
NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

DISSERTATION
SYSTEMATIC ASSESSMENT OF THE IMPACT OF USER

ROLES ON NETWORK FLOW PATTERNS

by

Dean, Jeffrey S.

September 2017

Dissertation Supervisor: Neil Rowe
Approved for public release. Distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
[September 2017]

3. REPORT TYPE AND DATES COVERED
Dissertation 09-21-2009 to 09-22-2017

4. TITLE AND SUBTITLE

SYSTEMATIC ASSESSMENT OF THE IMPACT OF USER ROLES ON NETWORK
FLOW PATTERNS

5. FUNDING NUMBERS

6. AUTHOR(S)

Dean, Jeffrey S.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A
10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: NPS.2012.0005-AM01-EP7-A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release. Distribution is unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Defining normal is challenging, and defining normal computer user behavior has become critical to detecting potentially malicious
activity. To address this, some anomaly detection systems enable grouping the profiles of users expected to behave similarly, to set
thresholds of normal behavior for each group. One simple means of grouping users is to use role labels, as people with similar roles
are expected to share common tasks and activities. Another approach is to group users based on observed behavioral similarities. We
tested the premise that users sharing roles behave similarly on networks, applying two machine learning classifiers (Nearest Centroid
and Support Vector Machine) to differentiate between flow-data based feature-vector sets derived from users groups defined either by
role or random selection. Feature-vector data was clustered, to determine if data from the same role-group clustered together. Distances
between feature-vector sets were compared, between users in the same and in different role groups. All tests indicated that role groups
do not significantly confer similar network behaviors. We then clustered feature-vector data to group users based on similar patterns
of network behavior, repeated the tests, and demonstrated that defining user groups this way provides the desired group similarities
needed to bound normal user behavior.

14. SUBJECT TERMS 15. NUMBER OF
PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2–89)

Prescribed by ANSI Std. 239–18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited

SYSTEMATIC ASSESSMENT OF THE IMPACT OF USER ROLES ON
NETWORK FLOW PATTERNS

Dean, Jeffrey S.
Civilian

M.S., Air Force Institute of Technology, 2004

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
September 2017

Approved by: Neil Rowe
Professor of Computer Science
Dissertation Supervisor

James Michael John McEachen
Professor of Computer Science Professor of Electrical

Engineering

Marcus Stefanou Robert Kaufman
Assistant Professor of Computer
Science

Adjunct Professor
Information Systems and Cyber
Security

Approved by: Peter Denning
Chair, Department of [Department]

Approved by: Douglas Moses
Vice Provost for Academic Affairs

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

Defining normal is challenging, and defining normal computer user behavior has become
critical to detecting potentially malicious activity. To address this, some anomaly detection
systems enable grouping the profiles of users expected to behave similarly, to set thresholds
of normal behavior for each group. One simple means of grouping users is to use role labels,
as people with similar roles are expected to share common tasks and activities. Another
approach is to group users based on observed behavioral similarities. We tested the premise
that users sharing roles behave similarly on networks, applying two machine learning
classifiers (Nearest Centroid and Support Vector Machine) to differentiate between flow-
data based feature-vector sets derived from users groups defined either by role or random
selection. Feature-vector data was clustered, to determine if data from the same role-group
clustered together. Distances between feature-vector sets were compared, between users in
the same and in different role groups. All tests indicated that role groups do not significantly
confer similar network behaviors. We then clustered feature-vector data to group users based
on similar patterns of network behavior, repeated the tests, and demonstrated that defining
user groups this way provides the desired group similarities needed to bound normal user
behavior.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Document Structure . 3

2 Prior Work 5
2.1 Observing Cyber Behaviors on Networked Systems. 5
2.2 Detecting Anomalous User Network Behaviors 6
2.3 Technical Approaches . 11
2.4 Netflow Based Profiling Techniques 16
2.5 Detection of Automatic Flows 27
2.6 Conclusion . 28

3 Methodology 31
3.1 Netflow Data . 31
3.2 Patterns Within Flow Sets . 41
3.3 Data Collection . 46
3.4 Pre-Processing Analysis . 49
3.5 Cleaning Data . 62
3.6 Comparing User Groups . 64

4 Design of Experiments 67
4.1 Feature Definitions . 68
4.2 Data Processing Factors. 75
4.3 Data Pre-Processing . 76
4.4 Role-Based User Group Experiments 79
4.5 Similarity-Based User Group Experiments 81

vii

5 Results and Discussion 83
5.1 Single Feature Discriminators 84
5.2 Aggregate Netflow Statistics . 84
5.3 Port Volumetric Feature Analysis 92
5.4 Port Distributions Analysis . 94
5.5 Port Priority Vector Analysis. 96
5.6 User Class Consolidation . 98
5.7 Feature Set Classification Comparisons 100
5.8 Clustering Analysis . 104
5.9 Feature Vector Distance Experiments 106
5.10 Grouping Users by Similarity 112
5.11 Conclusion . 119

6 Conclusion 121
6.1 Dissertation Summary . 121
6.2 FUTURE WORK . 124
6.3 CONCLUSION . 125

Bibliography 127

Initial Distribution List 133

viii

List of Figures

Figure 2.1 IP address and port hierarchies 20

Figure 2.2 Piece-wise range mapping . 21

Figure 2.3 Activity Graphlet . 27

Figure 3.1 Flow Starts per Second . 35

Figure 3.2 Flow Bytes per Second . 36

Figure 3.3 Distribution of Packet Sizes . 36

Figure 3.4 Port Priority Vectors . 45

Figure 3.5 PPV Example . 46

Figure 3.6 First Flow Analysis Breakout 50

Figure 3.7 Repeating Interflow Intervals 52

Figure 3.8 Example Interval Distributions 53

Figure 3.9 Bidirectional Flow Distributions 54

Figure 3.10 Per Server Signature Pseudo-Distributions 55

Figure 3.11 Per Port/Protocol Pseudo-Distributions 56

Figure 3.12 Repeating Idle Sequences . 57

Figure 3.13 Web Page Reload Flow Rates for CNN on Chrome Browser . . . 59

Figure 3.14 Web Reload Selection . 60

Figure 4.1 Vectors per Role Group . 78

Figure 5.1 Flow Bytes vs. Role Group . 84

Figure 5.2 Bytes Per Packet vs. Role Group . 84

ix

Figure 5.3 Baseline Set Precision/Recall Scores for Nearest Centroid Classifier 88

Figure 5.4 Down-sampledBaseline Set Precision/Recall Scores forNearestCentroidClassifier 89

Figure 5.5 Baseline Set Precision/Recall Scores for SVM Classifier 92

Figure 5.6 Port Volumetric Set Precision/Recall Scores for Nearest Centroid Classifier . . 93

Figure 5.7 Port Volumetric Set Precision/Recall Scores for SVM 94

Figure 5.8 Port Distribution Set Precision/Recall Scores for Nearest Centroid Classifier . 95

Figure 5.9 Port Distribution Set Precision/Recall Scores for SVM Classifier 97

Figure 5.10 PPV Set Precision/Recall Scores for Nearest Centroid Classifier 98

Figure 5.11 PPV Set Precision/Recall Scores for SVM Classifier 99

Figure 5.12 Baseline Set Precision/Recall Scores for Nearest Centroid Classifier
- Consolidated Groups . 100

Figure 5.13 Comparison of Approaches . 101

Figure 5.14 Comparison of Results - Consolidated Groups 103

Figure 5.15 Group Membership of K-Means Clusters for Statistically Derived Feature Vectors 104

Figure 5.16 Group Membership of K-Means Clusters for Port Flow Derived Feature Vectors 105

Figure 5.17 Group Membership of K-Means Clusters for Port Flow Distribution Derived Fea-
ture Vectors . 105

Figure 5.18 Group Membership of K-Means Clusters for PPV Feature Vectors 106

Figure 5.19 Self-Similar, Intra- and Inter-Group Distances for Aggregate Statistical Features 107

Figure 5.20 Self-Similar, Intra- and Inter-Group Distances for Statistical Port Features . . 109

Figure 5.21 Self-Similar, Intra- and Inter-Group Distances for Port Byte Distribution Features 110

Figure 5.22 Self-Similar, Intra- and Inter-Group Distances for PPV Features 111

Figure 5.23 Self-Similar, Intra- and Inter-Group Distances for Aggregate Statistical Features 112

Figure 5.24 Clustered Group Scores For Intervals 114

x

Figure 5.25 Precision, Recall and F1-scores of Clustered Groups For Each Feature-Vector Type 115

Figure 5.26 Precision, Recall and F1-scores For Five Clustered User Groups 116

Figure 5.27 Cluster Membership for Behaviorally-Defined User Groups 117

Figure 5.28 Self-Similarity, Intra- and Inter-Group Distances For Behavior Groups 118

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Tables

Table 3.1 NetFlow Version 5 Record Fields 33

Table 3.2 The Second (Scripted) Controlled Experiment 34

Table 3.3 Counts of the Role Groups in Data Set 48

Table 3.4 Counts of the Operating Systems in the Data Set 48

Table 3.5 Non-Relevant Flows in Our Data 50

Table 4.1 Top port-protocol Combinations Observed Before Cleaning 70

Table 4.2 Top port-protocol Combinations Observed After Cleaning 71

Table 4.3 Selected Ports and Protocols for Features 72

Table 4.4 Statistical and Information-Theory-Derived Features 73

Table 5.1 Non-Cleaned Data Confusion Matrix 86

Table 5.2 Cleaned Data Confusion Matrix . 87

Table 5.3 Non-Cleaned Data SVM Confusion Matrix 90

Table 5.4 Cleaned Data SVM Confusion Matrix 91

Table 5.5 Mean F1-Scores vs. Cleaning and Sample Intervals 102

Table 5.6 Mean F1-Scores vs. Role-Group . 103

Table 5.7 Confusion Matrix For Clustered Groups 113

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

List of Acronyms and Abbreviations

ACK TCP Acknowledge Flag

BBC British Broadcasting Company

BCC Bi-Connected Components

CERT Computer Emergency Readiness Team

CNN Cable News Network

CTMC Continuous-Time Markov Chain

DDoS Distributed Denial of Service

DHCP Dynamic Host Configuration Protocol

DL Distance Learning

DNS Domain Name Servers

DPI Deep Packet Inspection

DTW Dynamic Time Warping

FAMS Fast Adaptive Mean Shift

FIN TCP Finish Flag

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IBM International Business Machines

