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Trajectory reconstruction by integration of GPS and a swarm of 
MEMS accelerometers: model and analysis of observability 

Christian Spagnol, Riccardo Muradore, Manolo Assom, Alessandro Beghi and Ruggero Frezza 

Abstract-In th is  paper, we consider the problem of trajec- 
tory reconstrucion for the mobile mapping system Davide. 
Davide is equipped with a custom GF'S/INS system and 
a number of dead-reckoning sensors, such as odometers, 
inclinometers, etc. In this paper, we investigate the possibility 
of substituting the INS with a swarm of low cost MEMS 
accelerometen located in various positions on board the 
vehicle. An obserrability analysis shows the feasibility of the 
solution and the need of integrating the distributed MEMS 
sensing architecture with a positioning sensor such as the GPS. 

I. INTRODUCTION 

GPSnNS integration is a paradigmatic application of 
state reconstruction with multi-sensor architectures. The 
integration is often based on the implementation of an 
extended Kalman filter estimating the state of a nonlinear 
dynamical system describing rigid body dynamics, sensors 
parameters and error moments. Relevant areas of research in 
this fields concern, on one hand customized dynamical mod- 
els which guarantee better accuracy [4] and, on the other 
hand, the development and application of more advanced 
nonlinear filtering techniques such as Montecarlo filters 
[SI. In a previous paper [6] ,  we combined the two afore 
mentioned approaches in order to maximize the accuracy of 
the reconstruction of the trajectory followed hy a vehicle for 
mobile mapping applications, the Davide van. A dynamical 
nonholonomic model of the vehicle including load transfer 
in roll and pitch has been derived. The model presents 
nonlineasities which make challenging the state estima- 
tion problem. The nonholonomic constraints are directly 
included in the model, differently from other approaches 
presented in the literature 141 which model them as virtual 
observations. Such a detailed model is necessary to achieve 
satisfactory accuracies in the reconstruction when the GPS 
signal is not available for long time windows. In fact, all 
the other sensors, the INS system, the odometer etc. are 
dead-reckoning and the error is integrated in time. A refined 
dynamical model allows to control the drift of the sensors 
and maintain the accuracy of the reconstruction within 
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tolerable values. The model is nonlinear which implies the 
use of nonlinear estimation techniques such as the standard 
extended Kalman filter. 

In this paper, we investigate an alternative technology 
to the INS. In particular, we propose to use a swarm 
of low cost MEMS accelerometers located in different 
positions on hoard the vehicle. This idea is not entirely 
new. In 171 a similar sensing architecture has been proposed. 
What characterizes the research presented in this paper 
are: (a) the use of a simple, yet dynamically accurate, 
nonholonomic vehicle model to increase accuracy and (b) 
a full observability analysis of the state of the model based 
on the MEMS measurements. The analysis shows the need 
of integrating the MEMS sensors with positioning data 
generated, for example, by a GPS system. It also represents 
an innovative methodology to evaluate sensing architectures 
in terms of sensors locations, numbers, and type. 

The paper is organized as follows, In the first Section 
we illustrate the vehicle dynamical model used for multi 
sensors integration. In the following Section, we present 
the observability analysis. Finally, we show the estimation 
procedure and we present some results obtained in a simu- 
lated environment. By the date of the conference we will be 
able to present results obtained on an experimental setting 
with a vehicle equipped with all the needed sensors 121. 

11. PROBLEM STATEMENT 
Davide is a van for mobile mapping developed, main- 

tained and used by Giove S.r.1. a company based in Treviso, 
Italy. Davide is equipped with a number of digital and 
analog cameras and other kind of sensors. In order to reg- 

Fig. 1.  The Davide van 

ister the sensor data geographically, Davide uses a custom 
GPSnNS system. To accurately register the location of sites 
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of interest, it is fundamental to achieve the highest possible 
accuracy in the GPS/INS trajectory reconstruction. The 
problem we address in this paper is the study of alternative, 
low cost and reliable sensing architectures to the INS. 
As sensing elements, we used the LISZLOZAS MEMS 
accelerometers by ST Microelectronics. These devices are 
capable of measuring accelerations up to *6g ,  and have 
a 4 kHz bandwidth. To remove aliasing effects, we further 
reduced the bandwidth by using a low pass second order 
Butterworth filter at 500Hz. 

