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Strictly speaking, most autonomous parafoil and payload systems possess only lateral control, achieved by right

and left parafoil brake deflection. An innovative technique to achieve direct longitudinal control through incidence

angle changes is reported. Addition of this extra control channel requires simple rigging changes and an additional

servoactuator. The ability of incidence angle to alter the glide slope of a parafoil and payload aircraft is demonstrated

through a flight-test program with a microparafoil system. Results from the flight-test program are synthesized and

integrated into a six degree-of-freedom simulation. The simulation model is subsequently used to assess the utility of

glide slope control to improve autonomous flight control system performance. Through Monte Carlo simulation,

impact point statistics with and without glide slope control indicate that dramatic improvements in impact point

statistics are possible using direct glide slope control.

Nomenclature

A, B, C = discrete linear model state-space
matrices

A, B, C, P, Q, R, H = Lamb’s coefficients for apparent mass,
inertia, and spanwise camber

b = canopy span
CDS = payload drag coefficient
�c = canopy main chord
�d = brake characteristic length
FW = weight vector in a body reference frame
FS = payload drag vector in a body reference

frame
FA,MA = aerodynamic force and moment vectors

in a body reference frame
FAM,MAM = apparent mass force and moment vectors

in a body reference frame
Hp = discrete model predictive controller

prediction horizon
IT = inertia matrix of total system
IAM, IAI, IH = apparent mass, inertia, and spanwise

camber matrices
Kp, Ki = glide slope controller proportional and

integral gains
KCA, KCAB = model predictive control state

propagation matrices
K = model predictive control gain matrix
m = mass of the combined system including

payload and canopy

p, q, r = angular velocity components in a body
reference frame

~p, ~q, ~r = angular velocity of the system in the
canopy frame

rLOS = line-of-site vector from parafoil to target

SB!, S
C
! = cross-product matrix of the angular

velocity expressed in a body and canopy
reference frame

SBCG;P = cross-product matrix of the vector from
the mass center to aerodynamic center

SBCG;M = cross-product matrix of the vector from
the mass center to apparent mass center

SBCG;C = cross-product matrix of the vector from
the mass center to canopy rotation point

SCVA = cross-product matrix of the parafoil
aerodynamic velcoity

SP, SS = reference area of the parafoil canopy and
payload

TAC = transformation from aerodynamic to
canopy frames

TBC = transformation from body to canopy
frames

u, v, w = velocity components of mass center in
the body reference frame

~u, ~v, ~w = velocity components of the aerodynamic
center in the canopy reference frame

uSA, vSA, wSA = aerodynamic velocities of the payload in
the body frame

VA=I = velocity vector of the wind in an inertial
reference frame

VA, VS = total aerodynamic speed of the parafoil
canopy and payload

x, y, z = inertial positions of the system mass
center

� = canopy incidence angle
�T = glide slope control sampling interval
�xc, �yc, �zc = distance vector components from mass

center to the canopy rotation point in a
body reference frame

�xp, �yp, �zp = distance vector components from the
canopy rotation point to the aerodynamic
center in a canopy reference frame

�LOS = angle of the line-of-sight vector
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�, �,  = Euler roll, pitch, and yaw angles
!LOS = angular velocity of the line-of-sight vector

I. Introduction

P ARAFOIL and payload systems are unique flight vehicles well
suited to perform autonomous airdrop missions. These air

vehicles are compact before parafoil deployment, lightweight, fly at
low speed, and impact the ground with low velocity. The
predominant control mechanism for parafoils is left and right brake
deflection. When a right brake control input is executed, the right
back corner of the parafoil canopy is pulled down by changing the
length of the appropriate suspension lines. Canopy changes created
by brake deflection subsequently cause predictable changes in
aerodynamic loads which is leveraged for control of the vehicle. For
most parafoils, deployment of the right brake causes a significant
drag rise and a small lift increase on the right side of the parafoil
canopy combined with slight right tilt of the canopy. The overall
effect causes the parafoil to skid turn to the right when a right parafoil
brake is activated [1]. Longitudinal control is more difficult to
achieve.Ware and Hassell showed symmetric deflection of brakes to
an angle of 45 deg as pitch control did not effectively change the trim
angle of attack; it did cause an increase in the lift and drag values at
trim conditions, but the lift–drag ratio remained effectively
unchanged [2]. Symmetric brake deflection to an angle of 90 deg
caused large changes in trim angle of attack with the canopy stalling,
reducing the lift–drag ratio to a value of about 0.5. Human skydivers
use weight shift for both longitudinal and lateral control. By shifting
weight fore and aft, glide slope can be actively controlled and it
permits accurate trajectory tracking, to include very accurate ground
impact point control in the presence of relatively high atmospheric
winds.