ICMP Internet Control Message Protocol

xv

ID Identity

IDF Inverse Document Frequency

IETF Internet Engineering Task Force

IDES Intrusion Detection Expert System

IGMP Internet Group Management Protocol

I/O Input/Output

IP Internet Protocol

IPFIX Internet Protocol Flow Information eXport

IRIS Identity Risk and Investigation Solution

IT Information Technology

ITACS Information Technology and Communications Services

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

MAC Media Access Control

MMP Markov Modulated Process

MS Microsoft

NBA Network Behavior Analysis

NetBIOS Network Basic Input/Output System

NIST National Institute of Standards and Technology

NPS Naval Postgraduate School

NTP Network Time Protocol

PCA Principle Component Analysis

xvi

PhD Doctor of Philosophy

PPK Probability Product Kernel

PPV Port Priority Vector

RBAC Role-Based Access Control

RPC Remote Procedure Call

RST TCP Reset Flag

SiLK System for Internet-Level Knowledge

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management Protocol

SQL Structured Query Language

SSH Secure Shell

SYN TCP Sync Flag

SVDD Support Vector Data Description

SVM Support Vector Machine

TCP Transmission Control Protocol

TTL Time to Live

TF-IDF Term Frequency - Inverse Document Frequency

UDP User Datagram Protocol

VPN Virtual Private Network

WEKA Waikato Environment for Knowledge Analysis

xvii

THIS PAGE INTENTIONALLY LEFT BLANK

xviii

Executive Summary

Among the threats network security analysts face inmaintaining the confidentiality, integrity
and availability of their networks, the damage that can be inflicted by the users inside the
network can be themost grave. Insiders have direct access tomuch of the critical information
available on an organization’s network, and through ignorance, carelessness or malicious
action they can cause data to be lost, corrupted or destroyed. Detecting the actions of users
that are behaving badly has been an area of much research, efforts that are occasionally
reinforced by major breaches of trust that make the headlines.

Network monitors that perform anomaly detection operate by comparing the network traffic
patterns of users or systems against some model of normal behavior. Set the detection
thresholds too tightly however, and the system will generate more false positive detections.
Set the thresholds too broadly, and the system will miss legitimate behavioral anomalies.
Onemethod used to define normal-behavioral thresholds is to group users based on expected
similarities in behavior. Defined this way, acceptable ranges of measured behavior would
be broader than ranges based on individual user activities, but not as broad as ranges that
could be exhibited by a group of randomly selected users.

One approach to grouping users with expected similarities in behavior is to do so based
on user roles. In some commercial network-monitoring systems that use network flow
metadata (e.g. Netflow) to detect network threats, network users can be grouped based
on shared common organizational roles. Grouping of user profiles based on roles has an
intuitive appeal based on the assumption that shared roles imply shared tasks and activities,
but little has been published showing a link between user roles and patterns of network
traffic documented by Netflow.

This dissertation describes the methods we used to test the relationship of user roles to the
network traffic patterns they produce, as captured using Netflow data. In the course of our
investigation we developed an approach to identifying flow records created by automatic
system processes, to enable removing those records from data sets intended to capture user
behaviors on the network. We identified and tested different Netflow-derived-feature sets,
developed as a means of describing user-network-traffic behaviors. We tested the effect of

xix

using different sampling intervals for aggregating Netflow records to create feature vectors,
measuring the impact of employing these intervals on machine-learning classifiers trained
to differentiate between user data sets.

We trained and tested our two machine-learning classifiers (Nearest Centroid and Support
Vector Machines) on feature-vector-data sets derived from groups defined by shared roles,
and fromgroups of users randomly selected (pseudo groups). We found that the performance
of the classifiers was effectively the same for both role-based and pseudo groups, indicating
that role-group-data sets shared no more common behaviors than were shared by groups of
randomly selected users. We clustered feature-vector-data sets using K-means++, and found
that the majority of clusters formed contained mixtures of data from each role-based-user
group, with only a few small clusters dominated by data from one or two role groups.
We performed pairwise distance comparisons between feature-vector sets from each of
our identified users, and found that on average the data sets of users within the same role
group were as different from each other as they were to data sets of users from other role
groups. From these observations, we have concluded that for comparing user behaviors
based on Netflow data, the grouping of users based on shared organizational roles has
limited usefulness.

We then grouped users based on similarities between their feature-vector-data sets, using
K-means++ to cluster centroid vectors (mean values for each feature in a feature-vector
set) for each user. Users were assigned group labels based on the cluster their centroids
were associated with, and the tests used to search for user similarities within role groups
were applied to re-labeled data sets. For user groups defined by this process, the classifiers
performed distinctly better in differentiating between these user-group-data sets and the
pseudo-group-data sets. Clustering of the re-labeled user-group data created more clusters
dominated by one user group than was observed with the role-group labeled data. Finally,
distance comparisons between feature-vector-data sets of users within the same user group
were lower than comparisons between data sets of users from different user groups.

Based on these results we conclude that for the identification of normal ranges of behavior
of users on a network, the user groups used to define normal behavior ranges should be
based on measured behavioral similarities, and not by user roles.

xx

Acknowledgments

To Marla, who supported me throughout this process. Despite the pain, boredom, and
loneliness while watching me try to reach my goals, you hung in there and made it possible.
Thank you.

To my committee, whose patience and professionalismmade me believe I could do this even
when I was losing faith. You taught me how to find answers when none were appearing,
and to always (ALWAYS!) validate my code. Thank you for teaching me how to truly think

xxi

THIS PAGE INTENTIONALLY LEFT BLANK

xxii

CHAPTER 1:
Introduction

1.1 Motivation
Being a manager of an enterprise network has always been challenging, but the challenges
today appear to be increasing greatly in both scope and complexity. Organizations are being
hacked by criminals, hacktivists (hackers with some activist agenda), and nation-states.
Insider threats, where employees with legitimate access compromise the confidentiality,
integrity or availability of critical organizational data and resources, can and often do
cause great damage to many government and private organizations. As many organizations
allow employees to bring their own devices to work, the variety in available applications,
operating systems and computing platforms complicates defining normal network traffic [1].
Intrusion-detection sensors searching network traffic for malicious activity must deal with
increasing network speeds, driving more demanding performance requirements (processing
rates, network and disk I/O bandwidth, disk-storage capacity for captured traffic and derived
artifacts). The increasing use of encryption is rendering many signature-based detection
methods less useful. Finally, many organizations are limited in the extent to which they can
analyze network traffic due to privacy laws limiting what network traffic artifacts can be
captured and stored.

Among these challenges the identification of potentially harmful behaviors among digital
system users has been an area of intense interest, as organizations struggle with detecting
personnel abusing access privileges through malicious actions, ignorance or carelessness.
To address this concern, much research has gone into creating tools to detect anomalous-
user behaviors that could indicate harmful activities. Many of these tools create user
profiles based on activities observed on host systems and networks, and use these profiles to
compare user activities against historical behaviors or against the behaviors of other users
in the organization.

Network-monitoring systems that employ anomaly detection algorithms compare new
network-traffic patterns against some standard of "normal" traffic. Defining normal traffic

1

based on the daily activities of individual users can be problematic, as there is no guarantee
that the user was not behaving anomalously when their profile was created. In addition,
even non-malicious changes in behavior could be flagged as an anomaly. To get around this
problem, some systems enable grouping user profiles, and using the aggregate behaviors of
the group to define behavioral thresholds. If a selected user group shares similar network
behaviors, the ranges of behavioral measures for that group should be broader than any
individual in the group but narrower than ranges defined by users with dissimilar behavior
patterns. For some commercial tools, users may be grouped based on sharing the same
office or organizational roles, based on the assumption that people responsible for the same
general set of tasks should behave more similarly than those performing different tasks in
the organization [2].

This assumption is plausible since one would expect that an administrative assistant would
exhibit detectable behaviors on a computer or network quite different from those of a
network administrator. But does grouping and evaluating users based on roles provide
the best approach for defining normal digital behaviors? People are individuals, with
different interests, skills and habits. These individual differences should also impact the
observable network artifacts generated by user activity, possibly to the extent of obscuring
any similarities due to users sharing the same defined roles.

Another approach to identifying normal behavior ranges by creating user groups is to
measure similarities between user profiles, and group users based on these similarities.
This approach has the benefit of being objectively verifiable, with user similarities measured
based on the same behavioral features that are being used to characterize and compare user
activities on the network. We evaluate the assumption that users sharing similar roles
exhibit similar network behaviors, and contrast the level of similarity found in role-based
user groups against the similarities of users grouped based on shared measures of network
behavior.

1.2 Contributions
The primary contribution of our research are:

• We demonstrated that for defining the scope of normal user network activity as

2

measured by network flow metadata, users in groups identified based on shared
behavior profiles are measurably more similar in behavior than groups defined based
on shared user roles.

• We developed a methodology for testing whether the criteria used for identifying user
groups bears any significant relationship to the behavioral characteristics of that user
group. In this case, we demonstrated that defining user groups based on organizational
roles did not result in creating groups exhibiting shared network behavior patterns.

• To support the use ofNetflowdata in comparing user (and not host) network behaviors,
we developed a methodology for distinguishing Netflow records representing network
flows generated by automatic (versus user initiated) processes. We also tested the
impact on removing those automatic flows on our processes for comparing user
behaviors.

1.3 Document Structure
The prior work supporting the concepts and approaches used in our research is provided
in Chapter 2. We present our definition of user behavior as observed in the cyber domain,
how anomalous user behavior may be defined and the implicit relationship between or-
ganizational roles and user behaviors. The features of Netflow data are described, along
with patterns observed in network traffic as described by Netflow records. The primary
characteristics of flows generated automatically by applications and operating systems are
described. Finally, we describe the known research relevant to the problem of comparing
user behaviors using Netflow records.

Chapter 3 describes the patterns used to identify and remove automatically generated flow
records in the data set, and how the algorithms used to detect automatic flowswere developed
and tested. It describes the feature sets used for comparing of user behaviors, the user-role
groups used to test the relationship between roles and behaviors, and the data set collected
for evaluating this relationship. It discusses the user-behavior-similarity measures used for
measuring the differences between extracted Netflow-based features.

In Chapter 4, the experiments used to test similarities and differences between user behaviors
are discussed. Comparisons between data sets reflecting the network patterns generated by
different user role-groups are tested, including control data sets constructed to be non-role

3

specific. Each test is repeated with and without automatic flows removed from the data, to
determine the impact of removing their data. In addition, different data sampling intervals
are tested to determine which interval best enables differentiating traffic from different role
groups. Chapter 5 provides the results of the experiments discussed in Chapter 4, and
analyzes them, and Chapter 6 discusses the conclusions we derived from our experiments.

