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Abstract—Automated distributed sentry systems need only 
detect suspicious behavior.  Microphones and infrared 
detectors may suffice, as well as being simpler and cheaper 
than cameras while reducing invasion of privacy.  We report 
on a new approach to analyzing data from acoustic sensors and 
binary infrared and magnetic sensors towards detecting 
changes in the velocity vectors of  walking people.  We show 
that changes in speed and direction can be detected directly by 
simple mathematical calculations from even imprecise sensing 
data.  We show methods for detecting both locally and globally 
suspicious behavior.  We present results of experiments 
supporting our approach, and discuss design of a wireless 
sensor network for this processing. 
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infrared; acceleration 

I.  INTRODUCTION 

Detection of suspicious activity is a key part of sentry 
duties beyond detecting unauthorized people in an area.    
Suspicious behavior is not just anomalous, but shows 
additional characteristics of goal-changing and concealment 
[1], both of which can be detected through motion analysis.  
Automated sentry software that looks for suspicious behavior 
can be more reliable than that focusing solely on anomalies. 

An important application is to key convoy routes in Iraq 
or Afghanistan that U.S. troops overuse due to lack of 
adequate alternatives.  Adversaries can note the reuse and 
emplace improvised explosive devices along such routes 
with a higher degree of effectiveness [2, 3, 4].  Visual 
surveillance is difficult for this task.  Most emplacing is at 
night, and infrared cameras are expensive when covering 
tens of kilometers of road.  Cameras are hard to conceal, and 
suffer problems with occlusion (whether deliberate or 
accidental).  Image processing can be unreliable with weak 
or distant signals, and privacy is more extensively invaded 
with camera surveillance. 

A better solution could be to use inexpensive nonimaging 
sensors such as diffuse passive-infrared or acoustic sensors.  
Most suspicious behavior on a road can be recognized by 
nonimaging sensors in the right places since nonsuspicious 
users of a road usually traverse it with a constant speed.  So a 
wireless sensor network need only report data rarely, alerting 
human security personnel as to where to focus their attention.  
This paper will examine the use of acoustic, passive-infrared, 
and magnetic sensors for this task.  

II. EXPLOITING FOOTSTEP AUDIO 

A simple way to detect motion of pedestrians is through 
their footsteps.  Footstep periodicity helps distinguish them 

from many kinds of background noise.  Microphones can be 
less expensive and more versatile than in-ground sensors [5, 
6] which can suffer from effects of different propagation 
rates in ground materials.  

We first discuss here how suspicious walking behavior 
can be detected by just one or two sensor nodes.  We build 
on the insight from [7] that the clue of a significantly 
nonzero norm of the acceleration vector was responsible for 
90% of the performance in detecting deliberately suspicious 
behavior in video, over other clues such as anomalousness of 
location, occlusion, and speed.  Thus, a good way to detect 
suspicious behavior is to try to fit behavior to straight-line 
paths and flag the data that does not fit.  This could be 
supplemented with classification of footsteps or gaits [8] to 
detect unusual ones. 

We can use clues of the strength and time of the footsteps 
peaks to fit approaching and receding behavior.  Acoustic 
signals generally follow an inverse square law in perceived 
strength with subject distance.  We can also measure 
differences in the time of footsteps between two 
microphones to obtain additional constraints on subject 
position.  Differences in time multiplied by the speed of 
sound give differences in distance, a measurable few 
milliseconds for most deployments. 

A. Detecting locally suspicious behavior using signal 
strengths 

Unlike seismic footstep signals which are filtered by the 
natural frequencies of the ground [5], audio footstep signals 
do not exhibit distinctive frequency patterns.  They are easier 
to detect by examining overall sound energy after low-pass 
filtering.  We first processed our 22khz audio by summing 
the absolute values for each 0.0045 seconds of the signal to 
get a compressed signal.  We did a further smoothing with 

the filter 1 0.98* 0.02*i i iy y x  to approximate 

background noise, and subtracted this from the compressed 
signal.  This worked well at eliminating noise of traffic and 
wind which were common in our outdoors experiments.  We 
discarded negative peaks since footsteps are always positive 
peaks, and low-pass filtered again to get a smoother 
waveform that was easier to analyze.   Fig. 1 shows an 
example. 

We then found the peaks of the waveform and measured 
their height,  narrowness (ratio of average height before and 
after 0.045 seconds to the peak height), and asymmetry (ratio 
of the difference of the heights 0.045 seconds before and 
after to the peak height).  (We also explored parameters from 
the Fourier transform, but they did not help performance.) 
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Figure 1.  Example footsteps at a turn, followed by wind noise. 