The bulk of current autonomous parafoil and payload aircraft
employ right and left brake deflection for control, which, strictly
speaking, permits only lateral control. These aircraft typically do not
have a direct means of longitudinal control. Hence, autonomous
controllers for these air vehicles are greatly challenged to track three-
dimensional trajectories and impact a specific ground target point.
The usual means to create some semblance of altitude control is
through a weaving maneuver back and forth across a desired
trajectory path to “dump” altitude as progress is made along the
desired path [3–10]. Near the intended ground impact location,
current autonomous systems either spiral over the target or S-turn to
the target. A key to the success for these algorithms is accurate
descent rate estimation which is difficult to accomplish and prone to
error.

The work reported here creates a glide slope control mechanism
intended for use on autonomous parafoil and payload aircraft. Rather
than using weight shift or symmetric brake deflection, glide slope
control is physically achieved by changing the longitudinal rigging
of the parafoil and payload combination dynamically in flight. The
extra degree of freedom of control requires simple rigging changes
and the addition of one additional servoactuator to the system. A
detailed description of the basic mechanical design of the glide slope
control mechanism is provided next. Traditional parafoil dynamic
models treat the canopy orientation fixed with respect to the payload
[11–14]. These traditional models allow effects such as apparent
mass to be easily incorporated. A new six degree-of-freedom model
is created that includes changing canopy orientation with respect to
the payload and model apparent mass effects in a complete manner.

When combined with traditional right and left brake control, glide
slope control is an attractive feature for autonomous parafoil and
payload aircraft because it allows the flight control laws to directly
correct descent rate, thus eliminating the need for descent rate
estimation and the resulting error induced into the final delivery
error. The ability of this system to change glide slope in flight is
demonstrated with flight-test results for an exemplar microparafoil
and payload system. The microparafoil and payload system is fitted
with a data logger equipped with a sensor suite that contains a global
positioning system (GPS), accelerometers, gyroscopes, barometric
altimeter, magnetometers, and servoposition, so that the complete

state of the payload along with all control inputs can be recorded.
These flight-test results are subsequently synthesized and
incorporated into a six degree-of-freedom (DOF) parafoil
simulation, and autonomous performance with and without glide
slope control is reported. Monte Carlo simulations are performed to
predict impact point statistics using only lateral control, and lateral/
longitudinal control. Results indicate that a dramatic improvement in
impact point statistics is realized with the addition of glide slope
control.

II. Parafoil Dynamic Model

Figure 1 shows a schematic of a parafoil and payload system.With
the exception of movable parafoil brakes, the parafoil canopy is
considered to be a fixed shape once it has completely inflated. The
combined system of the parafoil canopy and the payload aremodeled
with six DOF, including three inertial position components of the
total systemmass center as well as the three Euler orientation angles.
A body frame is fixed at the system mass center with IB forward and
aligned with the top of the payload. Orientation of the parafoil
canopywith respect to the payload is defined as the incidence angle�
and is considered a control variable. Rotation of the canopy about
point C allows tilting of the canopy lift and drag vectors resulting in
changes in the equilibriumglide slope. The canopy rotation pointC is
in linewith the rear suspension lines so that by shorting the front lines
and lengthening the brake lines, a pure canopy rotation can be
achieved. The aerodynamic center is defined as P.

The kinematic equations for the parafoil and payload system are
provided in Eqs. (1) and (2). The common shorthand notation for
trigonometric functions is employed where sin��� � s�,
cos��� � s�, and tan��� � t�.8<

:
_x
_y
_z

9=
;� �TIB�T

(
u
v
w

)
(1)

8<
:

_�
_�
_ 
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;�
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2
4

3
5(pq

r

)
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The matrix TIB represents the transformation matrix from an
inertial reference frame to the body reference frame.

Fig. 1 Parafoil and payload schematic.
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TIB �
c�c c�s �s�

s�s�c � c�s s�s�s � c�c s�c�
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2
4

3
5 (3)

The dynamic equations are formed by summing forces and
moments about the system mass center both in the body reference
frame and equating to the time derivative of linear and angular
momentum, respectively.
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:

_u
_v
_w

9=
;� 1

m
�FW � FA � FS � FAM� � SB!