4

CHAPTER 2:
Prior Work

2.1 Observing Cyber Behaviors on Networked Systems
What is meant when we talk about behavior in the cyber domain? For our research we
define behavior as patterns within digital traces such as log files, file transfers observed
in captured packet data, command line input sequences, and network traffic metadata,
generated by the activities of digital-system users, platform and applications used to access
the cyber domain. Cyber behaviors can be observed and compared using multiple data
sources, including host systems, network-monitoring devices, and network appliances (e.g.
routers, firewalls, databases, web servers) [6] [7]. This rich set of options provides network
defenders multiple opportunities for detecting threats, with many commercial and open
source tools available for collecting, analyzing and presenting data extracted from these
resources.

Intrusion-detection systems employ algorithms that look for patterns within digital traces
that could indicate network system compromises; these algorithms can be categorized
as being based on signatures, stateful protocol analysis or anomaly detection [8]. Well-
defined digital patterns based on specific byte-value sequences in transferred data are
characteristic of signature-based systems, and are good for detecting known threats [9].
The success of signature-based threat detection depends on the specificity of the signatures
used. Matches to highly specific signatures provide high confidence in a valid detection,
but such specific signatures may not detect closely related threats. Unknown threats are not
detected by signature-based systems, as signatures are derived fromwhat is known. Stateful-
protocol analysis compares network traffic against a representation of normal behavior,
where definitions of normal behavior are based on protocol standards [8]. Also known as
Specification-Based Detection this approach is often used in hybrid systems, in combination
with signature or anomaly-based detection techniques.

Anomaly-based intrusion detection algorithms compare extracted digital patterns against
some representation of normal behavior; deviations from normal behavior greater than

5

some threshold can be declared anomalous, and flagged for investigation. Normal cyber
behavior can be categorized primarily as statistical-based, knowledge-based and machine-
learning based [10]. Statistical-based detection compares one or more feature metrics
extracted from current user or system activity against a profile, and alerts if the metrics
deviate too far from the profile norms. While these systems can be trained to profile normal
behavior they suffer from several drawbacks, including attackers or insiders being able to
shift the statistics of normal traffic over time, an assumption that the features have known
(usually normal) statistical distributions and that they are generated by relatively stable
processes. Knowledge-based detection relies on rules derived from human expertise, and
can be developed using some kind of formal tool to describe expected behaviors. While
similar to statistical-based detection in terms or comparing data sets, machine-learning based
techniques categorize or classify patterns and several algorithms can improve classification
accuracy by training to reduce past errors [11]. This ability to categorize patterns is a very
useful capability for characterizing how related groups of data sets, or the systems and users
that generated the data sets, are to each other.

By using normal behavior as a yardstick, anomaly detection can detect certain kinds of new
threats. Not all anomalies are malicious, however, and depending on the features used for
analysis not all malicious traffic appears anomalous [12]. Used by themselves anomaly-
detection systems are susceptible to high false-positive rates, often due to evaluating new
but legitimate behaviors. This tendency can be mitigated by broadening the criteria used to
define normal behavior, either by increasing the deviation thresholds required for an alert,
or increasing the number of data samples used to define normal behavior (collecting over
longer periods or drawing data from more users).

2.2 Detecting Anomalous User Network Behaviors
Identifying anomalous digital behavior by users on a network has some similarities to de-
tecting malware, a well established and robust area of research. Some potentially malicious
behaviors can be well defined, such as a user trying to access network resources for which
they do not have privileges. These can be codified as signatures on network or host-based
sensors, to generate alerts when they are detected. The significance of other user behaviors,
such as an analyst downloading a larger volume of documents during the day than expected,
may be better determined relative to some representation of normal activity. Such behaviors

6

can be detected using statistical or machine-learning based anomaly-detection systems.

The challenge in using these approaches is determining how to set good thresholds on
behavior-related measures (features), to separate values associated with normal behaviors
from those associated with anomalous activity. Selecting the best thresholds would result
in maximizing the number of correctly identified anomalies while minimizing false alarms.
Setting behavioral thresholds based on the network-usage profiles of individual users can
be problematic, in that 1.) A user’s behavior may already be anomalous when a profile
is being created and 2.) A user data set may show limited variability in observed feature
values, so that minor changes in the user’s behavior triggers a false alarm. Defining normal
behaviors based on the consolidated data sets of users with different patterns of behavior
(such as an entire organization) can also be problematic, in that feature value ranges within
the group may be wide enough that feature values associated with anomalous behaviors are
not detected.

One way of addressing these problems is to define normal behaviors based on the consoli-
dated data sets of users that might be expected to behave similarly, such as users fulfilling
the same roles within an organization. If users within the same role group do behave simi-
larly on the network, the ranges of feature values used to describe their collective network
behaviors could be expected to be narrower than would be found by grouping unrelated sets
of users, yet broader than the feature value ranges of individual users within the group.

2.2.1 User Roles and Network Behavior
User roles have an implicit relationship to what should be considered normal behavior, as
different roles have different associated tasks to be performed and different access permis-
sions to perform those tasks. Thus the network traffic generated by users from different
role-based groups can be hypothesized to differ in detectable ways, based on the network
resources accessed, the protocols used and levels of activity associated with that access.
Based on this, grouping users within an organization to define normal traffic patterns for
each role group makes sense.

The relationships between users, roles and tasks however are many to many; a user may have
multiple roles in an organization, and a role may have many users assigned to it. Likewise
a role may be tied to multiple tasks and the associated privileges needed to accomplish

7

each task, while tasks and associated privileges can be common to multiple roles. For
example, the tasks for a computer user fulfilling the role of student could include collecting
information (accessing library resources and internet browsing), processing information
(writing, performing experiments, and coding), and communicating information (handling
mail and making presentations). In an educational institution these tasks are by no means
limited to students, as faculty, administration and staff personnel may often find themselves
needing to fulfill the same or similar tasks. Because of the overlap in tasks between different
role groups and the fact that users are individuals with their own approaches to completing
those tasks, defining normal behaviors based on user roles is not as straightforward as one
might assume.

A number of researchers have looked into the application of user roles or peer groups as a
means of refining the parameters of normal user behavior. Park andGiordano [13] leveraged
roles in experiments designed to detect insider threat behaviors. Frequency measurements
were taken for activities such as document searches, and the ranges of values observed for
each role group were used to set thresholds for normal behavior. In the experiment, if a
user exceeded these thresholds their behavior would then be compared to that individual’s
normal range, as a means of reducing false positive alerts. They concluded that the use
of roles did help in defining normal behaviors. The data used in this study however was
synthetic, generated to emulate an Intelligence Community (IC) organization, and so did
not necessarily reflect patterns that would be observed in a real organization.

Nellikar et al. [14] also tested whether the use of role-based data labeling enhanced detection
of behavioral anomalies. Log files representing document access times were generated
using a continuous-time Markov chain based (CTMC) algorithm, providing sequences of
randomly timed events. Different CTMC structures were configured for the two roles
(mechanical engineer and chemical engineer), and separate traces were created for each
virtual user. Malicious behavior logs were those with timing characteristics different from
the two role based groups. Each group was supposed to have access to different document
sets, plus one common document that both groups had full access to. The testing was
performed on accesses to the common document.

Using the synthetic log data tracking document access frequencies, they tested several
classifiers:

8

• One-Class Support Vector Machines,
• Support Vector Data Description (SVDD),
• Fast Adaptive Mean Shift (FAMS),
• One-Class Classifier (a WEKA [15] classifier), and
• Outlier detection using interquartile ranges (WEKA InterquartileRange attribute fil-
ter)

The classifiers were trained on the user access patterns, and tested using normal and
malicious log sets. The authors found that the classifiers identified the malicious access
patterns between 20% and 40% of the time if the classifiers were trained on logs from
both role based groups. When the training data was restricted to data from a single role
based group, users acting maliciously within the group were detected 100% of the time.
Some classifiers (the one-class classifier and the Interquartile classifier) showed higher false
positive rates using the single role training sets. This was attributed to the decrease in overall
feature variability in the smaller data sets; more data points were identified as outliers and
flagged.

While the source data was synthetic, the tests did imply that subgrouping profile data based
on roles improved detection accuracy. The underlying assumption that document access
time rates are driven by user roles was not proven, however.

IBM’s Identity Risk and Investigation Solution (IRIS) identifies anomalous behavior by
applying the concept of peer behavior to determine normal activities [2]. Available features
are varied, including measures such as application access frequency, time between accesses,
number of sensitive data items accessed, login times and remote access events. IRIS treats
these features as random variables, creating value distributions based on the activities
of peer groups, i.e. users with similar roles that are expected to exhibit similar behavior
patterns. Measurements from individual user behaviors are compared to these distributions,
to determine if the behaviors are anomalous.

Mathew et al. [16] examined the results of SQL database queries, and created statistical
summaries of the query results, or S- vectors, for classification. The statistical vectors were
used to train different (Naive Bayes, Decision Tree Classifier, Support Vector Machines,
and Euclidean k-means clustering) classifiers, with the S-vector training data labeled based
on the role (Staff, Faculty, Chair, Framework) of the person making the query. Framework

9

queries were queries common to all users. The classifiers were trained as binary discrim-
inators, i.e. Chair versus Faculty, Chair versus Staff, and Faculty vs. Staff. The k-means
classifier performed best in identifying the roles of the database users, achieving a 91% -
100% detection rate. Accessing database query results was performed via an application
monitoring the interactions between a web-page interface and the database.

2.2.2 User Versus Role-Group Behaviors
While organizational roles provide one approach to grouping users to better define normal
network behavior, doing so is based on the assumption that users performing similar roles
behave similarly. This top-down approach, where group labels are imposed on the data sets,
is dependent on that assumption being valid. The validity of this assumption is complicated
by a number of factors, however. Role titles may range from broad-based groups (e.g.
professors) to more specific designations (e.g. associate professor in the Computer Science
department). Tasks within a role group may not be distributed evenly, or may vary between
departments. Many organizations allow employees to bring their own digital devices in to
connect to the network, each with different operating systems and applications. Computers
often make network connections autonomously, performing background actions such as
checking for updates or searching for network resources, and these connection patterns
can vary between differently configured systems. Users may connect to the organization
networks via different media (e.g. wired, wireless, and virtual private network), which can
impact temporal aspects of the connections such as how long data transfers take and the
lengths of time that user devices stay connected. These sources of variability can impact
the level of apparent similarity of user behaviors within the same role-based group, and
the utility of subdividing users into these groups. The relative impacts of these factors on
observed connection patterns are largely unexplored.

