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Abstract— We consider the problem of reconstructing the
trajectory of a mobile mapping system based on a mid-
size van. Mobile mapping requires, of course, high accuracy.
Usually this is achieved by resorting to costly GPS/INS
integrated systems. The INS, in particular, must guarantee
high performance when the GPS signal is occluded. This paper
concerns the possibility of using, in alternative, a swarm of low
cost MEMS accelerometers mounted in random positions and
orientations. In order to be able to reconstruct the trajectory,
the relative position and orientation of each accelerometer
should be known. Here, we propose a method for an automatic
calibration of the cloud of MEMS sensors and an algorithm for
trajectory reconstruction by GPS and MEMS accelerometers
integration.

I. INTRODUCTION

GPS/INS integration is a paradigmatic application of state
reconstruction with multi-sensor architectures. The integra-
tion is often based on the implementation of an extended
Kalman filter estimating the state of a nonlinear dynamical
system describing rigid body dynamics, sensors parameters
and error moments. Relevant areas of research in this field
concern, on one hand customized dynamical models which
guarantee better accuracy [4] and, on the other hand, the
development and application of more advanced nonlinear
filtering techniques such as Montecarlo filters [5].The two
afore mentioned approaches have been combined in the
paper [7] in order to maximize the accuracy of the recon-
struction of the trajectory followed by a vehicle for mobile
mapping applications. A dynamical nonholonomic model
of the vehicle including load transfer in roll and pitch was
derived. The model presents nonlinearities which make the
state estimation problem challenging. For example, from
GPS measurements only, the angular velocity is linearly
non observable. The nonholonomic constraints are directly
included in the model, differently from other approaches
presented in the literature [4] which model them as virtual
observations. Such a detailed model is necessary to achieve
satisfactory accuracies in the reconstruction when the GPS
signal is not available for long time windows. Infact, all
the other sensors, the INS system, the odometer etc. are
dead-reckoning and the error is integrated in time. A refined
dynamical model allows to control the drift of the sensors
and maintain the accuracy of the reconstruction within
tolerable values.

In this paper, we propose to use a swarm of low cost,
miniaturized MEMS accellerometers instead of an INS. The
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accellerometers are spread in random positions and orien-
tations on the vehicle. Inspired by [6], in [8] and [9], we
proposed an algorithm for trajectory reconstruction based
on these measurements. We exploit the accuracy of the
vehicle model described above and the sensor redundancy
to improve the characteristics of each MEMS sensor. The
integrated system should reach the performance of a INS,
but cost much less. The problem of this approach is that
the relative position and orientation of each accelerometer
should be known. Unfortunately, these are not easy to
measure. In [9], where we applied the algorithm for the
reconstruction of the trajectory followed by a motorcycle,
we used a high accuracy motion capture system that is
available to our laboratory to measure the position and
orientation of the accelerometers.

In this paper, we propose an automatic calibration al-
gorithm. We first acquire the accelerometers data together
with high accuracy DGPS/INS data. Knowing the vehicle
trajectory, we calibrate the MEMS accelerometers by apply-
ing standard system identification techniques. From then on,
the trajectory is reconstructed using the GPS and the swarm
of on-board MEMS. In this way a fleet of mobile mapping
vehicles would require only one high cost GPS/INS system
for calibration and operate with low cost systems instead.

II. MODEL BASED SENSOR INTEGRATION

The integration of internal information (MEMS mea-
surements) with external information (GPS measurements)
is necessary to guarantee the accuracy bound required by
mobile mapping applications, whenever the GPS signal is
occluded. Standard GPS positioning algorithms are suffi-
cient to determine the vehicle position with the required
accuracy, but the use of a INS unit is essential whenever
the GPS signal is absent.

The predominant error sources of dead-reckoning sensors
are biases. To reduce such errors, we proposed [7] to
design the reconstruction algorithm on the basis of an
accurate model of the vehicle. Two reference frames are
considered: the inertial frame (or navigation frame) ΣI =
{ux, uy, uz} moving with the Earth, and the body frame
ΣB = {ubx, uby, ubz}, fixed with the vehicle. The orienta-
tion of ΣB with respect to ΣI is given by a transformation
based on the Euler angles, θ, ψ, φ which are shown in
figure 1. In this paper the order of rotation is around ubz,
followed by uby and ubx. Such rotation is called 321 in
[1]. The position of the vehicle x, y, z is assumed to be
the coordinate of the origin OB of the body frame in the
inertial frame. OB is located at the center of the rear axle
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with ux defining the direction of motion. Without loss of
generality and in order to increase readability, we assume
that the GPS receiver and the INS unit are located in OB .
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Fig. 1. Reference frame and body frame

The state-space model describing the vehicle trajectory
is kept simple by approximating the vehicle with a one-
track model constrained to move without sliding along the
road surface. The nonholonomic constraints imply that the
velocity of the vehicle is

vb =

⎡
⎣ vbx

vby

vbz

⎤
⎦ =

⎡
⎣ vbx

0
0

⎤
⎦ , (1)

i.e. there is no sliding along uby , nor vertical motion. Of
course, such conditions are never satisfied in practice and
in [7], it has been shown how to take into account the fact
that vby �= 0, and vbz �= 0.