(
u
v
w

)
(4)

8>><
>>:

_p

_q

_r

9>>=
>>;� �IT �

�1

0
BBB@MA �MAM � SBCG;PFA � SBCG;SFS

� SBCG;MFAM � SB!�IT �

8>><
>>:
p

q

r

9>>=
>>;

1
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The convention is used where the vector cross product of two
vectors r� f rx ry rz gT and F� fFx Fy Fz gT both ex-
pressed in the A reference frame can be written as

SArF�
0 �rz ry
rz 0 �rx
�ry rx 0

2
4

3
5
8<
:
Fx
Fy
Fz

9=
; (6)

Forces appearing in Eq. (4) have contributions from weight,
aerodynamic loads on the canopy and payload, and apparent mass.
Weights contribution is given in Eq. (7).

FW �mg

8<
:
�s�
s�c�
c�c�

9=
; (7)

Aerodynamic forces on the canopy appearing in Eq. (4) are
expressed in the body reference frame; however, they are a function
of the aerodynamics velocities in the canopy frame. Defining TBC as
the single axis transformation from the body to canopy reference
frame by the incidence angle �, the aerodynamic velocity of the
parafoil in the canopy frame is given in Eq. (8).
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:
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)
� SB!

0
BB@
8<
:
�xc
�yc
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8<
:
�xp
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�zp

9=
;
1
CCA

� �TIB�VA=I

3
775 (8)

The aerodynamic angles then become �� a tan� ~w= ~u� and
�� a sin� ~v=VA�. Equation (9) defines the canopy aerodynamic
forces in the body reference frame using TAC as the transformation
from aerodynamic to canopy frames by the angle �. Payload drag is
defined in a similar manner in Eq. (10), in which uSA, vSA, and wSA

are payload aerodynamic velocities in the body frame.

F A �
1

2
�V2

ASP�TBC�T �TAC�

8<
:

CD0 � CD�2�2
CY��

CL0 � CL��� CL�3�3

9=
; (9)

F S ��
1

2
�VSSSCDS

8<
:
uSA
vSA
wSA

9=
; (10)

Moments appearing in Eq. (5) have contributions from
aerodynamic moments and apparent inertia, and from forces on the
canopy and payload. Aerodynamic moments expressed in the body
frame are given in Eq. (11).

M A �
1

2
�V2

ASP�TBC�T

8>><
>>:
b�Cl��� �b=2VA�Clp ~p� �b=2VA�Clr ~r� � Cl�a��a � �d�

�c�Cm0 � � �c=2VA�Cmq ~q�
b�Cn��� �b=2VA�Cnp ~p� �b=2VA�Cnr ~r� � Cn�a��a � �d�

9>>=
>>; (11)

A body moving in a fluid places the fluid in motion. The result
from accelerating the fluid is a rate of change in both its linear and
angular momentum. Typical aircraft having large mass-to-volume
ratios have negligible effects from the mass of the accelerating fluid.
Parafoils with small mass-to-volume ratios can experience large
forces and moments from accelerating fluid called “apparent mass”
and “apparent inertia” because they appear as additional mass and
inertia values in the final equations of motion, provided that their
effects are not already covered by the aerodynamic coefficients.
Kinetic energy of the fluid can be written as

2T � A ~u2 � B ~v2 � C ~w2 � P ~p2 �Q ~q2 � R ~r2 � 2H� ~u ~q� ~v ~p�
(12)