Following the literature summary in [5], normal footsteps of 
the same walker are not less than 0.48 seconds apart and no 
more than 0.80 seconds apart.  We search for sequences of 
peaks that obey this constraint.  The first moment improves 
its peak-time accuracy, and the second moment estimates 
“peak width” for an additional clue in matching.  A useful 
additional constraint is that an object on a straight-line path 
with a constant speed shows no local minimum of the 
received signal, just a local maximum at its closest approach.  
Similarly, the time delay between a footstep and its detection 
should show only a local minimum for a single walker.  

 Consider three successive footsteps of pedestrian 
walking in a straight line at a constant speed, 

.  First assume that the generating 

sounds are of equal intensity, a good assumption for many 

instances of walking.  Then  

with unknowns  (the signal loudness times the detection 

sensitivity), D (the distance of closest approach), v (the 

speed), and  (the time of closest approach, or the projected 

time if the path was broken off before or after it got there).  
We can reduce this to three unknowns with  and 

obtaining .  Then 

with data from three footsteps, we can divide the equations 
to eliminate K: 
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Since these must be nonnegative along a path with zero 
acceleration, negative values represent either turns, multiple 

pedestrians, or (rarely) significant footstep intensity 
variation. 

The equation for is most accurate when the signal 

strengths are quite different, and will be ill-conditioned if 
they are close (when it is hard to tell if a person is coming or 
going).  We thus do not consider peak pairs whose heights 
are within 10% of one another.  However, it is good to 
choose times close together because speed and direction are 
more consistent in shorter time periods. 

0t

Parameter /at D  is key because its changes along a 

path mean changes in either the distance of closest approach 
D (indicating a change of course) or the speed v (indicating 
slowing, speeding, or stopping), both of which can be 
suspicious.  It is possible that no change in  occurs on a 

course or speed change, as when the sensor lies near the 
perpendicular bisector of a path turn and the path speed is 
exactly constant, or if the path accelerates while it turns 
toward the sensor at the right speed.  But these are rare 
coincidences. 

at

We cluster estimates to find consistent paths 

for pedestrians.  This idea has been used for distinguishing 
audio events besides footsteps [9].  Points that are not close 
to any cluster are either spurious or suspicious, and can be 
ignored.  Distinct clusters represent different walkers, a 
walker stopping or slowing, a walker making a change in 
direction, or some combination. 

0( , , )at t K

B. Handling variations in footstep loudness 

If footsteps vary significantly in loudness at their source, 
we can model this by differences in K.  A second sensor will 

be useful.  Let  be the strength of the footstep sound i 

received by sensor j,  the time that footstep sound i was 

received by sensor j,  the time of nearest approach to 

sensor j,  

ijs

0 jt D
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vaj   the ratio of the distance of nearest 

approach to the velocity of the tracked object, and  the 

loudness of footstep i times the detectability of a sensor.  
Then at time i: 
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A rough approximation of  is the time of the highest 

peak at sensor j.  We can do better with a three-point 
0 jt
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To match peaks between two sensors, we must first 
synchronize them.  We iterate over possible reasonable time 
shifts to find the one that permits the maximum number of 
matches within a threshold.  

Results on experiments showed around a 60% accuracy 
in detecting deliberate stops and turns along the path indoors, 

c noise. 

y posi

and 30% outdoors.  The main problem was acousti
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C. Using time delay as well as loudness 

Another feature of a footstep that we can exploit is the 
differences in its time of arrival at two or more sensors.  
Footsteps are too irregular in frequencies to provide Doppler 
shifts.  But if we can compare time gaps between different 
sensors, we ate the difference in distances to the 
sensors.  Suppose the distances to the source at some instant 

of time are d  and d , w is the amount of time later that the 

 senso e speed of sound.  Then 
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calculate three successive locations of the pedestrian, and 
flag as suspicious any path of significantly nonzero 
acceleration.  This gives us an alternative to using signal 
strengths alone, and it may be more accurate.  However, it 
does require that we  accurately measure peaks within 
milliseconds, which we could not do for our experiments. 

 over detection with local measurements.  This 
app

.  It represents a right-angle turn by the 
subject in front of the microphone, after which the sound 

When we used two microphones, one pointed at the 
oth

ly spaced bearings in one foot increments from the 
 tip.  We found that a good model

D. Globally suspicious behavior 

Behavior can also be suspicious in wider time windows.  
For instance, a sequence of footsteps that suddenly terminate, 
at an apparent distance that should be well within sensor 
range, is suspicious, as are footsteps that change their 
average rate of increase or decrease (indicating a change in 
direction).  We term this "global" suspicion as opposed to the 
"local" above.  Global clues can supplement local clues in 
assessment of many kinds of deception [10]. 