Another approach to better defining normal behaviors by grouping data sets is to not assume
users in role-groups behave similarly, but to group user data sets that correspond to similar
aggregate behaviors. Such groupings could allow tighter definitions of normal behavior
than would be attained via grouping data sets by user roles, yet still provide broader feature-
value ranges of normal user behavior than might be observed in an individual user profile.
Using this approach adds a step in consolidating data sets based on similar behaviors, but
is more objectively verifiable than consolidation based on user labels.

10

2.2.3 Netflow
Our research used a form of network-flow metadata, specifically Netflow version 5 flow
records, to compare user network behaviors. Netflow v5 provides a succinct summation
of the flow of network data between two computer systems, providing metadata about the
flow including source IP address, destination IP address, source port, destination port, flow
protocol, number of packets, number of bytes, TCP flags used, flow start time, duration and
end time. The Netflow v5 standard also includes a number of other features relating to flow
routing, features visible if the flow data is captured by a router. Instead, we used packet
capture (pcap) file data to generate the Netflow records, and the SiLK [17] software suite.

Why compare user behaviors using flowmetadata? Several key factors favor its use. Netflow
is a fairly ubiquitous resource, and creating flow-metadata based sensors is inexpensive.
Most current routers can produce Netflow records (or some related variant), plus there are a
number of software packages that enable computers to convert packets into flow metadata.
The records themselves are compact, typically about 1% of the data-storage volume required
by full packet capture. This property enables organizations to store historical traffic data for
longer periods of time, a very useful capability when network breaches are discovered well
after the event. Use of Netflow records also allows network traffic analysis without violating
many of the privacy laws in place to protect the personal information of employees and
customers. Finally, more comprehensive solutions may not be available. Host-based user
monitoring, depending on the implementation, may be infeasible for many organizations
due to privacy issues and/or cost and complexity. In addition, as encryption becomes
more prevalent due to security concerns, reading application layer data is becoming more
problematic. Netflow data does not report packet contents.

Netflow provides a record of connection patterns; which systems were contacted, howmuch
data was transferred, what protocols and ports were used, any TCP flags set during the
transfer, when the flow started and ended.

2.3 Technical Approaches
We will define the elements of a user’s role in an organization as the “rules and norms
that comprise a blueprint or script that guides behavior and choices" [18], implicitly or
explicitly specifying “appropriate goals, tasks to be executed, and the like” [19]. Research

11

on incorporating a user’s role in an organization in the detection of malicious digital users
on a network has primarily been limited to applying Role Based Access Control (RBAC)
principles, where a user’s access to network resources is granted or denied by their roles. In
an RBAC framework, a user that attempts to bypass RBAC constraints can be detected and
flagged for investigation. The detection of suspicious behaviors that occurs within the limits
of a user’s access privileges, such as downloading large numbers of sensitive documents
within a short period of time for the purposes of exfiltration, is a different problem not
solved by applying basic RBAC principles. Some enhanced forms of RBAC attempt to
address this limitation, however.

The use of roles as a means of enhancing the detection of anomalous user behaviors to date
has been limited, and primarily dependent on the use of data resources such as system logs,
user queries, and host processes beyond just network traffic metadata like Netflow records.
An alternative to employing roles as a means of defining normal user behaviors is to group
user-data sets based on exhibiting similar behaviors, and measuring new user data against
those of users known to be similar.

We now discuss prior work that contributed to development of the methodologies to be
described in Chapter 3.

2.3.1 Role Based Access Control
While most of this document uses Netflow-derived data for the detection of malicious user
activities, it is important to incorporate a description of Role Based Access Control (RBAC)
concepts. Much of the terminology and conceptual framework associated with malicious
user mitigation map directly to RBAC principles and implementations. The principles of
RBAC have been iteratively defined and refined since 1987 [20], emerging as a unified
concept in 1992 [21], and has become a best practices framework for managing the access
permissions of users to network resources.

At its essence, RBAC assigns roles to users, and permissions for resource access are
based on those roles. More formally, within an organization there exists a set of users,
U = {u1, u2,, un}, as well as a set of roles R = {r1, r2,, rm} required to fulfill
the organization’s mission. Because different roles require access to different resources,
a set of permissions (P =

{
p1, p,, pq

}
) is defined to constrain what resources can be

12

accessed under each role. The organization maps users to roles and this can be a many-to-
many mapping, i.e. a user may be assigned to multiple roles, and multiple users may be
assigned to a role. Likewise, roles and permissions typically have a many-to-many mapping
relationship, in that a role may be associated with multiple permissions, and permissions
for access to a network resource may also be assigned to multiple roles.

Because of these many-to-many relationships, RBAC employs the concept of sessions,
where a user can take on a set role (and associated permissions) for performing tasks. To
perform other roles, the user must end the current session and start another. Besides the
constraints imposed by permissions, RBAC can impose other constraints such as disallowing
the same user to have certain combinations of roles, such as the making and approving of
loans.

Through the use of RBAC principles, an organization can map a complex set of permissions
to new employees (or employees moving between divisions) based on the roles associated
with their positions. Restrictions based on need-to-know and separation of duties can be
implemented and managed. In many implementations roles and associated permissions can
be defined in a hierarchical fashion, such that more senior positions can inherit permissions
associated with lower grade personnel in the role hierarchy.

NIST [20] defined their RBAC model as composed of four components, Core RBAC (con-
cepts of users, roles, sessions, objects, operations and permissions), Hierarchical RBAC
(inheritance relationships), Static Separation of Duty Relations (based on role set mem-
berships), and Dynamic Separation of Duty Relations (based on roles assumed during
sessions). When used properly, RBAC has been shown to be an effective tool for managing
and protecting network-based resources.

While RBAC has proven to be quite useful, it has limitations. Park and Ho [22] noted
that RBAC ignores insider behaviors such as “communication patterns, frequencies, areas
of topics, areas of interest, etc.”. It also falls short with one of the biggest insider threat
risks; users with extensive privileges such as system administrators. Their knowledge
and privileges can be applied to create extensive damage while enabling them to cover
their tracks. Regarding these behavioral aspects of insiders, basic RBAC provides some
preventive capabilities but limited detection capability.

13

Some of these detection deficiencies can be addressed by adding additional constraints,
which can be based on temporal [23] [24], history [25], and event [26] criteria. Baracaldo &
Joshi [27] proposed incorporating the concepts of trust and riskwithin theRBAC framework.
In their solution, the system keeps track of the roles a user employs, and can make a decision
to deny access to resources if cumulative accesses would enable the inference of sensitive
information. Coupled with the risk of inferring information is the concept of trust, based
on a trust threshold assigned to each user. The user can be denied access to a set of roles if
they do not have a sufficient level of trust for the context of the access. Context is associated
with how the interaction may occur, such as through a remote access.

2.3.2 Behavior Based Access Control
RBAC provides a rigorous means of constraining user behaviors on a network based on their
roles and privileges, but it does not necessarily prevent users from abusing the privileges
associated with their roles. To address anomalous behaviors performed within the limits of
a user’s privileges, some means of defining normal behavior is required.

Frias-Martinez [28] described a behavior-based access-control system which clustered user
data sets, grouping them based on patterns of similar behavior. New feature vectors were
compared against existing clusters, and vectors too dissimilar to existing clusters were
determined to be anomalous. For one experiment, 300 users were profiled over two weeks
based on port 80 and port 22 usage. The feature vectors used for profiling users consisted of
arrays of values created hourly and daily for traffic over each port, based on total number of
flows, average flow size in bytes, average flow time in milliseconds, total number of packets,
average number of packets per flow, total number of unique IP addresses connected to, and
average packet size in bytes passed.

User profiles consisted of the average values for each feature captured during the collection
period, effectively a centroid of the feature-vector values observed. The user profiles were
clustered using a K-means++ algorithm. The value of k was varied to find values that
maximized the correct rejection of anomalous profiles and minimize false rejections. The
system correctly rejected 95% of the anomalous feature vectors (created by artificially
changing feature values by one standard deviation), indicating that the approach could
detect differences in behavior.

14

In another experiment, host traffic on a wireless network was clustered based on port 21
(FTP), port 22 (SSH), port 25 (SMTP), and port 80 (HTTP) distributions. Feature vectors
were created based on the standard deviation and mean values for several features: the
number of unique users a host connected to, the number of packets exchanged and length of
packets. The profiles were generated per hour for each port and each direction of flow. Thus
for a profile pi for user i, a set of hourly histograms h fnfor each feature fn were created.
For each hour j of the day, the histogram data was abstracted as mean (a j) and standard
deviation (σ j) values, and a histogram set (h fn) was defined as:

h fn = {(a0, σ0) , (a1, σ1) , ..., (a23, σ23)}
and user profiles were sets of feature histograms:

pi =
{
h f1, h f2, ..., h fn

}

Averages of themean (a j) and standard deviation (σ j) values for each featurewere computed
for each day, and thresholds for single user profiles were based on whether measured feature
values for an hour were more than one standard deviation from the day’s mean value.
Thresholds for profiles that were clustered were set by the maximum distance between a
behavior profile (a j + σ j) and all the other n − 1 profiles within its cluster c, or

tPi = max j=0..n(d(Pi, Pj))

The number of hosts falsely classified as anomalous was lower for cluster-based profile
comparisons than for single user based profile comparisons, which is to be expected from
using the maximum threshold value for the cluster rather than basing it on individual
variations. This concept was refined in [29], which described a mechanism for automating
the clustering process. In addition, an incremental learning mechanism was introduced to
automatically update the behavior based access control policies.

The system proposed by Frias-Martinez described a methodology for grouping users with
demonstrated commonalities in their behaviors, as a means of identifying normal behaviors

15

for a subset of the users being monitored.

2.4 Netflow Based Profiling Techniques
Although research in detecting user misbehaviors has taken many forms, much of the
work on the technical side of network misuse detection has drawn from anomaly-detection
techniques. As Denning [30] noted, the key to detecting computer misuse is establishing a
pattern of the normal (profiles), and using these profiles as yardsticks to identify anomalous
behavior. Behaviors in Denning’s model were characterized by vectors of measurements
taken over a period, or statistical models used to determine if new observations were
anomalous. Profiles characterized the behaviors of one or more subjects (those that initiate
actions) in relation to objects (resources), creating signatures of normal activity. Activities
on the system were captured in audit records, and detected deviations captured in anomaly
records. Responses would be specified in a set of activity rules, and triggered by anomalous
event detections. The principles of the Intrusion Detection Expert System (IDES) as
presented in [30] have been used in many intrusion detection solutions developed since then
which have focused on a wide range of features.

