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A model predictive control strategy is developed for an autonomous parafoil and payload 

system.  Since the technique requires a linear dynamic model of the system, a reduced state 

linear model based on a nonlinear 6 degree-of-freedom parafoil and payload model is 

established and validated.  In order to use the reduced state linear model for model 

predictive control the desired trajectory in the x-y plane is mapped into a desired heading 

angle using Lagrange interpolating polynomials.  Flight test results demonstrate that this 

model predictive control strategy is a natural and effective method of achieving trajectory 

tracking in a parafoil and payload system. 

Nomenclature 

zyx ,,    = Components of position vector of the system mass center in an inertial frame. 

ψθφ ,,   = Euler roll, pitch and yaw angles of system. 

zyx ,,    = Components of velocity vector of the system mass center in an inertial frame. 

rqp ,,   = Components of angular velocity of the system in the body reference frame. 

Tm     =  Combined mass of payload and parafoil. 

TI     = Inertia matrix of combined parafoil and payload system with respect to its mass center. 
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T      = Transformation matrix from inertial to body reference frame. 

AF    = Aerodynamic force components in the body reference frame. 

WF    =  Combined weight of the parafoil and payload in the body frame. 

ωS    = Skew symmetric cross product operator of parafoil and payload system angular velocity.  

aV     = Total aerodynamic velocity of the parafoil and payload system. 

aLLL CCC δα ,,0   = Aerodynamic lift coefficients for the parafoil and payload. 

aDDD CCC δα ,, 20  = Aerodynamic drag coefficients for the parafoil and payload. 

allpl CCC δφ ,,   = Aerodynamic roll coefficients for the parafoil and payload. 

mqmm CCC ,,0 α   = Aerodynamic pitch coefficients for the parafoil and payload. 

annr CC δ,  =  Aerodynamic yaw coefficients for the parafoil and payload. 

aδ     = Asymmetric control deflection. 

biasδ    =  Control bias. 

d     = Control flap width. 

pH    = Prediction horizon. 

σ     = Intersect parameter defining second point in desired path. 

 

I. Introduction 

A N air vehicle that is lightweight, flies at low speed, provides “soft” landing capability, and is compact before 

deployment is the parafoil and payload aircraft configuration.  As the name suggests, the vehicle is 

comprised of a parafoil canopy connected to a payload body with suspension lines.  Control is affected by two 

primary means, namely, deflection of left and right parafoil brakes and movement of the mass center of the complete 

system.  Aviation enthusiasts commonly use these aircraft as recreational air vehicles.  In this case, the pilot deflects 

the right and left parafoil brakes pulling down on the right and left side control lines.  The pilot through appropriate 
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body movement changes the center of mass of the system.  The dynamics are sufficiently slow such that expert 

paraglider pilots can track a desired trajectory and attain accurate ground impact.  Subconsciously these pilots 

continuously project the trajectory forward in time and compare the results with the desired path.  The error between 

the projected and desired path is used to determine control action.      

Parafoil and payload aircraft are also particularly well suited as an autonomous air vehicle for sensing 

applications.  These air vehicles can be released at altitude from a parent delivery aircraft or can be hand launched 

from the ground.  For autonomous control, each individual sensor payload is fitted with an inexpensive guidance and 

control module.  A control strategy that mimics how human pilots control paragliders is model predictive control.  In 

model predictive control, a dynamic model of the system is used to project the state into the future and subsequently 

use the estimated future states to determine control action. It is a common control technique in the process control 

industry.1 Currently, model predictive control is being applied to a wide variety of problems, spanning many 

different industries. Mei, Kareem, and Kontor studied vibration reduction of a tall building experiencing wind 

excitation using model predictive control and linear quadratic Gaussian control strategies.2 They found that the 

model predictive control scheme performed well and was robust to uncertainty in building stiffness. Tsai and Huang 

used a model reference adaptive predictive controller for a variable-frequency oil-cooling machine used with 

dynamically complex machine tool.3 Kvaternik, Piatak, Nixon, Langston, Singleton, Bennett, and Brown developed 

a generalized predictive controller for tilt rotor aeroelastic stability augmentation in  airplane mode of flight. Using 

the model predictive control strategy, significant increases in damping of aircraft flexible vibration modes were 

achieved in a wind tunnel test.4 The work reported here creates a model predictive control strategy for a parafoil and 

payload aircraft. Performance of the autonomous flight control system is shown through flight tests of the system 

under a variety of conditions. 