For such analysis we first extract likely sequences of 
footsteps.  Again assuming gaps of 0.48-0.80 seconds 
between footsteps, we use dynamic programming where we 
first compute possible two-step sequences, then three-step 
sequences, and so on.  We use the evenness of the gaps in a 
sequence as a way to rate sequences, and keep only the best-

rated sequences among those with the same starting and 
ending peaks.  We then rate the peaks by the length of their 
longest sequence divided by 1+2D where D is the average 
time-gap unevenness (time prediction error) for the 
sequence.  For example for Fig. 1, the footsteps on the left 
are rated an average of 4.0 while the noise after time 0.6 is 
rated 2.0.  This analysis gave us an average in footstep 
detection of 72% recall with 74% precision indoors, and 
94% recall with 47% precision outdoors, a significant 
improvement

roach also allows us to distinguish footsteps of multiple 
pedestrians. 

Then a quick measure of global suspiciousness is the 
degree to which the global maximum is at the center of the 
sequence.   For instance, the uneven footstep distribution in 
Fig. 1 is suspicious

decreases quickly. 

E. Experimental details 

We used inexpensive cardioid microphones with Icicle 
preamplifiers plugged into a computer running the Windows 
“Sound Recorder” software.  Microphones were lain on the 
ground in the direction of the expected footsteps; the 
cardioid response was helpful in narrowing the response 
focus.  

er at a distance to reduce effects of the subject azimuth 
angle. 

The response pattern of microphones was determined by 
using a fixed-signal clicking device at 50 locations at 8 
even
microphone  

was 2 2
1 2 3( cos ( )) /( )H K K B D K     for 

received signal strength where   is the source bearing, B the 
microphone orientation, and D the distance to the source.  
Ind

f the microphone locations, and at a 
gle to the line connecting the i ones 

rate 
fals

oors on carpet the constants were (5.4, 1.2, 6.7), and 
outdoors on pavement, (15.0, 10.0, 6.7). 

We did experiments with a range of  behavior and 
footwear.  To simulate our target environment of roads, we 
used an outdoors configuration 100 feet long and 20 feet 
wide.  Indoors experiments focused on straight-line tracks: 
from near one microphone to near the other, along the 
perpendicular bisector o
45 degree an m croph
through the midpoint.    

III. EXPLOITING INFRARED AND MAGNETIC SENSORS 

An alternative for detection of suspicious behavior is  
passive-infrared or magnetic sensing.  Change-detecting 
sensors are common in automated surveillance tasks, and 
they can use several modalities.  They can be inexpensive 
and have low power consumption because messages need 
not be transmitted unless evidence of change is strong.  A 
weakness of such sensors is that wind, lighting conditions, 
background electronic noise, and routine traffic can gene

e alarms.  To reduce the false alarms, we must track 
changes over a period of time to find consistent patterns. 



We explored Crossbow MSP410 motes for detection of 
suspicious motion.  They contain passive-infrared (PIR) and 
magnetic change-detecting sensors.  [11] uses a similar 
approach with some different assumptions.  Improvements to 

 [12] but 

sen

bject was standing still within the range of a mote, 
and

distributi
for an initial approximation.  The mean radius for a circular 
sector subtending 

this kind of technology are actively being explored
are still expensive.  

A. Exploitation of change-detection information 

Our previous work [7] explored the magnetic sensors in 
these motes, so the current work focused on the more-
versatile passive-infrared sensors.  These are binary motion 
sensors (they either detect motion or do not).  Each mote has 

sors for four azimuth quadrants, and more than one 
quadrant can signal detection for objects between quadrants. 

Signal strengths are sent by the mote but are not very 
helpful.  Background PIR levels generally range 580 to 690 
both indoors and out.  Most readings when motion is 
detected are the maximum reading of 1023, though 
sometimes the mote gives very low readings.  After study, 
we concluded that any message specifying a quadrant 
indicates motion detection regardless of the reported 
strength.  Signals of high strength but no quadrant occurred 
when a su

 suggest detection of body heat, but this detection is not 
reliable. 

We found that moving people could be reliably detected 
to about 12 feet of distance, after which reliability 
deteriorated.  Usually people were detected at their closest 
approach to the sensor, when their infrared signature was 
usually changing the most quickly.  From experiments under 
a range of conditions, we concluded that the motes were 
close to 100% accurate in detecting approaches within 12 
feet, and then exhibited a linear decrease to zero in their 
probability of detection up to 24 feet.  This gives some clues 
to subject location.  If a mote signals detection in a quadrant, 
and we have no prior probabilities of its location, we can 
assume that it is at the centroid of its probability on 

angle   is 

2
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R of 12 feet and 2R of 24 feet, 

this is 12.8 feet.  We can also estimate that a detection in a 
quadrant is at the bearing of the center of the quadrant. 