In [7] a distributed MEMS accelerometers architecture 
has been proposed for a similar goal. Our work is innovative 
for two reasons: (a) the use of a particular dynamical model 
of the vehicle; (b) a full observability analysis on the model 
based on the MEMS measurements. 

111. THE MATHEMATICAL MODEL OF THE 
VEHICLE 

In our previous work [6], the integration of INS mea- 
surements with GPS measurements has been used to guar- 
antee the accuracy whenever a black window in the GPS 
measurements occurs. Now we want to substitute the INS 
unit with a low cost set of MEMS accelerometers which 
are less expensive, easy to initialize and do not require the 
introduction in the mathematical model of state variables 
taking into account the bias effects. 

As usual, two reference frames have to be introduced: the 
inertial frame (or navigation frame) C I  = {UX,UY,UZ}, 
centered in 01, moving with the Earth, and the body 
frame Cb = {uz, uy. U*}, centered in Ob. fixed with the 
vehicle. From now on we use capital letters to identify 
point, velocity, etc. in the inertial frame, and small letters 
to identify the same quantities in the body frame (i.e. P, 
V, A in XI and p, v, a in E,,). The orientation of 
with respect to C1 is given by a transformation 321 based 
on the Euler angles, B (pitch), + (yaw), $ (roll), which are 
shown in figure 2, [9 ] .  The position of the vehicle X ,  Y, 2 
is assumed to be the coordinate of the origin Ob of the body 
frame in the inertial frame. Ob is located at the center of 
the rear axle, U, defines the direction of motion, and the 
GPS receiver is assumed, without loss of generality, located 
in Ob. 

A. The state equation 

Fig. 2. Reference frame and body frame 

nonlinear differential equations 

Ji = u,cos(s)cos($) 
Y = u,cos(B)sin($) 
Z = u,sin(@). 

In order to describe the dynamic of the angular velocity, 
the rotation rates of the vehicle, and the approximation in 
the nonholonomic constraint (1). the above equations are 
completed with 

w, sin(@) + w2 cos(@) 
cos(@) i =  

B =  
$ =  

iJz = 

U, = 
8, = 
az = 

a, = 
a, = 

wy cos(@) - wi sin($) 
wz + [wy sin($) +U, cos($)] tan(B) 

a, 
a, + v.w, 
a, - uZwy 

U," 

4 
U," 

QY 

a, 
U," 

Following [6], the vehicle is approximated by a bicycle 
constrained to move without sliding along the road surface. 
Since such nonholonomic constraints imply that the velocity 
of the vehicle in the body frame is 

where in the 
frame, a = [a, in 

the body frame, a = [az  a,IT and U:, U;, U,", 
U,", U;, U," are white uncorrelated noises. It is assumed 
that the angular velocity is approximated by a second order 
random walk. In order to increase the accuracy, it is useful 
to introduce the arclength coordinate s, [6], having the 
following dynamic 

lWz w~ wz IT is the angular 
IT is the 

ay 

v =  [;I = [TI, (1) 

the kinetic model describing the trajectory of the point 
( X , Y . Z )  in the inertial frame is given by the following s =  U,. 

65 



The nonlinear state equation can then be written in a 
compact form as 

X(t) = f(x(t)) +w(t) (2) 
where w is the model error. It is assumed to be a zero-mean 
white process and its variance will be chosen in accordance 
with all the model assumptions. 

B. Measurement equation 
The low-cost measurement system is composed by a 

commercial GPS unit and an accelerometers data acquisi- 
tion system. 