2.4.1 Creating Profiles
To measure user or host behaviors over time, some method of segmenting the collected data
into smaller data subsets is required. Each subset would contain user or host-related data
generated during a period of time, to be compared against other data subsets generated by
that user or host (to detect changes in behavior) or against subsets generated by other users
or hosts (to detect differences in behavior).

Clarke et al. [31] approached this problem by dividing user flow data sets based on the
services visited or utilized (BBC, Dropbox, Facebook, Google, Hotmail, Skype, Twitter,
Wikipedia and YouTube). For each access, they recorded the start and end times of the
interaction, the local and server port numbers, the server IP address, the total packets sent
for each flow direction, and the total bytes passed. By breaking up the flow data sets based
on the known IP addresses associated with each service, they were able to isolate each per
service interaction for each user. The captured features were used to train a multi-layer
neural net to identify the users associated with these interactions. The true positive rates

16

achieved in differentiating between 46 users ranged between 12.6% and 86%, depending on
the user evaluated.

Vinupaul et al. [32] segmented user-flow-data sets by applying a sliding window of N flow
records, extracting features each time the window incrementally shifted by one flow record.
For each flow sample, they noted the number of unique IP addresses visited, the IP address
associated with the most flows, the number of connections to the most visited IP address, the
number of unique destination ports accessed, the top destination port accessed, the median
flow duration in the sample, the median local port, number of unique local ports, the number
of unique Time To Live (TTL) values observed in the sample packets and the top TTL value
observed. They trained Random Forest and C4.5 decision trees plus a K Nearest Neighbor
classifier on the features to determine how well they could differentiate vectors attributed
to 65 users. The F1-scores for the classifiers ranged between 0.8 and 0.87.

Giroire et al. [33] divided user data sets based on the connections users made via corporate
laptops. Connection types were categorized as those internal to the company network,
connections to the company network via VPN, and connections made outside of the com-
pany. The use of network access categories provided an easily detectable division point
for separating user data sets for analysis. Using this approach to grouping user data sets,
they observed that users employ laptops differently in different environments, based on the
use of server ports, flow protocols and connection durations when connected to internal,
external or VPN networks. From this they concluded that any form of behavioral thresh-
olding process used to identify anomalous behaviors would need to take into account the
environment in which a system was used.

Interval Based Statistical Profiling
A simplermeans of segmenting user or host data sets would be to divide the collection period
based on regular intervals. For each interval period, flows that overlap with that period are
grouped together. For flow metadata, flows that overlap with more than one interval can be
broken into smaller flows, each flow receiving quantity data (bytes, packets) proportional
to the fraction of the flow overlapping each interval. Due to its simplicity, interval-based
analysis of flow-derived metrics is widely used. Using this approach, features based on
flow values that occur within an interval can be generated (mean and standard deviation
measures of byte values, histograms of IP addresses visited, etc.). Feature sets can also

17

be generated based on measures observed across multiple intervals, such as histograms of
feature values measured for each interval during a day.

Kind et al. [34] explored the use of interval-based histograms of Netflow features to detect
network attacks. The features used to create the histograms were the source IP addresses,
destination IP addresses, source port numbers, destination port numbers, protocol numbers,
number of bytes, number of packets, and flow durations observed during an interval. They
reduced the number of feature values in the histograms using Principal Component Analysis
(PCA), and tested different distance functions (Manhattan, Euclidean, Mahalanobis) by ap-
plying each measure while performing hierarchical clustering on the transformed histogram
vectors. The authors noted that while the Mahalanobis distance measure typically provides
better results as compared to standard Euclidean distance for clustering, applying PCA to
the data set to reduce the data dimensionality provides the same effect.

They compared the clusters generated by attack free traffic sets to those generated from data
including various attacks, and were able to detect 86.7% of the attacks. They also compared
their histogram based approach for detecting anomalies to using entropy as a measure of
traffic changes, and found that use of histogramswasmore effective for detecting attacks that
impacted only a few histogram values. This approach demonstrated the utility of comparing
histograms of Netflow feature values as a means of clustering different network behaviors.

McHugh et al. [35] employed histograms of tuple values (protocol, destination port, and
number of bytes) representing features in network flows observed over daily intervals. Byte
values were categorized based on ranges, i.e. 1-99, 100-999, 1000-9999, 10000-49999,
and >50000 bytes. The tuple feature ranges were quantized to allow 23 different possible
combinations, and the normalized counts for each tuple were used to train a three layer
back-propagation neural network. Each output node in the neural network represented one
of three hosts on the network to be identified. The neural network correctly classified 100%
of the hosts in the test data. The authors intended to use the network to search for host
anomalies based on misclassifications. In one case however, a misclassification was caused
by an individual who changed which host they worked on partway through the day. This
indicates that the neural net was profiling the host and user together, and the relative values
among the output neurons could provide similarity measures between different users.

Melnikov et al. [36] explored the feasibility of profiling and identifying specific users

18

based on Netflow statistical features. Their sample size was limited (4-5 volunteers),
but with this group they explored several Netflow features in terms of user classification.
They found that the relationships of HTTP flow bytes to durations and flow bytes to
packets did not aid classifiers. Conversely, they observed notable differences between users
in histograms (feature-value histograms based on data collected over defined intervals)
showing the distributions of SSH flow-duration times. To investigate HTTPS flow durations
as a distinguishing characteristic they cross-correlated duration histograms, and foundmuch
higher correlations between histograms from the same users as compared to histograms
derived from different users. This implies that applying distance measures to flow-feature
distributions may be useful.

Sequence Based Profiling
Classifications based on statistical feature values are usually temporally agnostic, in that
relationships between values as a function of time are ignored. Temporal patterns, however,
could be characteristic of a user or group of users in the sequences of tasks or activities
performed during the day. It is unlikely that users or groupswould create identical sequences
or patterns, as people can perform tasks faster or slower, or at different times of the day.
This means that in comparing two sequences, A and B, temporal comparisons should be
either statistical in nature (e.g. based on a Markov process), or allow for matching similar
sub-sequences within two sequence data sets being compared.

Coull et al. [37] proposed an approach to calculate an overall distance value between two
flow sequences, that incorporated the element of patterns over time. This was achieved
by aligning similar subsequences through a modified version of Dynamic Time Warping,
to find a minimum inter-sequence distance value. Similarity between subsequences was
determined by use of a distance metric, measuring the difference between features (flow
port values, IP addresses, byte counts and time of day) of pairs of flows. The challenge in
determining an inter-flow distance value was that some flow features are numerical (bytes,
packets, duration, flow time of day), and some categorical (IP addresses, ports, protocol,
flags).

Categorical flow features had to bemapped into relationships that alignedwith their intended
purposes. For IP address and port values, this was achieved by creating hierarchies of
addresses and ports (Figure 2.1). Distance values were assigned based on the level in the

19

hierarchy at which two port or address values diverged.

Figure 2.1. IP address and port hierarchies
Source: Coull, S. andMonrose, F. and Bailey, M. "OnMeasuring the Similarity of Network
Hosts: Pitfalls, New Metrics, and Empirical Analyses". Proceedings of the 18th Annual
Network & Distributed System Security Symposium, February 2011

For comparing two destination ports for example, in [37] they defined the distance dport (a, b)
as:

dport (a, b) =

0 i f a = b

1 i f δport (a) = dport (b)

2 i f δport (a) ∈ {0, 1} & δport (b) ∈ {0, 1}
4 i f δport (a) ∈ {0, 1} & δport (b) ∈ {2}

δport (a) =

0 i f a ∈ [0, 1023]

1 i f a ∈ [1024, 49151]

2 i f a ∈ [49152, 65535]

Numerical values, such as flow bytes or time of day (in seconds), were placed in non-
overlapping categories based on their common labels. Flow byte values were measured in
bytes, kilobytes or megabytes, while time of day values (since midnight) were measured in
seconds, minutes and hours. Coull et al. [37] mapped the categorical values into a common
[0, 1] range, by subdividing the range to match the number of categories (Figure 2.2).

20

Figure 2.2. Piece-wise range mapping
Source: Coull, S. andMonrose, F. and Bailey, M. "OnMeasuring the Similarity of Network
Hosts: Pitfalls, New Metrics, and Empirical Analyses". Proceedings of the 18th Annual
Network & Distributed System Security Symposium, February 2011

For each of the flow features f k ∈{flow time of day, source IP, source port, destination
IP, destination port, flow bytes}, the absolute difference | f ai

k − f bj

k | between two mapped
values was used to quantify the feature distance. The overall flow pair distance d(ai, b j),
where ai ∈ A and b j ∈ B, was the Euclidean distance of the feature distances, or d(ai, b j) =√√ n∑

k=1
(f ai

k − f bj

k)2

The temporal element, where the sequences of flows from two different hosts are compared,
came through use of a modified dynamic time warping (DTW) algorithm. The modification
to DTW was an effort to reduce the O(m1,m2) complexity of comparing sequences A =

{a1, a2, ..., am1} and B = {b1, b2, ..., bm2}. The basic DTW algorithm computes all possible
distance values, or d(ai, b j), between terms in sequence A and sequence B. Recursively,
the distance between subsequences A = {a1, a2, ..., am1} and B = {b1, b2, ..., bm2} can be
expressed as:

D(i, j) = d(ai, b j) + min(D(i − 1, j − 1), D(i − 1, j), D(i, j − 1))

for all 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2. D(−1, j), D(i, −1) and D(−1, −1) are assumed to be
infinite in value.

One way to envision this is to create an A x Bmatrix, where cell (i, j) represents a pairing of
the ithterm in the A sequence against the jth term in the B sequence. D(i, j) is the shortest

21

warped path distance to that cell, and is computed based on d(ai, b j) and the minimum
previously computed distance values in cells to the left, upper left and above cell (i, j). The
total distance between the two sequences is D(m1,m2).

In the modified DTW algorithm discussed in [37], for Netflow record sequences A and B
(|A|≥|B| is assumed) the sequences are split up into subsequences, in which flows within
a subsequence occurred during the same second. Subsequences in A are mapped to sub-
sequences in B that occurred at the same time, i.e. for subsequences A1, A2, ..., Akand
B1, B2, ..., Bk , Ai is mapped to Bi. Unpaired subsequences, where no corresponding flow
subsequences exist, are merged with the closest (temporally) subsequence for that system.