The motes also report significant magnetic changes due 
to nearby transit of ferromagnetic materials.  Our subjects 
had keys in their pockets, and some experiments were in 
buildings where people were working, so we did get some 
magnetic reports.  Since these messages are nondirectional, 
we interpret them as estim  a position  on the 

s ated locations of obj
magnetic sensors to a strai

ating centered
mote. 

B. Fitting path segments with binary sensors 

To again apply the insight that suspicious behavior is 
correlated with nonzero acceleration vectors, we fit the 
e tim ects detected by infrared and 

ght space-time line defined by 

0 0,x yx x v t y y v t    .  When subjects significantly 

deviate from this line, they must have a significant 
acceleration.  An alternative is careful tracking using 
optimization techniques such as the Vi m [13], 
then analyzing the tracks. 
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We calculate this fit for a sequence of points, then 
recursively split the sequence into segments whose fit is 
within a threshold.  We found a threshold of 5 feet on the 
absolute error worked well with this data.  However, our data 
involved multiple subjects sometimes walking 
independently.  So we used a first phase that clusters points 
likely to belong to the same subject.  It maintains a set of 
clusters and assigns points in time order to the cluster nearest 
in space-time distance of 

2 2 2) ( 2*( ))c c cx x y t t    where

( , , )

( (0.D  )y

x y t is the point and ( , , )c c cx y t is the most recent point 

of the cluster, where x and y are measured in feet and t in 
seconds.  The 0.2 is because walking subjects average about 
five feet per second.  If no cluster can be found within a 
distance threshold of 15, a new subject is assumed and a new 
cluster created.  Once clusters have been created, we 
recursively split clusters until their fit is sufficient. 

C. Reasoning about probability distributions of location 

To improve position estimates still further, we create and 
update probability distributions of location in space and time 
[14].  This simplifies data fusion of from different sensors 
and different sensing modalities.  In our experiments, we 



used a one-foot resolution for the probability distribution and 
a timestep of one second.  The quadrant-specific infrared 
data provides probabilities within a 90-degree sector to a 
radius of 24 feet.  Quadrantless infrared data provides weak 
evidence within a radius of 30 feet.  Magnetic data provides 
evidence within a radius of 20 feet.  Acoustic data  provides 
peaks that give a crescent-shaped distribution extending to 
50 

decay" and a "blur" whereby some of a 
pro

esteps will remain albeit decayed.  Not
that spurious peaks will tend not to fit into the larger clu

nd (75) 
two

 were at locations whose 
lati

xcellent with our software, because such events tend not to 
trigger many sensor events during the stop and turn,  
 

feet, but is less reliable than the other sensors due to 
ambient noise. 

Probabilities at the same location and timestep are added, 
since they are small and this approximates a disjunctive 
combination of independent probabilities.  The  distribution 
at the previous timestep is also added to these probabilities 
but with a "

bability is distributed to its neighbors to model possible 
movement.     

We then search the probability distribution at each 
timestep to find local maxima above a threshold.  We 
compute the centroid of the part of the distribution closest to 
each maximum and interpret these centroids as subject 
locations.  We then fit the points using the methods of III.B.  
This method is robust to missing sensor reports because 
peaks at previous tim e 

sters 
and will be ignored. 

D. Experiments 

We conducted experiments with sensors arranged in 
various grid configurations to determine their capabilities.  In 
the final summary experiments, we arranged 16 sensors in a 
4 by 4 square grid with 5 feet between each sensor in a 
parking lot.  Three subjects then walked across the sensor 
grid in various patterns.   Six experiments were conducted: 
(70) all three subjects cross the field together in a straight 
line with constant speed; (71) all three subjects cross the 
field in a straight line but loiter in the center for a short time; 
(72) like the last but only one subject stops; (73) all three 
subjects enter the field and make a left turn of 90 degrees in 
the center of the field; (74) like the last but only one subject 
makes the turn while the others continue straight; a

 subjects enter the field from opposite sides and another 
crosses at right angles to them, all at constant speed. 

Fig. 2 shows results from Experiment 73 plotted in three 
dimensions with time as the vertical axis, using only infrared 
and magnetic data.  Path segment clusters are shown in 
different colors, with gray circles on the bottom indicating 
the locations of the infrared/magnetic sensors.  In the 
coordinate system, the 16 sensors

tude and longitude coordinates were drawn from the set 
{0, 18, 36, 54} measured in feet.   