The GPS unit gives the vehicle position in the inertial 
reference frame X",  Y", 2". The accelerometers data 
acquisition system consists of a swarm of N MEMS ac- 
celerometers. The i-th accelerometer is located in point pi 
(known and fixed in Cg) on the vehicle. It measures the 
acceleration 3 of pi = [p,i pZi lT along a specific 
direction d i ,  i.e. the sensing axis of the accelerometer. To 
relate the acceleration measurements to the variables in the 
model equations, a little bit of work is necessary. Let R 
and T he the rotation matrix and the translation T = 0- 
relating the body frame Cb and the inertial frame C r ,  
respectively. Since the identity Pi = T + Rp; holds, by 
time derivation we have 

pyi 

Ai = A + &  x w x pi ++% x pi +2& x p i  + 
+R x w x pi + g (3) 

where Ai is the acceleration in the reference frame of the 
i-th accelerometer, A is the acceleration in the reference 
frame of the vehicle and g is the gravity. Using the shape 
invariance to rigid body motion, we have that the relative 
position of the MEMS accelerometer and the origin of the 
body frame Ob is fixed. Then the terms pi and pi vanish. At 
the end the expression for each accelerometer in the body 
frame becomes, (see also [7]) 

(4) ai =a+$ x pi + w  x w x pi +RTg.  

ai = a + fipi + Q2pi + RTg .  

The above equation can he also rewritten as 

( 5 )  

where Cl is the skew-symmetric matrix 

0 -wr w y  
Q = w x  = w, 0 -wz 1 .  (6) 

The component of the acceleration ai along the direction 
di is given by a y  = (ai - RTg ,d i )  = (ai - RTg)Tdi .  
Let [ dZi d Z i l T  be the components of d, in the body 
frame. Then the i-th measurement equation given by the 
accelerometers data acquisition system takes the form (7) 
(top of the next page). 

[Xm Y" 2" a;" . . .  aFlT can be rewritten 
in a more compact form as 

1 -Uy w, 0 

dyi 

- - All the measurements Y 

y(t) = W t ) )  + 4 t )  

< 

where e is the vector having as components the measure- 
ment errors. Its variance matrix depends on the different 
accuracies with which the measurements are obtained. 

IV. OBSERVABILITY ANALYSIS 
It is easy to understand that using only accelerometers it 

is not possible to determine the trajectory. In fact straight 
trajectories at constant velocity are non observable. In this 
section we perform an observability analysis in order to 
show mathematically such fact and to achieve a tool to 
study the optimal location of the N MEMS accelerometers. 
In order to keep the analysis easy and without loss of 
generality, we consider a reduced state equation (subscript 

(8) 

a)  

%l = fa(xa) + wa 

' liz = U," 

U; ay = 

az = v," 
l& = a, 
Cr, = v," 
by = 
by = vy" 
it, = a, 

, ir, = U: 

(9) 

ya = ha(&) + e, (10) 

takes the form 

Ya = [a:] = [ Y ]  (x.) + [ "1 
ab h,g e9 

The goal is to study the observability of the reduced system 
(8), (10) by means of nonlinear system theory tools, [SI. The 
observability space is the smallest space containing 

T 0 = [hl, . .  . , h g ,  L;ah i , .  . . , L?--'hi?. . . , Li-hg,. . . ,L?a-lhs] 

where n = dim{x,} and Lj,,hi(x,) is the Lie differenti- 
ation (the derivative of hi along fa) 

Starting from the hi defined in (7), it is possible to write 
the other Lie derivatives (11)<19). The system is locally 
observable in xi if the codistribution 

= span {dH : H E 0) 
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is such that 

dimdU(x:) = n 

where n is the size of the reduced system (8). This is 
equivalent to require that the rank of the matrix 

is equal to n in x:. The above differentials can be easily 
computed starting from equations ( I  1 E(l9), obtaining (20)- 
(28). The rank analysis will be performed in the Result 
Section for a particular trajectory. 

