AIAA Atmospheric Flight Mechanics Conference and Exhibit
5-8 August 2002, Monterey, California

AlAA 2002-4708

AERODYNAMIC PARAMETER ESTIMATION FOR CONTROLLED PARACHUTES

Robert M. Rogers, Associate Fellow
Rogers Engineering & Associates
Gainesville, FL

ABSTRACT
An extended Kalman filter algorithm implementation is used to estimate the aerodynamic, wind, mass property and
measurement errors for controlled low-glide parachutes. This implementation incorporates two new approaches: 1) an
alternate attitude error model formulation to overcome mathematical singularities associated with vertical flight, and 2)
apparent mass characteristics used to describe a parachute’s unsteady aerodynamic characteristics. Results based on
simulated data show that aerodynamic characteristics and winds can be estimated separately from the apparent mass

coefficients.

INTRODUCTION

Ongoing research and development, with recent flight
tests of an Affordable Guided Airdrop System (AGAS),
have shown that a parachute’s trajectory can be controlled
with contracting Pneumatic Muscle Actuators'. Earlier
development and demonstrations of Precision Guided
Airdrop System (PGAS) for a ram-air parafoil
incorporated an Inertial Navigation System aided with the
Global Positioning System (INS/GPS) to provide
navigation data for parafoil guidance’. Low cost
controlled parachutes and GPS for guidance data offers
the potential for accurate low cost aerial cargo delivery’.

This paper addresses estimation of the aerodynamic
characteristics of controlled low-glide parachutes from
flight data. The approach presented is based on the
Extended Kalman Filtering (EKF) algorithm that
implements a non-linear system dynamic model, the
equations of motion, and their associated linearizations.
For the application of the EKF algorithm to parachute
aerodynamic parameter estimation, two primary problems
must be addressed and represent the primary contribution
of this paper. The first is vertical flight and the
mathematical singularities associated with it if the
conventional Euler angle dynamics are used for the
attitude dynamics portion of the system’s dynamics®’. This
problem is addressed by using an attitude error
formulation that avoids this singularity. The second to
account for a parachute’s unsteady motion. This problem
is addressed by incorporating added or apparent mass
terms in the velocity equations’.

The paper is organized as follows. First, the EKF
algorithm’s processing flow is summarized. Equations of
motion are then presented to establish the nomenclature
used in this paper. The attitude error formulation, to
eliminate the mathematical singularity associated with
vertical flight, and the approach to incorporate apparent
mass, as part of the motion dynamics, are presented next.
A summary of the system error dynamics is presented.
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Using simulation, results of applying the algorithm to the
aerodynamic parameter estimation for controlled
parachutes is presented. Details of the linearizations of
the nonlinear equations of motion and measurement
equations are presented in the Appendices.

EXTENDED KALMAN FILTERING

The EKF algorithm processing flow is presented in
Fig. 1. The algorithm is based on an assumed reference
dynamic model - the non-linear equations for the
parachute’s dynamics with control inputs - .
Observations of this motion (measurements) - z are
modeled as non-linear functions of the reference model
states - x. Supporting the reference dynamic and
observation models are the apriori parachute mass
properties and aerodynamic characteristics. The EKF
algorithm estimates deviations, or errors, from the apriori
reference model necessary to “match” the observations.
Actual recorded control inputs, atmospheric conditions
and observations are supplied to the algorithm. Error
estimates provided by the EKF algorithm are used to
correct the on-going computations. The EKF algorithm
for a continuous dynamic system with discrete
observations is summarized in Table 1.
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Figure 1: EKF Algorithm Processing Flow
Table 1: Continuous-Discrete Extended Kalman Filtering Algorithm
System Model W = fru) + w®)  Ew®) ww'] = Q-1
Measurement Model z, = hk(x(tk)) t v, Ef vT] = R,
Initial Conditions E[x(t=0)] = £, E[(x,~ £ )(x —g@)T] =P,
0
Assumptions Efw vl = 0 {considered here}
Propagate State X = flxul
Propagate Covariance Pw) = Fx®,t) PM + P®) Fx®.yf + O®
Measurement Update £ = xt) + K, [ z, - hix(t)) ]
N = T
P,=[I-KH]JPt)[I- Kka]T + K, R, K,
K, = Pt) H (H,Pt) H + R,)"’
Linearizations
= fxuy
system Fx®.y = ?{t)bﬂ):aﬂ
) oh (x(t))
measurement = ?(tk) xt)=3t)
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EQUATIONS OF MOTION
The EKF algorithm’s system dynamic model in Table
1 are summarized below. In the following, the parachute
is modeled as a rigid body with six degrees-of-freedom’.