where it is assumed that the canopy has two planes of symmetry, x–z
and y–z. Asymmetry about the x–y plane is allowed to account for
spanwise camber and the seven constants are defined by Lamb [15].
A canopy of general shape may have has many as 21 constants
defining the kinetic energy, however. Typical parafoil canopies will
have approximately two planes of symmetry reducing to only seven
constants. If spanwise camber is neglected, the canopy can be
approximated by an ellipsoid so thatH becomes zero. The constants
in Eq. (12) can be calculated numerically for a known shape or can be
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approximated as discussed in [15–17]. Forces and moments from
apparentmass and inertia are found by relating thefluid’smomentum
to its kinetic energy in a similar way as Lissman and Brown [16], and
are summarized in Eqs. (13–17). In the apparent mass contributions,
it is assumed that the incidence angle is slowly varying so that its
derivative is negligible compared with the body angular rates.
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2
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Notice the forces and moments from apparent mass are a function of
the canopy incidence angle. Equations (13) and (14) couple the linear
and rotational dynamic in Eqs. (4) and (5). Final dynamic equations
of motion are found by substituting all forces and moments into
Eqs. (4) and (5), resulting in the matrix solution shown in Eqs. (18)
and (20). The common convention is used for tensors of second rank
such that �I0X � � �TBC�T �IX��TBC� for the quantities in Eqs. (15–17).
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The matrix in Eq. (18) appears as an inertia matrix and satisfies
many properties of a typical inertia matrix such as symmetry. In the
case where all apparent mass and inertia effects are negligible,
Eq. (18) reduces to a block diagonal system where linear and
rotational dynamic equations decouple. The effective apparent mass
and inertia matrices I0AM, I

0
H , and I

0
AI are functions of the canopy

incidence angle, so that changing the incidence angle for glide slope
control results in varying apparent mass and inertia matrices. This is
in contrast to conventional models in which apparent mass and
inertia coefficients are assumed constant.

III. Test System

The parafoil system tested is shown in Figs. 2 and 3 with the
canopy deployed and undeployed, respectively. The payload of the
system consists of a 6 	 6 	 18 in: cardboard box with two avionic
boxes on either end. The upper avionics box consists of a data logger
with battery, canopy pack, and a Hitec HS-311 servo used to release
the packed parafoil. Sensors included in the upper avionics box are
three accelerometers, gyroscopes and magnetometers, a global
positioning system, and barometric altimeter. The upper box was
designed to allow the top flaps of the cardboard box to flare out at a
45 deg angle to allow the undeployed system to be cone stabilized
(see Fig. 3). The lower avionics box contains three Hitec HS-785HB
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sail winches, a Hitec electron 6 FM receiver, and a battery pack. Sail
winch 1 and 2 control the right and left brake lines, whereas sail
winch three controls the front lines of the parafoil. The sail winch
signals are mixed together so that as the front lines are pulled in, the
brake lines are let out and vise versa. This allows the geometry of the
canopy to accommodate for different incidence angles. Note the rear
lines of the canopy remain fixed to the upper box, whereas the brake
lines and front lines run through the upper avionics box to the sail
winches in the lower avionics box.

As mentioned before, the incidence angle of the parafoil is
changed using the three sail winches in the lower avionics box. An
example of this incidence change is shown in Fig. 4. Two different
parafoil systems were used in this study. Systems 1 and 2 differ
mainly in their canopy thickness, leading-edge geometry, and
payload weight. The dimensions of the systems are shown in Fig. 5
and outlined in Table 1.

IV. Flight Results

Four flight tests were conducted in low-wind conditions, two for
each system. System 1 was configured with a nominal incidence �1

of �6 deg and, once equilibrium was achieved, the incidence angle
was changed. In the first flight of system 1, the canopy was rotated
down to an incidence �2 of �24 deg, whereas, during the second
flight, the canopy was rotated up to an incidence �3 of 10 deg.
System 2 was configured with a nominal incidence �4 of �24 deg
and was subsequently rotated down to an incidence �5 of �44 deg
for both the third and fourth flight tests. Results are shown after
canopy opening in Figs. 6–8. Figure 6 shows results for theflight path
in which both altitude and distance have been nondimensionalized
with respect to the initial altitude. The flight path angle � can be seen
by the slope of the flight path in Fig. 6 and the glide slope (GS) is
defined as �1= tan���. Table 2 summarizes the four flight tests.

System 1 responds to a decrease in incidence from�6 to�24 deg
with a 70% increase in GS, from 1.45 to 2.46. Increasing the
incidence from �6 to 10 deg results in a stalled condition where the
GS is decreased 89%. System 2 responds in an opposite manner with
a decrease in incidence from �24 to �44 deg, resulting in a 48%
decrease inGS from3.70 to 1.94.Differences are also observed in the
vertical and forward velocity trends where, for system 1, changing
the incidence results in large forward speed changes with vertical
speed remaining nearly unchanged, whereas, for system 2, the
opposite is true. Results from system 1 were used to estimateCL and
CD curves for the combined system including payload. The CL and