V. KALMAN SMOOTHER 
Since the recorded data will be processed off-line, the 

reconstruction algorithm is based on a discrete-time Kalman 
smoother. Starting from the model derived in the previous 
Sections, 

(29) 

where the measurements are considered to be available 
at times t k ,  we want to build an estimator for the state 
variable x ( t )  with t E T := [to,ff]. A Rauch-Tung-Striebel 
fixed-interval optimal smoother [3] is implemented and the 
smoothed estimate of x based on all the measuremen& 
between 0 to T is given by 

m = f (x ( t ) )  +w(t)  { ~ ( t t )  = h ( x ( t J )  +e(&)  

where the smoothed error covariance matrices P(klT) sat- 
isfy the backward recursive matrix equation 

(31) 
P(klTj = P , ( k ( k j + K ( k ) [ P ( k + l ) T ) - P , ( k + l l k ) ]  
P(TIT) = Pf(TIT). 

The matrix gain K ( k )  is given by 

K ( k )  = P,(klk) C T ( k l k ) ,  P/'(k + Ilk) (32) 

where the matrix $(klk) is the Jacobian obtained by 
discretization and linearization of the state equation (2). (or 

(8) in the MEMS only case). x f ( k l k )  is the forward Kalman 
filter with error covariance matrix Pf(klk), as usual. The 
solution (30)-(31) is particularly useful when the estimated 
states and the covariance matrices have to he recorded for 
a long time and have large dimensions, as is the case in the 
situation at hand. 

Since GPS measurements are not always available, the 
measurement equation is of variable structure, i.e. the 
nonlinear function h(.) is a switching function: 

h(X(tk)) = { h,v(x(tk)): without GPS measurements. 

Then, a switching forward Extended Kalman filter has to 
be implemented and the Jacobians of the nonlinear function 
h(.) are 

hy(x(tk)), with GPS measurements 

with GPS measurements 
HN(X(~ I~ ) )  = ah,o ax /x=k(k , I" )  1 

without GPS measurements. 

H(X(kJk)) = 

The tuning of the variance matrix Q for the model error w 
in  the forward Kalman filter is based on a scheduled tuning, 
see [61. 

VI. EXPERIMENTAL RESULTS 
The following figures show the reconstruction of a vehi- 

cle trajectory based on the distributed MEMS accelerome- 
ters with and without GPS. Clearly, in the absence of GPS 
data the estimate drifts away as some state variables are not 
observable since the accelerometers are dead reckoning. The 
observability analysis based on the smallest singular value 
of the observability matrix. This matrix norm is of particular 
significance in the design of optimal sensing architectures 
in term of positioning, number and type of sensors. In figure 
5, the time behavior of the smallest singular value of U is 
reported clearly showing the loss of observability when the 
vehicle moves on constant speed on a straight path. By the 
time of the deadline for the submission of the full paper we 
expect to be able to show the influence of sensors location 
on such norm and experiments on a vehicle equipped with 
9 MEMS accelerometers with the characteristics described 
in section IIt. 

VII. CONCLUSIONS 
In this paper,we proposed an innovative distributed archi- 

tecture based on MEMS accelerometers to create a low cost, 
reliable alternative to INS systems for vehicle trajectory 
reconstruction. The use of MEMS accelerometers is inter- 
esting not only because of the low cost, but also because 
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dL3fmh, = [ 0  0 0 0 0 0 0 0 01 
dL4f.h = [ 0  0 0 0 0 0 0 0 01 
dLF-hi = [ O  0 0 0 0 0 0 0 01 
dL;-hi = [ 0  0 0 0 0 0 0 0 01 
dL;*hi = [ 0  0 0 0 0 0 0 0 01 
dL?*hi = [ 0  0 0 0 0 0 0 0 01 
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Trajectory reconsmction using only the MEMS accelerometer 

it is easy to increase sensor redundancy by adding other 
units to the architecture at will. We have shown a full state 
observability analysis which, on one band, demonstrates the 
need of a positioning sensors like a GPS and, on the other 
hand, gives I methodology to optimally locate the sensors 
on board the vehicle. 
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