- stackedplot
- feather
- stem
- stairs
- scatter
- fill
- triplot

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the Publisher and/or Author. Contact the American Institute of Aeronautics and Astronautics, Professional Development Programs, 12700 Sunrise Valley Drive, Suite 200, Reston, VA 20191-5807.
Inserted (Nested) Plots

P=[-10000 1
-8000 5
-6500 5
...];

%% Defining axes using the subplot function
subplot 211
plot(P(:,1),P(:,2)/1000,'o-.','markersize',3), grid, hold
plot(P(end-2:end,1),P(end-2:end,2)/1000,'pr','markersize',6)
xlabel('Year'), ylabel('Population, billion')
xlim([-8000 2100])
set(gca,'Color',[0.98 0.98 0.85]);
subplot 212
plot(P(2:end,1),diff(P(:,2))./diff(P(:,1)),...
'o-.','markersize',3), grid, hold
plot(P(end-1:end,1),diff(P(end-2:end,2))./diff(P(end-2:end,1)),...
'pr','markersize',6)
xlim([-8000 2100])
xlabel('Year'), ylabel('Yearly increase, million')
set(gca,'Color',[0.98 0.98 0.85]);

%% Explicitly-defined axes positions (for two insert plots)
ax1=axes('Position',[0.2 0.68 0.5 0.22]);
semilogy(ax1,P(:,1),P(:,2)/1000,'o-.','markersize',2), grid, hold
semilogy(ax1,P(end-2:end,1),P(end-2:end,2)/1000,'pr','markersize',4)
xlim([-4000 2100]), ylabel('log scale, billion')
ax2=axes('Position',[0.2 0.20 0.5 0.22]);
semilogy(ax2,P(2:end,1),diff(P(:,2))./diff(P(:,1)),...
'o-.','markersize',2), grid, hold
semilogy(ax2,P(end-1:end,1),diff(P(end-2:end,2))./diff(P(end-2:end,1)),...
'pr','markersize',4)
xlim([-4000 2100]), ylabel('log scale, million')
Overlaying One Plot over Another

generation=1:5;
number=[4.2 33.6 42.7 9.5 1];
price=[0.1 0.2 1 30 150];
bar(generation,number,'y')
xlabel('Generation')
ylabel('Number manufactured, thousands')
h1=gca;
% Setting the new axes atop the first ones
h2=axes('Position',get(h1,'Position'));
% Adding the second plot to the new axes
semilogy(generation,price,'LineWidth',3)
% Modifying second axes settings
set(h2,'Color','none','YAxisLocation', ...
'right', 'XLim',get(h1,'XLim'), ...
'XTickLabel',[], 'TickLength',[0 0])
text(3.5,10,'Price','Rotation',58)
ylabel('Price, M$'), title('Jet Fighters')
The Polar Plots

- `polarplot`: creates polar axes.
- `polarscatter`: plots scattered data in polar coordinates.
- `polarhistogram`: plots a histogram of data in polar coordinates.
- `compass`: plots arrows in the polar coordinate system.

Introduced in R2016b

- `rlim`: sets or queries the r-axis limits for polar axes.
- `rticks`: sets or queries the r-axis tick values.
- `rticklabels`: sets or queries the r-axis tick labels.
- `rtickformat`: specifies the r-axis tick label format.
- `rtickangle`: rotates the r-axis tick labels.
- `thetalim`: sets or queries the theta-axis limits for polar axes.
- `thetaticks`: sets or queries the theta-axis tick values.
- `thetaticklabels`: sets or queries the theta-axis tick labels.
- `thetatickformat`: specifies the theta-axis tick label format.
- `polaraxes`: creates polar axes.

```matlab
theta=0:0.01:2*pi;
rho=10*sin(.5*theta).*cos(.5*theta+pi/2);
pax=polaraxes;
    polarplot(theta,rho,'-.','LineWidth',2)
pax.ThetaDir='clockwise';
pax.ThetaZeroLocation='top';
pax.FontSize = 12;
pax.ThetaColor='r';
rticks([1 5 9])
thetaticks(0:90:270)
thetaticklabels({'r=1nmi','r=5nmi','r=9nmi'})
```

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the Publisher and/or Author. Contact the American Institute of Aeronautics and Astronautics, Professional Development Programs, 12700 Sunrise Valley Drive, Suite 200, Reston, VA 20191-5807.
Two Types of 3-D Plots

Trajectories

```matlab
t = 0:pi/50:10*pi;
plot3(sin(t),cos(t),t,'b')
grid on, axis square
```