CD curves are approximated by a cubic and quadratic curves defined
by CL0, CL�, CL�3, CD0, and CD�2. Using results for system 1 in
Table 2, the coefficients are estimated as 0.28, 0.68, �0:35, 0.135,
and 0.95, respectively. Figure 9 shows the estimated curves
compared with the measured results for system 1 including canopy
and payload. The estimated values are consistent with results from
Ware andHassell [2] who observedmaximum lift-to-drag ratios near
2.5, high profile drag and low maximum lift coefficients when
compared with a standard rigid wing. It is important to note that, as
demonstrated by results from Ware and Hassell [2], the CL curve is
typicallyflat near stall with the exact angle of attack at stall difficult to
define. The CL curve is approximated well by a cubic function pre-
and poststall, however, a higher order function is required to
approximate the stall region. The estimatedCL curve in Fig. 9 is valid
at angles of attack lower than 30 deg and higher than 70, the location
of the maximum CL can only be identified as occurring within that.
Estimation of the stall region is unnecessary because all glide slope
control and simulations occur before this region. Simulations of the
estimated systemGS are shown in Fig. 10 and are consistent with test
data.

Fig. 2 Test system with deployed parafoil.

Fig. 3 Test system with undeployed parafoil.

Fig. 4 Parafoil incidence angle change.

Table 1 System characteristics

Parameter System 1 System 2

�1, deg 80 50
�2, deg 45 45
h, ft 0.35 0.17
b, ft 4.5 5.0
c, ft 2.1 1.3
Weight, lbf 5.23 1.59
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From Fig. 9, system 1 operates to the right of its maximum lift-to-
drag ratio for all incidence angles, resulting in an increased GS as the
incidence is decreased.Decreasing the incidence of system 2 resulted
in a decreased GS, demonstrating system 2 operates to the left of its

maximum lift-to-drag ratio. Noting that the maximum L=D occurs
well before stall, its angle of attack can be estimated using Eq. (21).

�L=Dmax �

�����������������������������������
CL0
CL�

�
2

� CD0
CD�2

s
� CL0
CL�

(21)

Equation (21) shows the maximum L=D angle of attack increases as
CL� increases and CD�2 decreases, both occurring as the lifting
surface efficiency factor increases. This is consistent with system 2
having a small thickness-to-chord ratio, larger aspect ratio, and more
rounded nose. Parafoils of higher efficiency will be able to operate to
the left of their maximum L=D, whereas an inefficient canopy may
operate to the right. It is demonstrated by systems 1 and 2 that a
parafoil system can effectively operate on either side of the

Fig. 5 Canopy geometry.

Fig. 6 Flight path angle.

Fig. 7 Altitude.

Fig. 8 Distance traveled.

Table 2 Flight-test summary

System 1 �1 ��6 deg System 1 �2 ��24 deg System 1 �3 � 10 deg System 2 �4 ��24 deg System 2 �5 ��44 deg

�, deg 28 6 70 10 5
Glide slope 1.45 2.46 0.28 3.70 1.94
Speed, ft=s 26 35 16 21 26
CL 0.56 0.35 0.49 0.45 0.27
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maximumL=D angle of attack and have effective glide slope control.
A system, however, may be arranged such that it operates near its
maximum L=D, in such a case, minimal glide slope control will
result from the small slope of the L=D curve in this vicinity.

Simulations were completed for system 1 in which the incidence
was decreased from �6 to �12, �18, and �24 deg at 15 s intervals
with each change occurring linearly over a second. Figure 11 shows
the glide slope dynamics persist for 5 s after each change in
incidence. TheGS initially decreases in response to the decreased lift
from decreasing angle of attack before it increases as the speed
increases. Changes in angle of attack and velocities are shown in
Figs. 12 and 13, respectively. As incidence is decreased, the angle of
attack decreases approaching the maximum L=D where GS control
authority diminishes. A nearly linear GS mechanism can be
implemented for system 1 by designing the nominal incidence to be
�12 deg, so that
25% changes in GS can be achieved over a �6–
�18 incidence range. If maximum L=D flight is desired, system 1
can be flown at an incidence of�18 deg, however, the GS can only
be effectively decreased.

V. Precision Placement Algorithm

The precision placement trajectory tracking algorithm used here is
based on a model predictive control (MPC) scheme that tracks

Fig. 9 Estimated lift coefficient, drag coefficient, and CL=CD for

system 1 including payload.

Fig. 10 Comparison of simulated and measured GS for system 1.