Coordinate Axes:
The body referenced axes are shown in Fig. 2.

X,p

Figure 2: Body Axis Definitions

Position:

The rate of change of position in an inertial reference
frame is the transformation of body referenced velocity as
L:i - Cbi gb (1)

where

r' - inertial position vector (down range, cross
range and altitude)

C," - body to inertial transformation matrix

gbb - body referenced relative velocity vector

Velocity:
The conventional form* for the rate of change of the

body referenced velocity is given by
po- -t Lp Lcrg
- - m aero t
where
- skew symmetric matrix equivalent of the
vector cross product (Qﬁb x) where the
vector @® is the rotation of the body relative
to the inertial reference coordinatized in the
body axes.
- aerodynamic forces in body axes
- gravity

g!
This form will be modified later in this paper to
incorporate apparent mass terms associated with the
parachute’s unsteady aerodynamics.

The body referenced aerodynamic force vector is

defined in terms of the atmospheric density/wind relative
velocity magnitude product (dynamic pressure),
aerodynamic reference area and aerodynamic force
coefficient as

]Zb=ép|Azb|2ngEngf 3)

where the density is assumed to comply with the
exponential atmospheric model
-hH
P=Pe ° “4)
The wind relative velocity is the difference in body
referenced velocity and winds

Azb - ‘_)b _ Cib ﬂi (5)

The aerodynamic force coefficient vector is modeled as
the following sum where the control inputs - # in Fig. 1
are incorporated via the vector 8

€= < + <. o+ ng B + [gfﬁ],ﬁagé (6)
Referring to Fig. 2, the angle-of-attack and side-slip are
defined in terms of the body referenced wind relative

velocity components as

Av?
o = tan™! A bz (7)
\Y
and Ap?®
B = tan") —2 8)
Ava
Attitude:

The rate of change of the body-to-inertial direction
cosine matrix (DCM) is

. i b .
C, = -Qy G, )
Only six of the nine elements in this DCM require

numerical integration in the EKF algorithm since its rows
and columns form orthogonal unit vectors.

Rotation Rate:
The rate of change of the body rotation rate is given
by

@ = [T Q1] + [1777 1", (10)
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where
14
b _
. =|q (11)
12

[ I ]™!- inertia matrix inverse

T? oo " aerodynamic moments in body axes
The body referenced aerodynamic torque vector is defined
in terms of the same dynamic pressure as above for the
force vector, aerodynamic reference area and length, and
the aerodynamic moment coefficient

I" =gqS8dc, (12)

aero

The aerodynamic moment coefficient vector is modeled
as the following sum

ATTITUDE ERROR DYNAMICS

Using the matrix dynamic equation, Eq. (9), to evolve
attitudes, the singularity associated with the Euler angle
dynamics is avoided. The implementation of the EKF
algorithm requires a linearized form for the attitude
dynamics. The use of a small angle “external” attitude
error representation to obtain this linearized form for
application to aerodynamic parameter estimation
represents one of the contributions of this paper. It is
assumed that a computed form of the Cbi matrix, the
result of integrating the DCM differential equation with
incorrect initialization and/or body rates, can be related to
the true matrix by the following

C=[1- (dx]C, (14)

The difference between the computed and true DCMs is
the DCM error

8C,1 = Cy' - Gt
_ (15)
= —(bx Cbl

The equation for the attitude error, ¢ , is obtained by
taking the derivative of both rows of this equation, then
equating the results’. The computed DCM’s derivative
satisfies the same differential equation form as the true
DCM. Taking the derivative of the first row

8¢, = ¢, - ¢

—Q% Ebi + QZb Cbi

-Q, 1 @] Civ ), Cf (16)
= [, - @y - Q] C,'

w - [0 - Qi - @] G

Taking the derivative of the second row

8C,' = v C' - @y C'
@y Ci @y, Cf (D
- - (@x Q] C,

Equating the results above, and converting from the skew-
symmetric matrix form to vector form, yields the
following vector differential equation for attitude error

b= -Gl ol (18)

This form for attitude error dynamics requires only three
elements as contrasted to four for quaternion
implementations used in earlier applications.

UNSTEADY AERODYNAMICS - APPARENT MASS

Unsteady parachute aerodynamics are modeled as
additional mass terms for each of the three force vector’s
components in body axes’. From page 31 of Ref. 5, the
following equations, excluding mass center of gravity
offsets, are found

vF, = (m+ o, )u— (m+ o, )rv-qw) (19)
EFy = (m+ ) (V- pw)+ (m+ o, Jru (20)
vF, = (m+o, )W+pv)- (m+a,,)qu 21

where
yF, - sum of aerodynamic force and gravity terms

In these equations, the “y” and “z” components of the
added mass @ are assumed to be equivalent.