II. Model Predictive Control 

Consider a discrete system described in state space form as given in Equation 1. 
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Assume that the system matrices ,  and BA, C D  are known and that is the state vector, is the control input, 

and  is the output at time k . The discrete model can be used to estimate the future state of the system. Assuming 

a desired trajectory is known ( , an estimated error signal 

kx ku

ky

)kw kkk ywe ~~ −=  is computed over a finite set of future 

time instants called the prediction horizon, . The symbol ~ is used to represent an estimated quantity. In model 

predictive control, the control computation problem is cast as a finite time discrete optimal control problem. To 

compute the control input at a given time instant, a quadratic cost function is minimized through the selection of the 

control history over the control horizon. The cost function can be written as: 

pH

 ( ) ( ) RUUYWYWJ TT
+−−= ~~

 (2) 

where, [ ]THkkk p
wwwW +++= 21  (3) 
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~
CADCABkCA KUKxKY ++=  (4) 

 [ ]THkkk p
uuuU 1−+=  (5) 

and  is a symmetric positive semi-definite matrix of size . Equation 1 is used to express the predicted output 

vector Y  in terms of the system matrices.

R pH

~ 1  
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Equations 6 through 8 can be substituted into Equation 2 resulting in the cost function in Equation 9 that is in terms 

of the system state , desired trajectory W , control vector , and system matrices , , kx U BA, C D and . R

 ( ) ( ) RUUKUKxKWKUKxKWJ T
CADCABkCA

T
CADCABkCA +−−−−−−= 1  (9) 

The control U , which minimizes Equation 9 is 

 ( )1CADkCA KxKWU −−Κ=  (10) 

where, 

 ( ) T
CABCAB

T
CAB KRKK

1−
+=Κ  (11) 

Equation 10 contains the optimal control inputs over the entire control horizon, however at time k  only the first 

element is needed.  The first element  is extracted from Equation 10 by defining  as the first row of ku ku 1Κ Κ . 

The optimal control over the next time sample becomes 

 ( )CADkCAk KxKWu −−Κ= 1  (12) 

where, calculation of the first element of the optimal control sequence  requires the desired trajectory W  over the 

prediction horizon and the current state . kx

III. Parafoil And Payload Model 

The combined system of the parafoil canopy and the payload is represented with 6 degrees-of-freedom 

(DOF) including three inertial position components of the system mass center as well as the three Euler orientation 

angles of the parafoil and payload system. Kinematic equations of motion for the parafoil and payload system are 

provided in Equations 13 and 14.  
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The matrix T  represents the transformation matrix from an inertial reference frame to the body reference frame. 
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The common shorthand notation for trigonometric functions is employed where ( ) αα s≡sin , ( ) αα c≡cos  and 

( ) αα t≡tan .  The dynamic equations of motion are provided in Equations 16 and 17. 
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where, 
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The weight force vector in the body reference frame is given in Equation 21. 
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The aerodynamic forces acting at the system mass center and the aerodynamic moments about the system mass 

center are given in Equations 22 and 23 respectively. 
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Model predictive control requires a linear model of the states to be controlled. The desired states to control 

in a parafoil and payload system are the inertial positions x and . Equations 13 through 23 describing the parafoil 

and payload system are nonlinear and in order to apply standard model predictive control, must be linearized. 