This mapping continues into the subsequence level. A slope term, Si =
|Bi |

|Ai |
, enables

a pairing of each flow within subsequence Ai to a flow within Bi, such that the jthpoint
in Ai(or Ai, j), is mapped to Bi, j ′, where j′ = d j ∗ Sie. The purpose of this mapping
approach is to identify a set of “diagonal” flow pairs through the A x B matrix, allowing
for the fact that one system may produce more flows in a given second than the other.
The authors argue that optimal mappings between the A and B sequences typically occur
near the same points in time, and so identifying flow pairs that occur at or near the same
time enables creating a smaller “window” of cells to process. The window size wi for
each subsequence is dynamic, at least dSie in size, such that distances within a window of
flow pairs (d(Ai, j−wi, Bi, j ′−wi), d(Ai, j−wi+1, Bi, j ′−wi+1),, d(Ai, j, Bi, j ′)..., d(Ai, j+wi, Bi, j ′+wi))
are processed. The overall warped distance, D(m1,m2), is normalized to D′(m1,m2) =
D(m1,m2)/(|A|, |B |), so that 0 ≤ D′(m1,m2) ≤ 1.

Relationships between different hosts on the network were evaluated in [37] by agglomera-
tive clustering based on the sequence distance metric. Using this approach, they were able
to separate server-like behaviors from client systems, and show closer distances between
similar behaving hosts. For enterprise-scale networks generating billions of flow records,
comparing users based on flow record sequences would require considerable processing
resources, especially if comparing each user against all other users on the network.

As an alternative, the modified dynamic time warping algorithm could be used to compare
sequences of data vectors, where each data vector contains features derived from aggregates
of flows rather than individual flow records. Given a distance measurement between
different data vectors, the similarity between sequences of data vectors can be determined.

22

We tested the sequence comparison methods outlined by Coul et al. [37] on a subset of
our collected Netflow records, and on a form of flow-data-feature vector we named Port
Priority Vectors (described in Section 3.2.2). For both data types, we compared sequences
reflecting the network-flow activities of 30 users assigned to five role groups. We compared
the sequence-distance measurements between users within each role group, and between
users from different role groups, but did not find any significant differences between the
intra-group and inter-group comparisons.

Paschalidis and Smaragdakis [38] modeled flow byte counts over defined intervals using
a Markov Modulated Process (MMP). Measured values were quantized into set ranges,
and the probabilities of transitions between successive values were measured for a known
anomaly-free trace. The state transition probability matrix extracted from the anomaly-free
traffic is used as a reference for monitored traffic. This approach flags an anomaly if the
probability that the state transitions observed in monitored traffic remained low. While
this approach is geared towards detecting anomalies, it could be used to compare flow data
patterns between different users and hosts.

Song et al. [39] also modeled flow behavior using a Markov model; transition tables were
built based on sequences of distant port values. The states in the table represented the lowest
1024 ports, with all ports above 1024 consolidated into one state. The Markov models for
different systems were compared using a probability product kernel (PPK) function, and
pairwise distance functions between hosts were clustered using spectral clustering. Using
this approach, it was possible to identify hosts with similar temporal behaviors. Although
this technique was applied using port values, other statistical metrics could be used for
building the model and comparing hosts and users.

Feature Set Based Profiling
Discriminating between users or role groups based on flow metadata can also performed
using endpoint-address-based features. Kumpost andMatyas [40] createdmatrices of source
IP versus destination IP addresses, one each for SSH, HTTP and HTTPS flows, examining
patterns observed during days, weeks or months. Each cell(i,j) in the matrix represented the
number of connections from source IP i to destination IP j. Row connection-count values
were then normalized to sum up to one, to create a “behavior vector” for that source IP
address. Systems A and B could be compared by computing the cosine similarity of the

23

vectors, cos(A,B). A secondary similarity value, d(A,B), was computed based on the number
of IP addresses visited by both systems (dcomm). The dcommvalues for all system pairs were
normalized by: d(A,B) = dcomm/dmax , where dmaxis the maximum dcomm value across all
system pairs.

Finally, they created a third similarity measure based on a Term Frequency - Inverse
Document Frequency (TF-IDF) analysis of the destination address count values. For the
set of destination addresses D, for each address a j ∈ D an IDF value was computed,
quantifying the commonality of connections from source addresses si ∈ S . Thus, the
inverse document frequency term is computed as id f (a j, S) = log |S |

|{c(si,a j):si∈S}| , where
c(ai, s j) = 1 if connections were observed, and 0 if not. The terms in the vector of IDF
values (IDF(S,D) =

{
id f (a j, S) : a j ∈ D

}
) were used to weight the corresponding behavior

vector values for each source address. IDF similarity between two systems was based on
the cosine similarity of the IDF weighted behavior vectors, IDF(A,B) = cos(Â,B̂).

The authors compared the behavior vectors based on different intervals of time, and for
different protocol (HTTP, HTTPS, and SSH) address sets, evaluating the utility of the
cos(A,B), IDF and the (averaged) IDF + d(A,B) scores for identifying behavior vectors from
the same user. For each test behavior vector, similarity scores were computed against
the training data vectors for each source address, and the scores used to rank order the
source IP addresses (by decreasing score order). For these tests, the correct source address
scored highest 56% of the time for SSH connections, 26% for HTTPS and 21% for HTTP.
This approach showed that there was enough consistency in the behaviors of the users that
behavior vectors could be associated with the correct users at least part of the time.

Tan et al. [41] compared users based on the number of common destination addresses each
host connected to. They used this similarity value to cluster networked systems at two
companies, to determine common system/user roles within the companies. The clustering
method was rather unique, and depend on several parameters that had to be adjusted.

Given an enterprise network with a set of hosts (I), for each host h ∈ I there is a set of
hosts hi connected to, C(hi) = {a : a ∈ I}. If hi ∈ C(h j) and h j ∈ C(hi), a measure of
the similarity between these hosts is given by similarit y (hi, h j) = |C(hi) ∩ C(h j) |. With
these similarity values, relationships between the hosts in the network can be described by
a neighborhood graph, nbh-graph , where each hi ∈ I is represented by a node . Edges

24

between node pairs hiand h jare weighted with the value similarit y (hi, h j).

The nodes in a nbh-graph were initially grouped by identifying bi-connected components
(BCCs) within the graph, sets of nodes connected by edges with weights greater than or
equal to a value k. In a BCC, any two edges must exist in a simple cycle. Starting with
a value k equal to the largest edge weight value, all nodes with edge weights greater than
or equal to k (and not already grouped) are selected. BCCs within these selected nodes
are identified, and the BCC is replaced by a group node, G, which inherits the connections
of the nodes used to create it. Nodes claimed by more than one BCC are assigned to the
largest BCC. This process is repeated using progressively lower k values. Some nodes,
even with higher value edges, may be not grouped by this process. If k < αx |C(hi) |, where
0 ≤ α ≤ 1, node hiis designated a group node by itself. Group nodes assume the k value
under which they became groups as an attribute.

After the initial grouping, groups are iteratively merged until no further merging is possible.
Groups are merged if they meet two criteria:

• The average number of connections per node within G1is within β percent of the
average number of connections per node within G2

• The groups G1 and G2meet a similarity requirement.

The similarity requirement depends on the computation of two values to determine if
similarity thresholds are met. The first , Kmax , is the maximum group k value, or Kmax =

max(KG1, KG2). The second similarity value s between groups G1and G2 is determined
algorithmically:

• c1 =
∑

h∈C (G1) CP(h,G1)
|G1 |

, c2 =
∑

h∈C (G2) CP(h,G2)
|G2 |

, s = 0
• For every neighboring group G′ in nbh-graph that G1and G2 have in common,

– s = s + min
(

CP(G′,G1)
|C(G1) | ,

CP(G′,G2)
|C(G2) |

)
• s = 1

2 x(s
c1
+ s

c2
)x100

The CP, or connection pattern term, counts the total number of connections between a node
and a group, or between groups.

The similarity requirement is met if both the similarity and Kmaxvalues are above set
thresholds (s ≥ Shi, and Kmax ≥ K hi), or if Kmax < K hi and s ≥ Slo. The new group’s k

25

value is set the the minimum number of connections a host in the group has.

The values of α, β, K hi, Sloand Shiare determined experimentally, to generate groups of
meaningful sizes.

Flow data was collected over a day at a small (110 hosts) company and at a larger (3638
hosts) company. For the smaller company, the clustering correlated with the role structure
fairly well (Rand statistic = 0.8363). Ground truth in the bigger company was not available,
but the clustering was “useful and consistent” according to the network administrators.
A version of this was refined in [42], where for hosts pi and p j the weight value becomes
w{pi,p j} =

|Npi
∩Npj

|

|Npi
∪Npj

|
. This is essentially a Jaccard similarity coefficient based on the address

sets, and could be used for comparing or clustering systems (or users) on the network.

Behavior Based Profiling
Profiling of network traffic to differentiate between flows created by different applications
has been attempted in a variety of ways. Valenti et al. [43] distinguished available ap-
proaches as being port-based, payload-based (those doing Deep Packet Inspection (DPI)
or stochastic packet inspection (e.g. extracting patterns from flows such as common string
patterns, or testing the randomness of the first payload bytes)), based on statistical classifi-
cation (applying data mining techniques to flow level features) and those doing behavioral
classification (e.g. examining how many hosts connected with what protocol over how
many ports).

Karagiannis et al. [44] developed a useful flow based construct called graphlets (see Fig-
ure 2.3). Graphlets captured flow level behavior patterns of computer systems in the form
of graphs, displaying the standard five tuple flow features (source IP address, destination IP
address, source port, destination port, protocol) as vertices in a graph with edges reflecting
any co-occurance of two connected features in the observed flow data records. The number
of in-degree and out-degree connections of the nodes in the graphlets provide an abstraction
of the relationships between the different node types. Karagiannis et al. considered high
degree nodes (those with in-degree or out-degree connections greater than 1) in graphlets
to be important in representing the flow activities captured. The number of in-degree or out
degree counts in a graphlet thus represent dominant patterns in the captured flow data.

26

Figure 2.3. Activity Graphlet

For the purposes of our investigations, we chose to create our user profiles using interval-
based statistical profiling. Most machine learning algorithms are designed to evaluate arrays
or vectors of feature values for making classifications, which can be readily created based
on well defined data samples.