Fig. 11 Simulated GS varying incidence � of system 1.

Fig. 12 Simulated angle of attack varying incidence � of system 1.

Fig. 13 Simulated velocities varying incidence � of system 1.
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desired heading and was successfully demonstrated on a small
parafoil by Slegers and Costello [18]. It was also shown in [18] that
linearization of a parafoil model results in the lateral dynamics being
decoupled from longitudinal dynamics. Consider a single input/
single output (SISO) linear discrete system described in state-space
form as given in Eq. (22).

xk�1 �Axk �Buk yk �Cxk (22)

Assume the systemmatricesA,B, andC are known and that xk is the
state vector ��k  k pk rk �T , uk is the asymmetric brake
deflection �a, and yk is the output  k at time k. The preceding model
can be used to estimate the future state of the system. Assuming a
desired trajectory is known, an estimated error signal ~ek � �yk � ~yk is
computed over a finite set of future time instants called the prediction
horizon Hp, where �yk and ~yk represent the desired output and an
estimated quantity at time k. In model predictive control, the control
computation problem is cast as a finite time discrete optimal control
problem. To compute the control input at a given time instant, a
quadratic cost function is minimized through the selection of the
control history over the control horizon. The cost function can be
written as

J� � �Y � ~Y�T� �Y � ~Y� �UTRU (23)

where

�Y � f �Yk�1 �Yk�2 . . . �Yk�HpgT (24)

~Y � KCAxk � KCABU (25)

U� f uk uk . . . uk�Hp�1gT (26)

and R is a symmetric positive semidefinite weighting matrix
penalizing control having size Hp. Equation (25) is used to express

the predicted output vector ~Y in terms of the system matrices.

KCA �

CA
CA2

..

.

CAHP

2
664

3
775 (27)

KCAB �

CB 0 0 0 0
CAB CB 0 0 0
CA2B CAB CB 0 0

..

. ..
. . .

.
0

CAHp�1B � � � CA2B CAB CB

2
66664

3
77775 (28)

Equations (25) and (26) can be substituted into the cost function of
Eq. (23) resulting in Eq. (29), that is in terms of the system state xk,
desired trajectory �Y, control vector U, and system matricesA,B,C,
and R.

J� � �Y � KCAxk � KCABU�T� �Y � KCAxk � KCABU� � UTRU
(29)

The control U, which minimizes Eq. (29), is

U � K� �Y � KCAxk� (30)

where

K � �KTCABKCAB � R��1KTCAB (31)

Equation (30) contains the optimal control input over the entire
control horizon, however, at time k only the first element uk is
needed. The first element uk can be extracted from Eq. (30) by
definingK1 as the first row ofK. The final expression for an optimal
control at the next time sample is given in Eq. (18), where a

description of estimating the desired heading for a parafoil is
provided in [18].

uk � K1� �Y � KCAxk� (32)

Glide slope control is treated separately from heading tracking and
is implemented similar to proportional navigation of guidedmissiles.
A diagram of the glide slope guidance is shown in Fig. 14where rLOS
is the line-of-sight vector from the parafoil to the target. As the
parafoil approaches the target, any misalignment of the velocity
vector and rLOS will result in rLOS rotating with the angular velocity
!LOS provided in Eq. (33). For the parafoil to impact the target, the
angular velocity of the line-of-sight vector !LOS must be zero; if the
parafoil is falling too fast or too slow, !LOS will be positive or
negative, respectively. A discrete proportional-integral controller,
shown in Eq. (34), uses incidence angle to track zero !LOS, thus
placing the system on the required GS to impact the target. In
Eq. (34), the angular velocity !LOS is sampled at intervals of �T.

!LOS �
V

D
sin��LOS � �� (33)

�k � �k�1 � �Kp � Ki�T=2�!LOS; k � �Kp � Ki�T=2�!LOS;k�1

(34)

TheMPC algorithm requires a desired heading trajectory which is
defined by four parameters: target location, away distance, cycle
distance, and wind heading angle. As shown in Fig. 15, these four
parameters define three fixed tracking points: target point, away
point, and cycle point. Using these three points, precision placement
objectives are divided into four phases when glide slope control is
implemented and five phases otherwise. The phases are pictured in
Fig. 15 and defined as follows:

Phase 1: The system is released upwind to ensure it reaches the
target in strong winds. System travels a direct path to the cycle point.