Consider a parafoil and payload in a steady turn performing a helix as it falls. All the states excluding the inertial 

positions 

y

yx, and z and Euler yaw angle reach a steady state. The inertial positions do not appear in any of the 

equations of motion. However; the yaw angle appears in Equation 13 relating the inertial velocities to the body 

velocities. A linear model that accurately represents the inertial positions yx, and z of the nonlinear model must 

constrain the yaw angle to only small changes about a nominal yaw angle. Constraining the yaw angle in such a way 
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limits the model to nearly straight flight and is not sufficient for general flight.  Observation of a parafoil and 

payload system shows that the velocities and  expressed in the body reference frame are nearly constant 

under typical flight conditions. If a reduced state 

vu, w

[ ]Trpψφ  is considered for model predictive control 

purposes then the equations for describing the rolling and pitching in Equations 14 and 17 can be 

linearized assuming that the aerodynamic velocity  is constant.  Euler pitch is not included in the reduced state 

because after linearization pitch becomes uncoupled from both rolling and yawing motion. The equations for the 

reduced states are linearized about the steady state in Equation 24 and given in Equation 25 with convention that 

.  
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IV. Mapping Desired X-Y Path Into Desired Yaw Angle 

The typical desired trajectories of a parafoil and payload system are points in the x-y plane and according to 

Equation 1 the desired output must be a linear combination of the linear model states. In order to use the linear 

model described in Equation 25 for model predictive control the desired trajectory in the x-y plane must be mapped 

into a desired trajectory in terms of the reduced states [ ]Trpψφ . A straightforward mapping is to assume 

that the side velocity v is small and the parafoil is traveling in the direction of its heading ψ .  Equation 38 can then 

convert the desired path in the x-y plane to a desired heading. 
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The continuous time derivatives of  and ( )ii txx = ( )ii tyy =  are given in Equations 42 through 47. 

 
∑
=

=
3

0n
nn Dx

dt
dx  (42) 

 
∑
=

=
3

0n
nn Dy

dt
dy  (43) 

 ( )( ) ( )( ) ( )( )
))()(( 302010

323121
0 tttttt

tttttttttttt
D

−−−
−−+−−+−−

=  (44) 

 ( )( ) ( )( ) ( )( )
))()(( 312101

323020
1 tttttt

tttttttttttt
D

−−−
−−+−−+−−

=  (45) 

 ( )( ) ( )( ) ( )( )
))()(( 321202

313010
2 tttttt

tttttttttttt
D

−−−
−−+−−+−−

=  (46) 

 
 

10



 ( )( ) ( )( ) ( )( )
))()(( 231303

212010
3 tttttt

tttttttttttt
D

−−−
−−+−−+−−

=  (47) 

Equation 38 can be solved for all time using Equation 48. 
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V. Test System 

The parafoil and payload system used in all testing is shown in Figures 1 through 3 with the physical 

parameters in Table 1. A test flight commences by launching the system from the ground, a 10-inch propeller 

powers the test system to altitudes of 250 to 400 ft where the propeller is stopped and gliding commences, lasting 

approximately 20 seconds for every 100 feet of altitude.  

Full state measurement of the parafoil required in the optimal control sequence is achieved through a sensor 

package that includes three single axis gyroscopes a three-axis accelerometer and a three-axis magnetometer shown 

in Figure 3. Inertial positions x  and  required in the mapping of the desired x-y path into a desired yaw angle are 

obtained from a Wide Area Augmentation System (WAAS) enabled Global Positioning Satellite (GPS) receiver 

shown in Figure 1. The sensors are supplemented with a wireless transceiver that transmits data from the parafoil 

and receives commands during flight. An operator controlled transmitter switches control of the parafoil to one of 

three modes: manual, estimation or autonomous. Manual mode allows the operator to manually fly the parafoil. 

Estimation mode allows estimation of linear model aerodynamic coefficients required for model predictive control. 