Surfaces

```matlab
[X,Y]=meshgrid(linspace(0,2*pi,100));
Z=sin(X).*cos(Y).^2;
plot3(X,Y,Z)
axis equal
```

```matlab
t=0:.1:10; y=exp(-(.1+i)*t);
stem3(real(y),imag(y),t,'b')
hold on
plot3(real(y),imag(y),t,'r')
hold off, view(-39.5,62)
```

```matlab
view(az,el)
```
Variety of the Surface Plots

\[
[X,Y]=\text{meshgrid(\text{linspace}(0,2\pi,100))}; Z=\sin(X)\cdot\cos(Y);
\]

- `mesh(X,Y,Z)`
- `meshc(X,Y,Z)`
- `meshz(X,Y,Z)`
- `hidden off`
- `surf(X,Y,Z)`
- `surfc(X,Y,Z)`
- `waterfall(X,Y,Z)`

All these functions allow passing in just the grid vectors as the first two arguments (i.e. not necessarily a full grid matrices).
Similarities in 2-D and 3-D

- quiver
- contour
- bar

- quiver3
- contour3
- bar3
Shapes and Shades

```matlab
cylinder
h = findobj('Type','surface');
C = rand(size(get(h,'CData')));
set(h,'CData',C)
axis square

cylinder(1,8)
hc = get(gca,'Children')
rotate(hc,[1 1 1],45)
set(hc,'FaceColor','g')
axis equal

t = linspace(0,pi,50);
[X,Y,Z] = cylinder(2*cos(t));
surf(X,Y,Z)
axis square
axis off

sphere(10)
hold on
[x,y,z] = sphere;
surf(x+2,y,z)
axis equal

ellipsoid(0,0,0,2,10,1)
hold, axis equal
[x,y,z] = cylinder(0.5,40);
surf(x,y,z+0.5)
shading interp
view([8,14])
colormap colorcube

ellipsoid(0,0,0,2,2,1), hold
h = get(gca,'Children');
rotate(h,[3 3 3],34)
z = get(h,'Zdata'); shading flat
set(h,'Zdata',z+2), axis equal
hs = mesh([-2 2; -2 2; 2.5*ones(2));
set(hs,'FaceColor','c')
```

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the Publisher and/or Author. Contact the American Institute of Aeronautics and Astronautics, Professional Development Programs, 12700 Sunrise Valley Drive, Suite 200, Reston, VA 20191-5807.
Surface and Patch Objects

Lighting

camlight('headlight'), camlight('right'), camlight('left') - creates a light at the camera position, right and up from camera (default), and left and up from camera, respectively

camlight(az,el), lightangle(az,el) - creates a light at the specified azimuth (az) and elevation (el) with respect to the camera position

camlight(..., 'style') - defines the style argument using one of the following two values:
 local (default) - the light is a point source that radiates from the location in all directions
 infinite - the light shines in parallel rays

lighting flat - produces uniform lighting across each of the faces of the faceted object

lighting gouraud - calculates the vertex normals and interpolates linearly across the curved faces

material shiny - the object has a high specular reflectance relative to the diffuse and ambient light, and the color of the specular light depends only on the color of the light source

material dull - the object reflects more diffuse light and has no specular highlights, but the color of the reflected light depends only on the light source

material metal - the object has a very high specular reflectance, very low ambient and diffuse reflectance, and the color of the reflected light depends on both the color of the light source and the color of the object

For advanced users

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the Publisher and/or Author. Contact the American Institute of Aeronautics and Astronautics, Professional Development Programs, 12700 Sunrise Valley Drive, Suite 200, Reston, VA 20191-5807.
Using Different Color Maps and colormap Editor

```matlab
[x,y]=meshgrid(linspace(0,2*pi,100));
z=sin(x).*cos(y).^2;
surf(x,y,z)
colormap('Cool')
axis equal
set(gca,'Visible','off')
```

To access the colormap editor, type `colormapeditor` in the command window.