Fig. 2 shows that preliminary setup in the center of the 
field and finalizing actions on the left side of the field were  
picked up properly.  Fig. 2 shows a significant improvement 
in the quality of the estimates on those using audio alone.  In 
general, partitioning of paths at stopping and turns was 
e
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Figure 2.  Clustering in space-time of estimated locations for Experiment 

73 with setup and post-experiment activities. 

simplifying the partitioning.  Thus, our approach seems 
promising for detecting candidate suspicious behavior. 

E. Data fusion of  audio in the experiments 

We also recorded audio from a single microphone during 
these experiments.  The microphone was lain on the ground 
at (37,37) in a northeast direction.  Since the outdoor 
environment was noisy, we used only the global analysis 
method of II.D, and rated peaks by the length of their 
sequence.  For each peak, we created a "crescent" probability 
distribution by normalizing the likelihoods 

min( , ) / max( , )i i i iS H S H where  is measured 

audio peak height 

and from II.E.    

Fig. 3 shows an example probability distribution of the 
positions of subjects in Experiment 70 after the subjects 
passed the microphone and generated both infrared (top) and 
audio (bottom) data, each with their patterns.  Brightness 
indicates increased probability. 

iS

/(D 2 2
1 2 3( cos ( ))i iH K K B K   )i

  
 

 
Figure 3.  Example probability distribution from infrared and audio 

footstep detection. 



Inclusion of data from one microphone had limited 
benefit for these experiments because it was quite localized 
and many audio peaks that it found were spurious.  But it 
gave helpful data when subjects were nearby.  In Experiment 
75, for instance, it gave us 102 additional events to 
supplement the 83 infrared and magnetic events.  Well-
distributed microphones should provide a different kind of 
probability distribution that should resolve many 
ambiguities. 

F. Finding suspicious behavior from path segments 

To use our segment fits for suspiciousness analysis, we 
can focus on their ends.  If these are not on the edge of the 
sensor field, they represent potentially suspicious activity: 
either time gaps, changes in direction, or changes in speed, 
all of which will result in discontinuous segments with our 
recursive fitting.  In Experiments 70-75, we were successful 
in finding suspicious behavior of groups of people but not all 
that of individuals.  Usually it is clear which segments 
belong to the same person because people are limited in 
speed; thus we can rate suspiciousness at segment gaps by 
the degree of discontinuity.  Note that negative evidence for 
suspiciousness is unnecessary, unlike with acoustic data, 
since all paths that stop must start again eventually to leave 
the sensor field. 

IV. BUILDING A NETWORK OF SUSPICIOUS-BEHAVIOR 

SENSORS 

Our approach can support a wireless network of 
"suspicious-behavior" sensors.  Along roads the sensors can 
be arranged in a line.  Acoustic sensors with the simple 
microphone-preamplifier combinations we used could be 
located at 30 feet apart along the road to obtain adequate 
coverage.  They need only communicate with a single 
neighbor sensor along a path to detect suspicious behavior 
using the methods of sections II.B or II.C.  Conclusions of 
suspicious behavior could be forwarded along the road to 
occasional motes with larger antennas for transmitting 
reports to a base station [14].  Messages reported by the 
larger antennas should give the locations, times, and degree 
for the occasional suspicious events.  One design would be to 
have 100 acoustic sensors per mile along roads, with 9 out of 
10 having small antennas for neighbor transmission, and 1 
out of 10 having larger antennas for transmission to a base 
station.  

Passive-infrared sensors and acoustic sensors using our 
the methods have more need to pool their information to 
detect suspicious behavior, but not too much.  Normal 
walking people will deviate over time an increasing amount 
from a linear space-time fit as described in section III.B, so 
attempts at fits for more than 10 seconds will be less 
successful.  This suggests that 10 feet apart would be better 
because they would average one sensor report every two 
seconds.  It would be desirable for motes to share the larger 
antenna for all modalities.  Reliability could be improved if 
each mote redundantly sends messages in both directions 
along the road, which will reduce the probability of failure to 
roughly its square.  Note that the base station can exclude 

sensor reports that are inconsistent due to sensor or 
transmission errors.  The base station can also transmit 
orders to sensors to report additional information about 
emerging patterns.  If a sufficient suspicious behavior is 
reported in an area, the base station can always alert human 
security personnel to inspect it themselves. 

V. CONCLUSIONS 

We have shown that nonimaging sensors have promise as 
a new way to detect suspicious behavior.  But we need to 
conduct more experiments on a larger scale and over a 
longer time period to provide a better test of our methods. 
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