Autonomous mode controls the parafoil using the optimal control calculated from  the model predictive control law.  

y

 

VI. Identification Of Aerodynamic Coefficients 
 

Application of the reduced order model requires the knowledge of five constant aerodynamic coefficients: 

 and the constant bias term annrallpl CCCCC δδφ ,,,, biasδ . The six parameters are estimated using recursive 

weighted least-squares estimation where, iz are measurements, ix are parameters to be estimated and in  is zero 

mean measurement noise. 
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The recursive weighted least squares estimation requires the differentiation of the measured roll and yaw rates. The 

rol sequence shown in Figure 4 and used in parameter identification was chosen to be sinusoidal in order to cont

ensure that numerical differentiation of roll and yaw rates produced significant signals. Figure 5 shows 

differentiation of measured roll and yaw rates. The recursive weighted least squares estimation is initialized with 1P  

as a 6 by 6 diagonal matrix with 0.05 along the diagonal, annrallpl CCCCC δδφ ,,,,  and biasδ  as -0.1, -0.5, 0.1, -

0.1, 0.1 and 0.0 respectively.  The measurement noise covariance Q  was set as a 2 x 2 diagonal matrix with 

=1,1Q 0.00475 and 0005.02,2 =Q . The aerodynamic pa hown igures 6 and 7 with 

the final estimates of φlC , lpC , alC δ , nrC  , anC δ and bias

rameter estimations are s in F

δ  given i Table 2. being –0.0244,  -0.0320, 0.0050, -

 0.0014 and –0

n 

0.0501, .00017. 
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 The discrete time ear redu or model s sim ed with 1 second sampling, estimated aerodynamic 

coefficients and the control seque

lin ced der  i ulat

nce in Figure 4. The model results are compared to the measured states of the test 

st

olating polynomials in Equation 38 

requires four desired path point fi  of the parafoil and payload system 

during

sy em in Figures 8 through 11. The reduced order model is able to capture the fundamental dynamics of the parafoil 

and payload. A bias in the body yaw rate of 2.5 deg/sec is visible in Figure 8.  

VII. Model Predictive Control Results 

The prediction of desired heading angle with third order Lagrange interp

s. The rst point is defined as the current position

 implementation of the controller. The second point is defined as the location along the desired path that is a 

distance σ  ahead of the current position and called the intersect parameter. The third and fourth points are the next 

two desired path points. Figure 12 shows a desired path and the Lagrange interpolating polynomial found from 

Equations  through 48. The update rate of the model predictive controller was chosen to be 1 second and the linear 

model is converted to a discrete time system of the form in Equation 1 with a sampling period of 1 sec. The discrete 

time system matrices BA, , C  and 

 38

D  required for the model predictive controller are given in Equations 53-56.  
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(55) 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0.1693
0.1010
0.0945
0.0573

B  

[ ]0010=C  (56) 

 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0.0216-
0.0003
0.0122-

0.0002

D  (57) 
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The matrix  penalizing control magnitude in the optimal control sequence is selected as an  matrix with 

0.35 on the diagonal and zeros everywhere else. The test parafo  system with the model predictive control is 

simulated with prediction horizons of 2,3,4,5,10 and 20 and shown in Figures 13 and 14. Tracking error is decreased 

as the prediction horizon  is increased from 2 to 10, however, as  is further increased from 10 to 20 no 

 la  Re

 R  pH x pH

il  law 

pH pH

change in performance is observed and pH  is selected to be 10 for the test system control w. sults for the 

model predictive controller are shown in Figures 15 through 20 with pH = 10 and σ   = 100 ft. Figures 15 and 16 

show the measured path of the parafoil and payload compared to a desired straight path and control with no wind. 

Control is initiated at the or n with the parafoil and payload initially trav ing away from the desired path and 40 ft 

off line. The initial control response is large and negative corresponding to left braking and negative cross range. 

The parafoil has a maximum error of 75 feet at 100 ft down range then o ershoots th desired by path by 39 feet at –

igi el

v e 

510 feet down range before a final error of 9 feet at impact. 

Figures 17 and 18 show the measured path of the parafoil and payload compared to the desired straight path and 

control with a 12 ft/sec cross wind from positive to negative cross range. Control is again initiated at the origin with 

the parafoil and payload initially traveling away from the desired path and 100 ft off line. The parafoil has a similar 

oscillatory response with a maximum error of 119 feet at 230 ft down range as it overshoots the desired path. The 

parafoil turns back towards the desired path and comes within 18 feet before the wind pushes it further away. The 

final error at impact is 6 feet.  The larger error from the crosswind is due to the difference in measured yaw angle 

and heading angle because of parafoil sideslip. Figures 19 and 20 show the performance of the model predictive 

controller when tracking the more complicated S-shaped path. Control is initiated when the parafoil and payload are 

210 ft offline. The maximum error during the flight is 45 feet at 550 feet down and –550 ft cross range. The model 

predictive controller is able to predict the required control input so that the parafoil and payload system are able to 

achieve close proximity to the desired points as they are passed. 