Prior to R2014b

After R2014b

All rights reserved. No part of this publication may be reproduced, distributed, or stored in a database or retrieval system, without the prior written permission of the American Institute of Aeronautics and Astronautics, Professional Development Programs, 12700 Sunrise Valley Drive, Suite 200, Reston, VA 20191-5807.
fill3 and patch Functions

```matlab
x = [0 1; 1 0; 0 1];
y = [1 0; 1 1; 0 1];
z = [1 1; 1 1; 0 1];
c = [1 1; 0 0; 1 1];
fill3(x,y,z,c)
xlabel('x'), ylabel('y')
t=linspace(0,2*pi,11);
x=cos(t); y=sin(t);
x(2:2:10)=.4*cos(t(2:2:10));
y(2:2:10)=.4*sin(t(2:2:10));
patch(x,y,'b')
axis square
x=[0 0 0;0 1 1;0 1 0]';
y=[0 1 1 0;0 0 0;1 1 1]';
z=[0 0 1 1;0 0 1 1;0 0 1 1]';
patch(x,y,z,-z)
axis square, view([35,35])
zlabel('z'), ylabel('y')
```

Jet
Parula
Jet
Parula
Creating a 3-D Object Using Patch Graphics

```matlab
fx=[6.6 5.3 2.3 1.5 -2 -2.5 -10 -10 0 5.3 5.3]'; % fuselage
fy=zeros(11,1);
fz=[1.2 1.7 1.9 1.2 1.2 2.6 1.1 0.7 -0.2 0.3 0.8]';
cx=[2.3 0 -2.5 -2 1.5]'; % cockpit canopy
cy=zeros(5,1);
cz=[1.9 3.1 2.6 1.2 1.2]';
wingx=2.3*[1 -3 -3+.6 -3+.6 -3 -3 -3+.6 -3+.6 -3 -3 1]'/4; % wing
wingy=[8.5 8.5 7.8 7.8 2.2 2.2 -2.2 -2.2 -7.8 -7.8 -8.5 -8.5]';
wingz=zeros(12,1);
ax=2.3*[1 -3 -3 -3+.6]'/4; % right aileron
ay=[7.8 7.8 2.2 2.2]';
azzeros(4,1);
hsx=1.3*[0 -1 -1 0]'-8.1; % horizontal stabilizer
hsy=5.1*[1 1 -1 -1]'/2;
hsz=0.7*ones(4,1);
ex=0.6*[0 -1 -1 0]'-9.4; % elevator
ey=5.1*[1 1 -1 -1]'/2;
ez=0.7*ones(4,1);
vsx=[0 -1.7 -2.7 -1.8]'-7.3; % vertical stabilizer
vsy=zeros(4,1);
vsz=[1.65 4.5 4.5 1.25]';
rx=[0 -1.7 -3.3 -3.1 -1.8]'-7.3; % rudder
ry=zeros(4,1);
rz=[4.5 4.5 1.5 1.25]';
pf=patch(fx,fy,fz,'c'); pw=patch(wingx,wingy,wingz,'c');
pc=patch(cx,cy,cz,'b'); ps=patch([hsx vsx],[hsy vsy],[hsz vsz],'c');
pu=patch([ax ax ex rx],[ay -ay ey ry],[az az ez rz],'m')
haircraft=[pf pc pw ps pu];
axis equal, axis off, view(135,20)
for i=1:1000
    rotate(haircraft,[25,35],1)
pause(0.001)
end
```
Property Inspector (since R2018b)
Property Editor (since R2018b)
Saving Plots

```
print ('-dbitmap','Name')
print ('-dtiff','Name')
print ('-djpeg','Name')
```

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the Publisher and/or Author. Contact the American Institute of Aeronautics and Astronautics, Professional Development Programs, 12700 Sunrise Valley Drive, Suite 200, Reston, VA 20191-5807.
Accessing Graphics Properties via Property Editor
```matlab
plot(sin(0:pi/20:pi))
```

```matlab
h_line = plot(sin(0:pi/20:pi));
get(h_line)
```

Prior to R2014b:

- **Color**: [0 0 1]
- **EraseMode**: 'normal'
- **LineStyle**: '-'
- **LineWidth**: 0.5000
- **Marker**: 'none'
- **MarkerSize**: 6
- **MarkerEdgeColor**: 'auto'
- **MarkerFaceColor**: 'none'

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation, in any form or by any means, without the prior written permission of the Publisher and/or Author. Contact the American Institute of Aeronautics and Astronautics, P.O. Box 11962, Washington, DC 20042-1962.
Exploiting Parent – Children Relationship

Figure

h_figure = get(gca, 'parent')

h_axis = get(h_line, 'parent')

h_axis = get(gca, 'parent')

h_axis = get(gcf, 'children')

Line

h_line = plot(sin(0:pi/20:pi));

h_line = get(gca, 'children')

h_line = get(gcf, 'children')

h_line = get(get(gcf, 'children'), 'children')

Comment: any object has a single parent, but may have several children, e.g. several axes (and legends) within one figure, several lines within one axis.
Changing Graphics Object Properties