2.5 Detection of Automatic Flows
Computers on a network are frequently communicating. Operating systems and applications
often create connections to check for updates ormessages, or to search for network resources.
This may happen without any human action to initiate the connections, outside of the initial
opening of an application such as a web-page browser or an e-mail client. Because these
connections are made automatically, they bear little relevance to understanding the activities
of a user logged onto the computer. The preponderant research on automatic flows has been
done in analyzing malicious programs such as bots. Bots are programs that enable the
control of infected systems by others to distribute spam or to participate in large denial of
service attacks.

27

Feily et al. [45] surveyed the forms of botnets and the programs generated to detect them.
The primary characteristic that distinguishes bots from other forms of malware is the use
of command-and-control channels to direct bot actions and add features. Developers of
botnet detection programs have focused on this characteristic, some employing methods
requiring the reading of packet data, and some based their detection methods on flow record
data. [46] used packets per IP address, packets per flow, and bytes per packet metrics
to compare suspected traffic to known bot models, and searched for periodic patterns by
measuring the inter-flow arrival times between a client and a server, using the mean values
as a fundamental period T. These values were used as inputs to train either in a hierarchical
Bayesian model or a modified K-means algorithm to detect probable bot traffic. Bilge
et al. [47] also used inter-flow arrival periods and flow size distributions as features for
detecting bot generated flows. These approaches involve detecting repeating characteristics
in the flow traffic as indications of the automated traffic flows from bots.

These repeating features contrast well with the more random feature distributions generated
by human activity. Vazquez et al. [48] examined the temporal activity patterns in humans
using computers, and found that the periods between actions are not Poisson distributed as
had been assumed. Instead, humans tend to perform bursts of activity between long periods
of inactivity, with long tailed wait time τw distributions (P(τw) ∼ τ−1

w).

While bots are a specialized group of applications, the repetitious aspects of their behaviors
versus the more random traffic patterns generated by human activities provide insight into
a more generalized approach to detecting automatic flows. Because human behavior is far
less predictable than the behaviors of most applications, the repetition of traffic features
such as flow timing or the message sizes passed between a host and a server can be more
likely attributed to automated traffic activity than to the actions of a human. To the best of
our knowledge, no research outside of our own has examined the use of Netflow features
for identifying and removing automatic flow records for the purpose of enhancing analysis
of user generated flows.

2.6 Conclusion
Detecting anomalous user behaviors on a network is a complex problem that needs a
multitude of approaches to enable effective and scalable solutions. The availability and

28

compactness of Netflow records make it an attractive data source for identifying anomalies,
and flow metadata is an integral part of many network monitoring solutions. It makes sense
that people with similar roles in an organization should be performing similar acts on the
network, and if so peer behavior should provide a valid yardstick with which to evaluate
individual behaviors.

If userswithin a role-group do not behave similarly however, grouping user data sets based on
similarities observed in their data sets should be used as the preferred means of establishing
group behavioral norms. The experiments described in [28] [31] [32] [35] [36] [40]
demonstrate that user network behaviors are consistent enough that traffic can be associated
with users based on flowmetadata. This behavioral consistency can be leveraged to identify
groups of users that behave similarly, creating a behavioral yardstick based on observed
user similarities.

Based on the research discussed above, the logical next step is to investigate the relationship
between user roles and network behaviors based on two distinct approaches: interval based
comparisons of statistical features and bottom-up clustering of Netflow based features. For
this we will employ a number of different Netflow based features based on the literature and
our own experimentation.

29

THIS PAGE INTENTIONALLY LEFT BLANK

30

CHAPTER 3:
Methodology

This chapter discusses our approach to identifying and characterizing patterns of network
traffic behavior, captured in the form of Netflow version 5 flow records. These patterns can
be used for comparing user behaviors via statistical and machine learning techniques, and
for distinguishing traffic of automatic processes from user activities.

We provide information on Netflow, the data format used to document network traffic for
our analysis in Section 3.1. This section also discusses the general categories of Netflow
features we reviewed to detect patterns within a set of records. Section 3.2 provides a high
level overview of the pattern based approaches used in our research to identify network flow
behaviors. Section 3.3 discusses the extraction and processing of the captured network data
used for this research, and Section 3.4 how specific patterns observed in the collected data
were discovered that indicated which flows were more likely to be generated by automatic
processes. Section 3.6 covers how the attributes of flows not applicable to studying user
digital behaviors were used to remove much of those flows from the data set.

3.1 Netflow Data
For the analyses in this dissertation, we primarily used Netflow version 5 records as our
data source. Netflow was defined and created by Cisco initially as a means of enhancing
network traffic routing [49], but as the utility of the data was recognized Cisco enabled its
export for use by network administrators. While Netflow (or some variant of the standard)
data is usually produced by routers or Netflow generators [50], many software tools exist
to enable the capture, collection and analysis of Netflow records. One well known suite
of software tools for this is the System for Internet-Level Knowledge [5], also known as
SiLK, developed by the Computer Emergency Response Team (CERT) Network Situational
Awareness (CERT-NetSA) Team at Carnegie-Mellon.

31

3.1.1 Flow Level Features
Netflow defines a flow as a one-way transfer of network data between two systems, in which
the packets share a common 7-tuple (source IP address, destination IP address, source port,
destination port, protocol, SNMP index of input interface, IP type of service) [4]. Cisco
routers (among others) utilize and can provide Netflow records with additional information
such as the IP address of next hop router, or the SNMP index of the router input interface. In
flow records extracted from pcap data however, not all NetflowVersion 5 fields are available.
Table 3.1 identifies the Netflow fields accessible from processing stored pcap data using
SiLK. In Netflow v5, a flow is considered to continue between those two end points until
a FIN or RST TCP flag is set, no packets have been transferred within a set time (usually
15 seconds), the flow has continued until a set timeout point (typically 30 minutes), or the
router flow cache is full.

The fields in a Netflow v5 record (extracted from pcap data using SiLK) can be categorized
in one of two ways. The number of packets or bytes, the flow duration and the flow start/stop
epoch times are numeric values, for which comparisons such as greater than or less than have
real meaning. Other values are categorical values such as IP addresses, ports, TCP flags
and the protocol type (e.g. ICMP=1, TCP=6, UDP=17), for which numeric comparisons of
values have no semantic meaning.

Netflow Characteristics
Netflow records summarize the data exchanges on a network, and observing these records
can provide some insight into the normal characteristics of data flows. To identify these
characteristics, we conducted controlled experiments where we captured Netflow data from
two virtual systems (oneWindows 7 and one Ubuntu Linux) during the performance of tasks
a technically knowledgeable computer user would typically perform. This was performed
twice for each virtual machine, once to emulate a “normal” working day and the second
time to create Netflow records in a manner that would enable easier analysis.

The first Netflow data set created focused on emulating normal work activities for a period of
time on each operating system (Windows: five hours, Linux: nine hours), followed by a night

32

Bytes Contents Description SiLK
Field

Feature
type

Available
from
pcap

0-3 srcaddr Source IP address sIP categorical Yes
4-7 dstaddr Destination IP address dIP categorical Yes
8-11 nexthop IP address of next hop router nhIP categorical No
12-13 input SNMP index of input interface in categorical No
14-15 output SNMP index of output interface out categorical No
16-19 dPkts Packets in the flow packets numerical Yes
20-23 dOctets Total number of Layer 3 bytes in the

packets of the flow
bytes numerical Yes

24-27 First SysUptime at start of flow sTime numerical Yes
28-31 Last SysUptime at the time the last

packet of the flow was received
eTime numerical Yes

32-33 srcport TCP/UDP source port number or
equivalent

sPort categorical Yes

34-35 dstport TCP/UDP destination port number
or equivalent

dPort categorical Yes

36 pad1 Unused (zero) bytes - n/a No
37 tcp_flags Cumulative OR of TCP flags flags categorical Yes
38 prot IP protocol type (for example, TCP

= 6, UDP = 17)
pro categorical Yes

39 tos IP type of service (ToS) n/a categorical Yes
40-41 src_as Autonomous system number of the

source, either origin or peer
n/a n/a No

42-43 dst_as Autonomous system number of the
destination, either origin or peer

n/a n/a No

44 src_mask Source address prefix mask bits n/a n/a No
45 dst_mask Destination address prefix mask bits n/a n/a No
46-47 pad2 Unused (zero) bytes - n/a No

Table 3.1. NetFlow Version 5 Record Fields

Source: Software Engineering Institute; Carnegie-Mellon; SiLK FAQ; Web;
http://tools.netsa.cert.org/ silk/faq.html#netflow-v5

of continued network traffic collection while the system was idle. These activities included
web browsing, downloading new applications for installation, sending and receiving mails,
opening secure shell links to servers (on Linux only), computer programming and editing
documents on Windows Share drives. No attempt at separating activities was made;
browsers, mail clients and Windows Share folders were left open after initial use, and
normal multitasking between applications was performed. The intent was to generate
Netflow records similar to that generated during normal work hours and system idle time.

33

Activities were logged, but frequently overlapped in time. This data was labeled as the
working data set, and used as a test to validate the cleaning algorithms developed.

The second set of data was generated in a more tightly scripted manner by performing the
tasks shown in Table 3.2.

Action Windows 7 Applications Ubuntu 13.10 Applications
Connected to/used a
Windows Share drive.
Files loaded, modified,

saved.

Windows Explorer Nautilus

Opened mail client,
sent/received mails

Outlook Thunderbird

Opened SSH link Not tested Command line, SSH
Opened browser to

www.cnn.com (HTTP)
Chrome and Internet Explorer Chrome and Firefox

Opened browser to
www.foxnews.com

(HTTP)

Chrome and Internet Explorer Chrome and Firefox

Opened browser to
www.usaa.com

(HTTPS)

Chrome and Internet Explorer Chrome and Firefox

Opened browser to
www.nps.edu (HTTP)

Chrome and Internet Explorer Chrome and Firefox

Table 3.2. The Second (Scripted) Controlled Experiment

Each task was separated in time (two to five minutes) from the other tasks, to enable the
observation of network traffic immediately after the the task was performed, as well as the
flows generated automatically during the following idle period. This approach simplified
themanual labeling of the Netflow records as generated by a user or by an automatic process.
All flows that could be attributed to a recent user action were labeled as user flows; all other
flows were labeled as automatic. Recent actions were defined as opening a web page or
starting an mail client. Flow bursts created by web pages re-loading automatically or an
mail client checking with the mail server periodically for new messaged were considered
automatic. This data was labeled as the scripted data set, and used primarily to determine
the characteristics of automatic flows and develop algorithms to identify them. The “normal
working day” flow data was used to verify the algorithms worked well against non-scripted

34

activities.