The kinematic model describing the trajectory of the
point (x, y, z) in the inertial frame is given by the following
nonlinear differential equations

ẋ = vbx cos(θ) cos(ψ)
ẏ = vbx cos(θ) sin(ψ)
ż = vbx sin(θ)

where vbx is the velocity in the body frame, (under as-
sumption (1)), and θ and ψ are the pitch and yaw angles,
respectively. In addition, the rotation rates of the vehicle are
introduced in the model as follows

ψ̇ =
ωby sin(φ) + ωbz cos(φ)

cos(θ)
(2)

θ̇ = ωby cos(φ) − ωbz sin(φ)
φ̇ = ωbx + [ωby sin(φ) + ωbz cos(φ)] tan(θ)

where ωbx, ωby, ωbz are the angular velocities in the body
frame. It is important to highlight that configurations with
θ = ±π

2 introducing singularities in (2) cannot occur with
land vehicles. The assumption vb = [ vbx 0 0 ]T can be
relaxed introducing dynamic equations for vby and vbz , i.e.,
considering the accelerations abx, aby, abz along the body

axes,

v̇bx = abx

v̇by = aby + vbxωbz

v̇bz = abz − vbxωby

ȧbx = νa
bx

ȧby = νa
by

ȧbz = νa
bz

where νa
bx, νa

by, νa
bz are white uncorrelated noises. Assuming

a similar description of the angular velocities dynamics, the
complete model becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = vbx cos(θ) cos(ψ)
ẏ = vbx cos(θ) sin(ψ)
ż = vbx sin(θ)
ṡ = vbx

ψ̇ = ωby sin(φ)+ωbz cos(φ)
cos(θ)

θ̇ = ωby cos(φ) − ωbz sin(φ)
φ̇ = ωbx + [ωby sin(φ) + ωbz cos(φ)] tan(θ)

v̇bx = abx

ȧbx = νa
bx

v̇by = aby + vbxωbz

ȧby = νa
by

v̇bz = abz − vbxωby

ȧbz = νa
bz

ω̇bx = νω
bx

ω̇by = νω
by

ω̇bz = νω
bz

(3)

where νω
bx, νω

by, νω
bz are white noises.

A remark is now at order. In the model, there is an
equation giving the dynamics of the arclength coordinate
s. Such equation seems to be redundant, since ṡ2 = ẋ2 +
ẏ2 + ż2. However, it turns out that the explicit inclusion of
such equation in the model helps to increase accuracy. In
order to consider the biases of the dead-reckoning sensors,
additional state variables are considered and modeled as
random walks.

A. Accelerometers measurement equation

The derivation of the algorithm for trajectory reconstruc-
tion based on a swarm of accelerometers is very similar
to [6]. Here, however, we expresss the measurement w.r.t.
the vehicle body frame ΣB in order to include the non
holonomic constraint. A MEMS accelerometer is an inte-
grated device which measures acceleration along a specific
direction. Let there be N MEMS accelerometers and βi

be the sensing axis of accelerometer i with respect to the
body frame ΣB . Let the accelerometer i be located in point
pi on the vehicle. Let gIB ∈ SE(3) be the rigid body
transformation that takes the body frame ΣB in ΣI . The
spatial velocity of the vehicle, is

V I
IB = ġIBg−1

IB
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V I
IB belongs to se(3) the algebra of SE(3), the special Eu-

clidean group of rototranslation matrices, and, in particular,
it is

V I
IB =

[
ΩI

IB −ΩI
IBpIB + ṗIB

01x3 0

]
. (4)

The first 3x3 principal minor ΩI
IB is an element of so(3)

the algebra of SO(3) the group of rotation matrices and it
is the angular velocity of the body expressed in the spatial
frame ΣI . The velocity of the point pi in inertial frame
coordinates is

ṗI
i = V I

IBpI
i

where pi has been written as an homogeneous point, i.e.
adding a fourth component equal to 1. The acceleration of
point pi in the inertial frame is, therefore,

p̈I
i = V̇ I

IBpI
i + (V I

IB)2pI
i .

The acceleration in body frame coordinates is

p̈B
i = g−1

IB p̈I
i (5)

and the accelerometer measurement is

ξi = (p̈B
i )T βi. (6)

It is convenient to write the measurements writing the
velocities in the instantaneous body frame

ξi = (g−1
IB(V̇ I

IBgIBpB
i + (V I

IB)2gIBpB
i )T βi

= (V̇ B
IBpB

i + (V B
IB)2pB

i )T βi. (7)

The body velocity V B
IB is

V B
IB =

[
ΩB

IB RT
IB ṗIB

01x3 0

]

where RT
IB is the rotation matrix between frame ΣB and

ΣI and

ΩB
IB =

⎡
⎣ ωx

ωy

ωz

⎤
⎦ ∧ .