The conventional form for the velocity dynamics
above is modified to incorporate these added mass terms,
in a more generalized form allowing differences in the
individual axis components, and becomes

y= _M-I(Qil;bx)Mgh. M'I[f+ m Cib gi] (22)

m, 0 0
where
M=|0 m 0 (23)
0 0 my

American Institute of Aeronautics and Astronautics



and

m;,=m+ Am,, Vi=13 (24)
where
Am, = kE, Vp (25)

The added mass is proportional to the mass of air
contained within the parachute’s canopy volume - ¥ with
the proportionality dependent on the coefficient k.

SYSTEM ERROR DYNAMICS

The system’s error dynamics equations are
summarized in Table 2. Only the wind and the first term
of the aerodynamic force coefficient vector are included
in this table (see Appendix A for additional terms). This
table summarizes the linearizations using the conventional
form of velocity equation - Eq. (2) above. The
modifications to this linearized velocity equation form, to
incorporate added mass terms, is presented in second part
of Appendix A. A complete list of the extended Kalman
filter algorithm’s error state vector is presented in Table
3.

Table 3: Kalman Filter Error State Vector Elements

error states description

0x, 0y, 6z inertial position
5vxb, Gvyb, 6va body velocity
b, d)y, b, attitude

b b b .
Swy v 8wy 2 O, ) angular rotation rate

dw,,&w, wind

zero angle-of-attack force coef.

6cfo , Gcf",’ 6013

8¢, ,oc zero angle-of-attack moment
coef.
oc,, .oc, angle-of-attack moment coef.
8, .8c, control input moment coef.
Vs, 23,

8¢, .&¢ angle-of-attack force coef.

1.2,
8¢, 8¢ control input force coef.

Toy, Vo,
5cm ,5cm moment coefficient damping
5]y &I moment of inertia

z

od measurement displacement
ok apparent mass coef.

Table 2: System Error Dynamics Matrix

5L'i 521’ Q b Gﬁi
)
& | 0, c,’ (€, vP x) 045 Oy
&y® C,-baéﬂ 1 @ - (@b x)+ 19 Clhg' x)+ 1 ¥ x) i _
or' mor b ] m o m ow'
(0] 03x3 03x3 03x3 B Cbi 03x3
- o o I @) - (T2 )x] e
da | (17! — I — (I — o Or° (I —
b or' ov? od + [1] < ow!
— _ amw w
5
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MEASUREMENTS

The observations assumed to be available for
processing by the EKF algorithm include inertial position
and attitude. A candidate source of position
measurements is a GPS unit. Attitude measurements
could be provided by either a Attitude Heading Reference
System (AHRS) unit or an Inertial Navigation System
which is the combination of GPS with a 3-axis navigation
system (GPS/INS). With similar aerodynamic
characteristics in the “y” and “z” axes, there is little
difference in a controlled parachute’s dynamics to
distinguish direction. The attitude measurements provides
the mechanism to estimate attitude and distinguish the
different axes’ contributors.

The linearized form of the observation equations for
the EKF algorithm are presented in Appendix B.

SIMULATION RESULTS

The EKF algorithm is evaluated using simulated data.
The process is segmented into 1) generating simulated
observations and 2) applying the EKF algorithm. The
simulation generates the observations using the dynamic
equations described above. Known errors are introduced
into the simulation, i.e., constant winds, that deviate from
the apriori reference model. In the results presented
below, the simulation includes a single added mass error,
the apparent mass coefficients are the same for all axis
components. A stable parachute with a constant roll rate
is modeled.

It is the task of the EKF algorithm to reproduce the
known errors introduced into the simulation. The
accuracy of the algorithm can then be assessed by
comparing the EKF estimates to these known errors. The
EKF algorithm uses the same apriori modeling as does
the simulation but without the interjected errors. Errors in
all the aerodynamic coefficients, winds, mass properties
and longitudinal position observation displacement are
included in the simulation.

A comparison of observed altitude versus down range
(extension of the initial flight direction) and that estimated
by the EKF algorithm is presented in Fig. 3 (solid line for
the observed and dashed line for the estimate). The
companion cross range versus down range results are
presented in Fig. 4. At approximately 100 sec into the
300 sec flight, the simulated wind in the down range
direction is increased from 1 to 2 ft/sec. During the
simulated flight, lateral control inputs combined with the
parachute’s roll rate force the trajectory to wander as seen
in these figures. No guidance is implemented in the
simulation that would assist in controlling the trajectory
to a desired impact point.