 

oll angle, yaw angle, body roll rate, and body yaw 

VIII. Conclusions 

A model predictive control strategy was developed for a parafoil and payload system.  To support the flight 

control law, a reduced state linear model was created that uses r

 
 

14



rate of the parafoil and payload system. A io d order model requires the knowledge of five 

con

l, the desired x-y tra ired

l Of 
Engineering Mechanics., vol. 130, pp. 459-465, Apr. 2004. 

 
3 Tsai, C. C., Huang, C. H., “Model Referen redictive Control for a Variable-Frequency Oil-

 

 

pplicat n of the reduce

stant aerodynamic coefficients: annrallpl CCCCC δδφ ,,,,  and a constant bias term biasδ . A recursive weighted least 

squares estimation is used to estimate the six parameters. The estimated parameters and reduced state model is 

compared with flight data and it was shown that they adequately modeled the parafoil and payload system. In order 

to use the reduced state linear mode jectory is mapped into des  yaw angles using Lagrange 

interpolating polynomials assuming a constant aerodynamic velocity.  Three exemplar flight tests are used to show 

that model predictive control is an effective way to autonomously control the trajectory of a parafoil and payload 

system. Model predictive control is a natural way to control a parafoil and payload because it mimics the process 

that a pilot controlling a paraglider estimates both the path and control sequence to achieve a desired outcome. 
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Fig. 1. Payload 
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Fig. 2. Parafoil And Payload System 
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Fig. 3. Parafoil And Payload System 
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Fig. 4.   Control Sequence 
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Fig. 5.    Differentiated Measured Body Roll and Yaw Rates 
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Fig. 6.   Estimated Roll Aerodynamic Coefficients 
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Fig. 7.   Estimated Yaw Aerodynamic Coefficients and Bias 
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Fig 8. Comparison of Measured and Model Yaw Rate 
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Fig. 9. Comparison of Measured and Model Roll Rate 
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Fig. 10.    Comparison of Measured and Model Yaw Angle 
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Fig. 11.     Comparison of Measured and Model Roll Angle 
 

 
 

26



 

 

 

 

 

 

 

 

 

Fig. 12. Lagrange Approximating Polynomial 
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Fig 13.  Simulated Tracking Of Zero Cross Range For Varying Prediction Horizons 
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Fig. 14. Tracking Error Over Final 800 feet  
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Fig. 15. Controlled Straight Path With No Wind 
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Fig. 16. Straight Path Control Input With No Wind 
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Fig. 17. Controlled Straight Path With Cross Wind 
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Fig 18.  Straight Path Control Input With Cross Wind 
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Fig.  19.   Controlled “S” Path With No Wind 
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Fig. 20. “S” Path Control Input With No Wind 
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Table 1.     Parafoil and Payload Physical Parameters 

Variable Value Units 
ρ  0.0023784722 Slug/ft^3 
Weight 2.0 lbf 
S  7.5 ft^2 
c  1.75 ft 

d  2.0 ft 
Ixx 0.1357 Slug-ft^2 
Iyy 0.1506 Slug-ft^2 
Izz 0.0203 Slug-ft^2 
Ixz 0.0025 Slug-ft^2 
Ixxi 7.3845 1/(Slug-ft^2) 
Iyyi 6.6423 1/(Slug-ft^2) 
Izzi 49.442 1/(Slug-ft^2) 
Ixzi -0.9032 1/(Slug-ft^2) 
Vair 21.6 ft/sec 
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Table 2. Estimated Model Coefficients 

φlC  –0.0244 

lpC  -0.0320 

alC δ  0.0050 

nrC  -0.0501 

anC δ  0.0014 

biasδ  –0.00017 
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