Prior to R2014b

```
h_line = plot(sin(0:pi/20:pi));
get(h_line)  % Prior to R2014b
set(h_line,'Color','r','LineWidth',2.5)
set(h_line,'ydata',get(h_line,'ydata')*5)
```

Starting from R2014b

```
H.PropertyName=PropertyValue

h_line.Color='r';  h_line.LineWidth=2.5;
h_line.YData=5*h_line.YData;
```
Creating Animations

% Defining a membrane
r = [0:0.05:1]'; % Radius vector
phi = 0:pi/20:2*pi; % Phi angle vector
x = r*cos(phi); % x-coordinates of a grid
y = r*sin(phi); % y-coordinates of a grid
z = besselj(1,3.8316*r)*cos(phi); % Plotting the membrane
mesh(x,y,z)
xlabel('x-axis'), ylabel('y-axis')
zlabel('z-axis'), axis tight
YY=axis; set(gca,'zlim',YY(5:6))
set(gca,'nextplot','replacechildren');

% Creating movie frames
for j = 1:20
mesh(x,y,sin(2*pi*j/20)*z,z);
F(j) = getframe;
end

% Starting the movie
k=questdlg('Ready to watch the movie?',...
'Start the Movie', 'Yes', 'No', 'Yes');
if char(k(1))=='Y'
movie(F,10)
end

% Plotting a sinusoid
x=0:0.1:2*pi; % Defines the x scale
y=sin(x); % Computes sin(x)
z=cos(x); % Computes cos(x)
plot(x,y) % Plots sin(x) curve
set(gca,'xlim',[0 2*pi],'ylim',[-1 1]);
set(gca,'XTickLabel',{'0';'
pi';'2
pi'});
set(gca,'XTick',[0:pi:2*pi])
xlabel('x'), ylabel('y=f(x)')
% Creating the Line object
h_line=get(gca,'children');
% Changing line properties
for i=1:1000
 pause(0.005)
 % Setting the weighting coefficient w
 w=i/1000;
 % Blending sin(x) and cos(x) using w
 d=(1-w)*y+w*z;
 % Changing ydata for the line
 set(h_line,'ydata',d);
end

% Plotting a sinusoid
plot(x,y) % Plots sin(x) curve
set(gca,'xlim',[0 2*pi],'ylim',[-1 1]);
set(gca,'XTick',[0:pi:2*pi])
xlabel('x'), ylabel('y=f(x)')
% Creating the Line object
h_line=get(gca,'children');
% Changing line properties
for i=1:1000
 pause(0.005)
 % Setting the weighting coefficient w
 w=i/1000;
 % Blending sin(x) and cos(x) using w
 d=(1-w)*y+w*z;
 % Changing ydata for the line
 set(h_line,'ydata',d);
end
figure('color','w')
quiver3(0,0,0,1.5,0,0,'LineWidth',2), hold on
quiver3(0,0,0,0.15,0,'LineWidth',2)
quiver3(0,0,0,0,0.15,'LineWidth',2)
 text(1.5,0,0,'n_1'); text(0,1.5,0,'n_2'); text(0,0,1.5,'n_3'
axis([-1 1 -1 1 -1 1]), view(130,30)
xlabel('x_i'), ylabel('y_i'), zlabel('z_i');
R=eye(3);
 h(1)=quiver3(0,0,0,R(1,1),R(1,2),R(1,3),'m','Linewidth',3);
 h(2)=quiver3(0,0,0,R(2,1),R(2,2),R(2,3),'m','Linewidth',3);
 h(3)=quiver3(0,0,0,R(3,1),R(3,2),R(3,3),'m','Linewidth',3);
 ht(1)=text(R(1,1),R(1,2),R(1,3),'f{b_1}');
 ht(2)=text(R(2,1),R(2,2),R(2,3),'f{b_2}');
 ht(3)=text(R(3,1),R(3,2),R(3,3),'f{b_3}');
 ha(1)=text(-0.5,0,0, ['\phi = 0 ^o']);
 ha(2)=text(-0.5,0,0.2,['\theta = 0 ^o']);
 ha(3)=text(-0.5,0,0.4,['\psi = 0 ^o']);
 for i = 1:200
 psi=4*pi*(i-1)/99; phi=2*pi*(i-1)/99; theta=pi*(i-1)/99;
 R=Euler2DCM(psi,theta,phi);
 for j=1:3
 set(h(j),'UData',R(j,1),'VData',R(j,2),'WData',R(j,3));
 set(ht(j),'Position',[R(j,:)]);
 end
 phid=mod(phi*180/pi,360); if phid>180, phid=phid-360; end
 thetad=mod(theta*180/pi,360); if thetad>180, thetad=thetad-360; end
 psid=mod(psi*180/pi,360);
 set(ha(1),'String',['\phi = ' int2str(phid) ' ^o']);
 set(ha(2),'String',['\theta = ' int2str(thetad) ' ^o']);
 set(ha(3),'String',['\psi = ' int2str(psid) ' ^o']);
 pause(0.01)
end