The wind error estimates are shown in Fig. 5. Down
range (solid line) and cross range (dashed line) winds are
included. Initially, the interjected down range and cross
range wind errors are 1 ft/sec. The wind errors, including

6

the down range wind error change from 1 to 2 ft/sec, are
estimated by the EKF algorithm. Also shown in this
figure are the square root of the estimation error
covariance matrix diagonal elements (lines with down
arrows) corresponding to the down and cross range wind
error state vector elements. These latter lines represent
the estimation uncertainty associated with the EKF
algorithms’ estimates.

Shown in Fig. 6 are estimates and corresponding
uncertainties for the interjected zeroth term aerodynamic
force coefficient, ¢, , errors. The interjected error for all
three elements of th‘fs term is 0.01. The EKF algorithm
estimates these errors for the two lateral axis elements
accurately and a significant portion of the “x” axis
component.

The added mass estimate is shown in Fig. 7. The 0.1
interjected error is estimated accurately by EKF
algorithm. Finally, the longitudinal position observation
displacement 1.0 ft error is estimated by the EKF
algorithm. This error represents an error in the assumed
position of the position sensor’s, i.e., GPS unit, reference
point and the center of gravity.

The results in Fig. 6 for the estimate of the
aerodynamic force coefficient deviation, 8¢, , indicates
less than total convergence to the true error value of 0.01.
A closer examination of the correlations between this
error state and others reveals a high correlation with the
body velocity deviation 6vxb. The correlation shown in
Fig. 9 is almost unity early in the simulation and is
affected by the simulated control inputs. Other error
states exhibit less correlation. This lack of correlation
between other states is indicative of the algorithm’s
estimates convergence to the true error values interjected
into the simulation that generates the observation data.

CONCLUSIONS

This paper has presented an approach for the
estimation of the aerodynamic characteristics of
controlled low-glide parachutes from flight data. The
approach presented is based on Extended Kalman
Filtering (EKF) algorithm. Two primary problems were
addressed and represent the contribution of this paper.
The first was vertical flight and was addressed by using
an external attitude error formulation. The second was the
parachute’s unsteady motion and was addressed by
incorporating added or apparent mass terms in the
velocity equations. The EKF algorithm’s ability to
reproduce known interjected errors was demonstrated
using simulation.
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Inertia
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aerodynamics i = @8I b
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86, =~ [ (@), 91~ ([Tw)) 98, L 7 I ’
Y By
+ [I]778T° L
P _Pq A _
7 3 JZ[TZ pad,~1)]
Rotation Rate Linearizations: z
8T : with respect to system variables;
b b
position al. = aai % oh Velocity Error Equation Apparent Mass Terms
or! P or' Error in apparent mass.
b Vk,
i—%|A\lb|2Sdg dm, = pV ok - Lt
P " s
ar? ar® aAv® Velocity perturbation error dynamics:
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fourth term:

M@d x) M &v?

0 Tmyy mgq
m,; m,;
mr -m
= _r 0 4 51_1b
m, m,
-m m
19 P 0
ng g
seventh term:
M 1a
a
2 0 0
m{
om,
a, 0
= - 0 ; 6m2
2
3 om,
0o o0 =2
2
ng
where

st’+mcibgi

remaining terms:

M 18a
29 0
m,;
-1 0 Ly Sa
m,
o o L
mg
where

da = &° + mdCP g' + mCP &'

APPENDIX B
MEASUREMENTS
Position
Position measured is the sum of computed position,
based on the mass center of gravity (c.g.), and a
translation from the c.g. to the sensor providing the
position, i.e., a GPS unit.

i -— [

x ¥ X Ax
y| =iyl |y
In |z Az

where the computed c.g. position is assumed to be
composed of the true position and an error.

i

x x [ &
yi=\|y|+ |
z z oz

The position from the c.g. to the sensor is translated by
the product of the computed attitude DCM and an

[T 1]

assumed distance along the “x” axis.
A&| [CaCy Cu
Ay ny E'yy vz
&| |c,c,c,|lo

x

Q
al Ql
SER

Then, the difference between the measured position and
the true position becomes

x x [ ox [ Ax
yI -y =]+ 8Ny
z |, z oz Az
where
Ax 0 -C, ny C,
8lAy |=d| C, 0 -C. |+ ny 8d
Az - ny C,. 0 C,.
Attitude

Attitude computed from integrating the DCM is
post multiplied by the corresponding true DCM,
transformed, to yield the attitude error.

DECH =1- @b

then

(Cy
¢,
b, = CoCot C,Cy+ C,C
¢,
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