Phase 2: System circles around the away and cycle point.
Downwind glide slope is estimated when traveling toward the target
point. This continues until the switch altitude is reached. The switch

Fig. 14 Glide slope guidance geometry.

Fig. 15 Phases of precision placement algorithm.
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altitude is defined as the distance to the target divided by the
estimated glide slope plus an excess altitude. Excess altitude is only
required when glide slope control is absent. Excess altitude allows
the system to turn to the target early, because when GS control is
absent, the effective GS cannot be increased, only reduced, by
swerving.

Phase 3: System travels directly to the away point. Glide slope
estimation is terminated.

Phase 4: With no GS control, system continues glide slope
estimation. At each update time, the distance to the target and a
distance towaste are calculated.MPC turns left and right, tracking an
“S” trajectory generated by waypoints to waste an appropriate
distance to impact the target. With GS control, at each update time,
the angular velocity of the line-of-sight vector!LOS is calculated and
a proportional-integral controller regulates it to zero. MPC tracks a
path directly to the target.

Phase 5: The system flies directly to the target once a critical
altitude is achieved.

Nominal simulations of the precision placement algorithm with
MPC were performed for the canopy and payload of system 1. The
nominal incidence is �12 deg and physical parameters are listed in
Table 3. Aerodynamic coefficients listed in Table 3 were estimated
from dynamic maneuvers during flight testing. The discrete linear
matrices used for MPC are provided in Eqs. (35) and (36) where the
discretization period is 0.5 s. The system is released from an altitude
of 2500 ft, 2500 ft downrange and 150 ft cross range with a desired
target at the origin. Away and cycle distance are 2000 and 1000 ft,
respectively.Without GS control, the critical and excess altitudes are
100 and 200 ft, respectively. A 5 ft=s tailwind rotated 10 deg with
respect to the target line is used both with and without GS control.
Results are shown in Figs. 16–20 where both methods impact within
15 ft of the target. Phases 1 and 2 are identical for both methods.
Phase 3 is entered sooner without GS control as seen in Figs. 16 and
17 because of the required excess altitude. Phase 3 is entered at an
altitude of 1250 ft at 103 s without GS control and 1050 ft at 111 s
with GS control. Phase 4 is entered at 132 swithout GS control and at
140 s with GS control. During phase 4, the system with GS control
varies the canopy incidence and angle of attack to adjust for errors in
GS, as seen in Figs. 18 and 19. The system without GS control
swerves left and right to adjust the effective GS, requiring more
active brake maneuvers in the final stages, as shown in Fig. 20. An
advantage of GS control is seen during the fourth phase. Over the last
2000 ft of range, the system with GS control maintains a constant
orientation with respect to the target and wind, enabling accurate GS
estimation. Swerving required by the system without GS control
changes the orientation with respect to the wind. As the system faces
toward positive and negative cross range, the wind slows and
increases the forward speed, respectively. Changing speeds make

Table 3 Parafoil and payload physical parameters

Parameter Value Units

IXX 0.312 slug � ft2
IYY 0.296 slug � ft2
IZZ 0.039 slug � ft2
IXZ 0.022 slug � ft2
CY� �0:20 ——

Clp �0:15 ——

Cl�a �0:005 ——

Cmq �0:40 ——

Cnr �0:09 ——

Cn�a 0.007 ——

CDS 0.30 ——

SS 0.65 ft2

A 0.0008 slug
B 0.0022 slug
C 0.0290 slug
H 0.0014 slug
P 0.040 slug � ft2
Q 0.100 slug � ft2
R 0.0018 slug � ft2

Fig. 16 Simulated precision placement cross range.

Fig. 17 Simulated precision placement altitude.

Fig. 18 Simulated precision placement incidence angle.
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accurate GS estimation more difficult, while the variation in cross
range induces additional errors in impact.

A �

0:899 0 0:180 0:020
0:008 1:000 0:001 0:033
�0:119 0 �0:017 �0:002
0:008 0 0:002 0:000

2
664

3
775 (35)

B �

0:001
0:101
�0:012
0:104

2
664

3
775 (36)

VI. Precision Placement Results

Monte Carlo simulations of 100 drops were completed using the
precision placement algorithm with MPC. Noise was injected into
GPS, altitude, and inertial measurement unit (IMU) sensors. In
addition to sensor errors, three sources of wind variation were added

to the simulation: wind shear, varying magnitude, and direction. The
wind was divided into two segments varied independently, namely,
wind above 1000 ft and wind below 1000 ft, to simulate inconsistent
wind profiles. Prevailing wind was assumed by the system to come
from a heading of 0 deg,while truewind varied in its direction. For all
simulations, the target was set as the origin. Sensor noise and wind
variation statistics are listed in Table 4.