The GPS/MEMS integration algorithm is based upon
the measurements equations (??) and the vehicle dynam-
ical model described above. Equation (??) requires the
knowledge of the position pi and orientation βi of each
accelerometer. Errors in these data reduce the accuracy of
the reconstruction even if, thanks to the redundancy of
sensors if N > 6, with appropriate statistical techniques
such as RANSAC one can determine and eliminate outliers.

We propose an automatic calibration technique based on
the above model used in a reverse fashion. We assume the
motion to be known and we estimate the parameters of each
MEMS sensor accordingly.

III. IDENTIFICATION OF THE ACCELLEROMETERS

POSITIONS AND ORIENTATIONS

The identification algorithm is based on an extended
Kalman filter. The vehicle motion gIB , VIB is assumed
to be known. It is measured with an accurate GPS/INS
integrated system. During calibration MEMS sensors data
are acquired together with those of a high performance
GPS/INS integrated system. Applying the technique de-
scribed in [7] we reconstruct the trajectory of the vehicle not
using the MEMS accelerometers. We calibrate the sensors
and we use them for reconstructiong the trajectory from
then on. The costly high accuracy GPS/INS system is used
only for calibration and it can serve, therefore, a whole fleet
of mobile mapping vehicles. We use half of the data of the
calibration campaign for identifying the sensor parameters
and the other half for validating it. Equation (??) is seen as
an observation equation for the new state which is composed
by the orientations βi and the positions pB

i . These, being
parameters, are dynamically modeled as random walks.
Identifiability is easily proven since changing the orientation
or the position of one accelerometer would change its
measurements. Clearly, we assume that the trajectory excites
the dynamics and produces accelerations that span the
whole parameter space.

IV. EXPERIMENTAL RESULTS

The main limitation to the system performances is the
accuracy of the reconstruction in the calibration phase. The
better the MEMS accelerometers are calibrated the better
the ensuing reconstructions are. To evaluate the uncertainty
affecting trajectory reconstruction, the following tests have
been carried out:

a.) Evaluation of the behaviour of the algorithm with
the vehicle moving along different types of roads.

b.) Analysis of trajectory uncertainty as resulting
from simulated long length GPS-outages.

A. Trajectory reconstruction results

To secure good behaviour in every circumstance, the
algorithm has been tested by simulating the data that can
arise from the sensors mounted on the van driving along two
different roads, one on a plain (see Fig. 2 and 3, the other
in a mountainous region. Both roads trajectories have been
obtained by interpolating real data. The simulated sensors’
data has been obtained by considering the characteristics
specified in the relative data-sheets.

Applying the algorithm on the simulated data has been
useful for a first coarse choice of the covariance state matrix,
for testing the correct behaviour in both the situations and
realize what is the maximum accuracy that it can achieve
with the sensors in use.

The algorithm has been tested on fifty different realiza-
tions of the sensors noise to obtain a proper characterization
of its accuracy. In Tab. I we reported the mean over the fifty
realizations of the maximum error between the algorithm
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Fig. 2. Characteristic of the road on a plain (planimetry)
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Fig. 3. Characteristic of the road on a plain (altimetry)

results and the real data, computed by simulating 5 minutes
of missing GPS.

Fig. 4 shows a realization of the real error obtained by
simulating a 5 minute GPS-outage within and without the
smoother phase. The graph refres to the road on the plain,
but the result is the same of the mountain case.

Tab. I and Fig. 4 show that the effect of the smoothing
phase is particularly relevant and that after this step the
accuracy of the filtered data is out by less than one meter,
even with very-long GPS-outage.

TABLE I

SIMULATIONS RESULTS

Plan Altim Pitch Roll
Mean 0.638 0.065 0.0067 0.0034
Standard deviation 0.257 0.016 0.0003 0.0002
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Fig. 4. Planimetrical errors simulating a 5 min GPS-outage in the on the
plain route

B. Identification results

During the calibration tests, even if the vehicle was
moving on a horizontal path, due to bumps in the road,
the vehicle dynamics were nonetheless excited also along
the vertical axis. The convergence of the filter is shown in
Figure 5.

0 50 100
0

0.5

1
θ

x

0 50 100
0

0.5

1
θ

y

0 50 100
0

0.5

1
θ

z

Time (s)

0 50 100
−2

0

2

4
u

x

(m
)

0 50 100
−1

0

1

2
u

y

(m
)

Time (s)

Identified values
Real values

Fig. 5. Convergenge of accelerometer parameter estimates

The algorithm reveals a good insensibility to possible
misalignments of the accelerometer with respect to the
horizontal plane, allowing a correct identification of the
parameters even if the sensor is mounted on the vehicle
with a wrong (but sufficiently small) angle. For instance in
Figure 6 we present the result of a simulation in which the
component βz is assumed to be zero, but actually the sensor
has a wrong inclination with respect to the horizontal plane
of about 6 degrees; the identification is anyway correct.
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