function R=Euler2DCM(psi,theta,phi)
Rpsi =
Rtheta =
Rphi =
R = Rphi*Rtheta*Rpsi;
Replaced with angle2dcm in 2017a
% Plotting a sinusoid
x=0:0.1:2*pi; % Defines the x scale
y=sin(x); % Computes sin(x)
z=cos(x); % Computes cos(x)
plot(x,y) % Plots sin(x) curve

set(gcf,'Renderer','zbuffer');
set(gca,'xlim',[0 2*pi],'ylim',[-1 1]);
set(gca,'XTick', [0:pi:2*pi])
set(gca,'XTickLabel',{'0';'pi';'2pi'})
xlabel('x'), ylabel('y=f(x)')

% Creating the Line object
h_line=get(gca,'children');

aviobj = VideoWriter('sin2cos.avi');
open(aviobj)

% Changing line properties
for i=1:100
% Setting the weighting coefficient w
w=i/100;
% Blending sin(x) and cos(x) using w
d=(1-w)*y+w*z;
% Changing ydata for the line
set(h_line,'ydata',d);
F = getframe;
writeVideo(aviobj,F);
end

close(aviobj);

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the Publisher and/or Author. Contact the American Institute of Aeronautics and Astronautics, Professional Development Programs, 12700 Sunrise Valley Drive, Suite 200, Reston, VA 20191-5807.
Creating Animated Lines

```matlab
x=linspace(0,4*pi,400);
y=sin(x)+0.5*rand(1,length(x));
h(animatedline('Marker','p','Color','b','LineStyle','-.'));
axis([min(x),max(x),min(y),max(y)]), grid
xlabel("x-axis"), ylabel("y-axis")
for k = 1:length(x)
    addpoints(h,x(k),y(k));
drawnow
end
```

Introduced in R2016b
Exploring Different Codices

Note, that the Indeo5 codec (used by default by the `movie2avi` and `avifile` functions) and others were shipped with Windows XP, Windows XP SP2, and prior versions, however they are not shipped with the following operating systems: Windows XP SP1, Windows XP x64, Windows Vista (32/64), and Windows 7 (32/64). You need to install these codecs separately or use no compression.

The frame height and width will be padded to be a multiple of four as required by majority of codices.

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the Publisher and/or Author. Contact the American Institute of Aeronautics and Astronautics, Professional Development Programs, 12700 Sunrise Valley Drive, Suite 200, Reston, VA 20191-5807.
Graphical Input From Mouse

```matlab
axis([0 10 0 10]), hold on
xy = []; n = 0; % Initially, the list of points is empty
%% Picking up multiple points by clicking left mouse button
% (Right mouse button means you are picking the last point)
but = 1;
while but == 1
    [xi,yi,but] = ginput(1);
    plot(xi,yi,'ro')
    n = n+1;
    xy(:,n) = [xi;yI];
end
%% Interpolating with a spline curve and finer spacing
 t = 1:n; ts = 1: 0.1: n;
xys = spline(t,xy,ts);
%% Plot the interpolated curve
plot(xys(1,:),xys(2,:),'b-'); hold off
```

[X,Y] = ginput(N) gets N points from the current axes and returns the x- and y-coordinates in length N vectors X and Y (data points are entered by pressing a mouse button or any key on the keyboard except carriage return, which terminates the input before N points are entered.)

[X,Y,BUTTON] = ginput(N) returns a third result, BUTTON, that contains a vector of integers specifying which mouse button was used (1,2,3 from left).
Numerical Computing with MATLAB by Cleve Moler

www.mathworks.com/moler/ncmfilelist.html
Experiments with MATLAB by Cleve Moler

<table>
<thead>
<tr>
<th>EXM GUI</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solve $A^x = b$

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the Publisher and/or Author. Contact the American Institute of Aeronautics and Astronautics, Professional Development Programs, 12700 Sunrise Valley Drive, Suite 200, Reston, VA 20191-5807.
The End of Chapter 6

Questions?