Monte Carlo simulations were first completed with and without
GS control including sensor errors and no wind. Dispersion results
are shown in Fig. 21, whereas histograms are provided in Figs. 22
and 23. The circular error probable (CEP) defined by the radius,
which includes 50% of the impacts, are shown by a circle. CEP with
and without GS control are 9.8 and 13.2 ft, respectively, with
dispersion patterns being similar in both cases. The main difference
is found in the histograms in which, without GS control, impacts are
skewed toward larger errors, where 5% of impacts have more than
30 ft of error.WithGS control, no impact hasmore than 30 ft of error.

Results including both sensor errors and wind variations are
shown in Figs. 24–26. CEPwith andwithout GS control are 16.7 and
72.4 ft, respectively. Including winds, the GS control CEP increased
by only 70%, whereas the CEP without GS control increased 450%.
Including GS control, a reduction by more than a factor of three is
achieved in CEP and sensitivity to winds is reduced. Dispersion
patterns also differ significantly. With GS control, the dispersion is

Fig. 19 Simulated precision placement angle of attack.

Fig. 20 Simulated precision placement asymmetric control.

Table 4 Error statistics

Parameter Mean Standard deviation

Initial condition position X 3500 ft 750 ft
Initial condition position Y 0 ft 750 ft
Initial condition position Z 4500 ft 750 ft
GPS X bias 0.0 ft 3.0 ft
GPS Y bias 0.0 ft 3.0 ft
GPS X deviation 1.0 ft 0.0 ft
GPS Y deviation 1.0 ft 0.0 ft
Altitude bias 0.0 ft 5.0 ft
Altitude variation 1.0 ft 0.0 ft
Roll, pitch, and yaw bias 0.0 deg 1.7 deg
Roll, pitch, and yaw deviation 1.7 deg 0.0 deg
u, v, and w bias 0:0 ft=s 0:1 ft=s
u, v, and w deviation 0:7 ft=s 0:0 ft=s
p, q, and r bias 0.0 deg 1.7 deg
p, q, and r deviation 1.0 deg 0.0 deg
Wind1 10:0 ft=s 3:0 ft=s
Wind2 10:0 ft=s 3:0 ft=s
Wind heading error 0.0 deg 11.0 deg

Fig. 21 Dispersion for all sensor errors and no wind.
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mainly in range with 97% of the cases having less than 20 ft of cross-
range error. Swerving required without GS control increased
dispersion in cross range. GS control also reduced errors greater than
200 ft from 11 to 1.

VII. Conclusions

Glide slope control was demonstrated with two parafoil systems.
One system experienced increased glide slope from decreasing the
incidence angle whereas the other experienced the opposite. The
location of the system’s angle of attack on theL=D curve determined
the response. Parafoils of higher efficiency possessing smaller
thickness-to-chord ratios, larger aspect ratios, and rounded nosemay
operate to the left of their maximum L=D. Inefficient canopies may
tend to operate to the right. Effective GS control can be achieved in
either case. GS control becomes minimal when operating near the
maximum L=D.

Precision placement was demonstrated with and without GS
control. Without GS control, the parafoil swerves left and right to
change the effective GS toward the target. With GS control, the
incidence angle is controlled to place the system on a desired GS
while traveling directly toward the target. Monte Carlo simulations
completed with sensor errors and no wind showed successful

Fig. 22 Without GS control histogram for sensor errors and no wind.

Fig. 23 GS control histogram for sensor errors and no wind.

Fig. 24 Dispersion for all sensor errors and varying wind.

Fig. 25 No GS control histogram for sensor errors and varying winds.

Fig. 26 GS control histogram for sensor errors and varying winds.
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precision placement in both cases. Using GS control, the CEP was
slightly lower, 9.8 ft compared with 13.2 ft without. In the presence
of uncertain winds, GS control reduced the CEP by a factor of three
compared with no GS control. The resulting improvement was a
result of improvedGS estimation by traveling the same direction and
a reduction in cross-range error by not requiring swerve maneuvers.
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