TheseNetflow data sets provided uswith a known “ground truth” regarding activities driving
the generation of flows at specific times, whichwe used to examine the normal characteristics
of Netflow data. For example, many of the more complex data transfers (web page loads,
mail traffic) appear as bursts of flows within short spans of time. Figure 3.1 shows the flow
start rates (flow starts per second) generated by our Windows 7 virtual machine over a span
of approximately five and a half hours, during a period when a web-browser was left idle
and began automatically reloading a web page (CNN) every 30 minutes (Figure 3.1, from
approximately 5100 seconds to 19000 seconds).

Figure 3.1. Flow Starts per Second

High flow rates per second do not necessarily translate into high data-transfer rates. Fig-
ure 3.2 shows the total megabytes per second for the same data set as Figure 3.1. While
the peak data transfer rates mostly line up with the peak flow start rates, the relationship
between total flows and total bytes passed is not constant. This is reflected in Figure 3.3,
indicating the average flow packet sizes are mostly small, with the counts of larger packet
sizes dropping off rapidly as the size increases until packet sizes approach 1200 bytes. The
cluster of flows averaging between 1200 and 1400 bytes per packet represents packets as-
sociated with large file transfers. Flow generation rates, data rates and data densities (bytes
per packet) are all features potentially useful in identifying and characterizing user and/or
system activities on the network.

35

Figure 3.2. Flow Bytes per Second

Figure 3.3. Distribution of Packet Sizes

3.1.2 Netflow and User Behavior
Netflow data is a form of meta-data about network data transfers, and as with any meta-data
details are lost. Using Netflow, an analyst cannot see that a user pulled a specific document
from an network server. Netflow data will not trigger a “dirty word” sensor (a sensor that
sniffs network traffic for specific strings, like “SECRET”), or show that a user was mailing
a company’s competitor. What Netflow will show is how much information was transferred
and when, the IP address end points for the transfer, and some information about the kind
of service used for the transfer (the protocol used, any TCP flags set during the transfer, the
ports used).

With this information much can still be inferred about what the host or user was doing.

36

The overlap in the IP addresses visited by two or more hosts can show shared communities
of interest and resources. Differences in port usage can indicate differences in the level
and type of network services employed by users and hosts. The timing of network flows
can tell an analyst the tempo of a user’s network activity, and the network subnet accessed
when a user logs on can identify whether access was via a wireless, wired, or virtual private
network (VPN) connection.

Descriptions of network traffic can be further extended by defining features describing
characteristics of aggregates of flows, such as the total bytes passed to or from port 22
(SSH) or the ratio of bytes sent out over port 443 (HTTPS) to bytes received over a defined
period of time. These measures are indications of the levels and types of activity a digital
system was performing during the period, less precise in terms of activity than individual
flow records but likely far more compact.

A set of features that correlate well with the kinds of tasks and activities a user may perform
through the network may provide a basis for comparing user behaviors on the network.
Anomaly detection methods based on Netflow records are widely used in Network Behavior
Analysis (NBA) systems. These systems can monitor the Netflow records corresponding
to hosts, servers and appliances on the network, learn normal behavior patterns, and alert
when deviations are detected. These and other Netflow-based anomaly detection systems
can work very well for detecting scanning, DDoS or worm behaviors [51], and have been
applied to detecting botnets, peer to peer traffic, and hosts on the network generating heavy
traffic. Analysis methods focused on detecting human behaviors using Netflow however,
including identifying specific users or detecting behavioral deviations, are novel.

3.1.3 Flow Data Feature Dimensions
Netflow data captures basic parameters and measurements of data transfers over a network.
From the perspective of a typical user’s computer, these parameters and measurements can
be put in several categories:

• Point of service: The IP addresses in the flow records can provide insight into the
content of the data exchanged with the user’s computer. Examples include connecting
to 151.101.40.73 (www.cnn.com), and connecting to a local LAN printer.

• Type of service: The ports and protocol fields in a flow record indicate of the type

37

of services accessed by a user’s computer. TCP flows to/from port 80 in most
cases represent web related traffic, although use of a server port and protocol are
not guarantees a particular service was accessed. Many applications (and forms of
malware) use the common service ports like 80 for other purposes.

• Volume transferred: The bytes passed during a flow provide a measure of how much
data was exchanged. The value includes bytes used for the packet headers.

• Flow density: Calculating flow bytes per packet provides an average packet size.
Larger values would be an indication of a flow intended to pass data, while the
smallest values could indicate the passing of status and connection information like
TCP SYN, SYN-ACK, ACK flows, and ICMP pings.

• Flow Direction: The direction of data transfers relative to the user’s system gives
insight into the relationship between the connected systems. A high bytes-out to
bytes-in ratio would indicate a net outgoing transfer of data, not the usual case for a
client system.

• Flow Control: Netflow v5 records include the TCP flags set during a flow. TCP hand-
shakes at the beginning or end of a series of flow exchanges and the data transfers or
acknowledgments in between are more distinguishable with the TCP flag information.

• Temporal: Time plays a role in describing flow data in three basic ways:
– Flow start time: The timestamp for the flow start-time provides context for the
flow in the form of a reference point (start of the day, start of a collection interval,
other flow start times).

– Flow duration: The flow duration enables measures of flow throughput, such
as milliseconds per byte (the inverse of bytes per millisecond, because flow-
duration value can be zero). For computing flow statistics over defined inter-
vals, the flow start-time and duration (or flow start-time and end-time) enable
identifying flows that extend over two or more intervals.

– Sequences: The relative positions of flows, or of flow features extracted by
flows, can indicate sequences of activity on the network.

3.1.4 Categories of Netflow Features
Although the possible Netflow v5 record fields are fairly limited, the number of features
that can be created based on these fields is quite large, depending on how they are combined
with each other or with external data sources. We divided the potential Netflow derived

38

features into three categories.

Direct Features
Directly generated features quantifying or describing the flow -- sIP, dIP, sPort, dPort,
protocol, packets, bytes, flags, sTime, eTime -- are extracted directly from the flow records.
The duration of a flow can be determined by taking the difference between flow start and
end times, but because the SiLK tool set provided this value automatically in generating
flow records, for our analysis we treated duration as a direct feature.

Indirect Features
Indirect features can be derived at the individual flow-record level and can come in many
forms. Indirect features can represent:

• Mathematical combinations of direct features, such as bytes per packet, packets per
second, or the difference between the source and destination IP addresses (expressed
as 32bit integers) to compare exchanges with local and external systems.

• Flow contextual values, where external data sources provide context for direct-feature
values. Examples include:

• Whois derived information relating to the remote address when analyzing data from
a local network.

• DNS flow query strings extracted from the pcap data.
• The client system user ID, subnet ID, or operating system associated with the flow.
• Whether packets in a flow carry a payload (which requires domain knowledge of
protocols used and packet-header length).

• Flow direction relative to the local system.
• The server port used in flows between a client and a server.
• Relationships between flows. For consecutive flows in a flow set, potential features
include:

– The interval between the immediately prior flow start time and the current flow
start time,

– A measure of the address space similarity between sequential server addresses
(e.g. 24 for sharing the same 24 bit prefix between IP v4 addresses, also known
as a /24 subnet).

39

While features based on the relationships between flows could be considered to be aggregate
features (3.1.4), we grouped them with indirect features when the derived feature value can
be expressed at the flow record level. For example, we can annotate a flow record with the
interval in seconds between that flow and the previous flow in the data set.

Aggregate Features
Another category of Netflow derived features are what we term as aggregate features, which
describe aggregate characteristics based on direct or indirect features observed within a set
of flow records. Aggregate features would include:

• Mathematical characteristics extracted from groups of flow records. Examples in-
clude mean and standard deviation of the flow byte values, the ratio of bytes sent or
received by a client, the number of endpoints a client connects to, or the entropy of
discrete feature values such as server IP addresses.

• Relative frequencies at which features occur within groups of flow records, e.g. the
distribution of byte values within a set of flows. Relative frequencies can be used
to rank order feature values, such as a listing of server IP addresses a client system
visited or the server ports utilized, ordered by the counts, total packets or total bytes
associated with each occurrence (e.g. most frequent first), enabling a comparison of
sets of flow records.

• Lists of flow-feature values observed in a flow group, such as the server IP addresses.
Comparisons with other flow groups can be based on the degree of overlap in the
values shared between the feature-value lists.

• Lists of flow feature sequences, such as n-grams (lists of n sequential values from
data) of the server IP addresses connected to by the client system.

• Features reflecting relationships between flows, such as those derived from a graphlet
(Figure 2.3). The number of in-degree and out-degree connections for each graphlet
node can provide some indications of the level and types of activity observed during
the flow collection period.

3.1.5 Flow Set Segregation
If flow data from an large active network is collected, the records produced could be
expected to describe flows spawned by a number of different systems, applications, and

40

network-service providers (web content servers, mail servers, etc.). To evaluate the behavior
of specific users or systems on a network, subsets of flows attributable to individual users
must be extracted from the whole.

For our analysis, the Netflow data set (D) had to be mapped to specific users to enable
comparisons. At the time of the network data collection, NPS was using the SafeConnect
network-access control system ([52]) to log network events such as user logins. The records
included multiple details, such as the user name and the IP address assigned to the system
used to access the network. With this data we were able to tag much of the Netflow data
with user IDs, and extract the flow data for a specific user, with a specific host IP address
and period of time that user was logged on. For multi-user systems (such as in classroom
labs), a user’s association with flows to/from a system started upon system logon, and ended
when the next person logged in.

Thus for each user ID in the data set (ui ∈ U) a subset of flow records in the captured
data was identified (D[ui]). If the user employed more than one digital device on the target
networks, D[ui] included flows to/from more than one client system. For any analysis
performed on D[ui], the flow data was further subdivided based on the assigned IP address
of the system used. To describe this, a flow subset tied to a user ui interacting with a
system at IP address c_IPj can be expressed as D[ui][c_ip j]. Specifying use of a specific
protocol (prk), server port (spl) and distant end IP address (e_ipm) can be expressed as
D[ui][c_ip j][prk][spl][e_ipm].

3.2 Patterns Within Flow Sets
We define patterns within a set of Netflow records as the repeated occurrence of one or
more features (direct, indirect or aggregate) within a data set in a manner that appears non-
random. Examples of this include the same or similar feature values (e.g. flows sharing the
same server port, protocol, packets, bytes and flag values) occurring with greater frequency
than other values for those features observed within the data, or sequences of feature values
repeating with greater frequency than other sequences. This same determination of non-
randomness can be applied to features used to characterize aggregates of Netflow records,
where the relative rates of occurrence of one or more features or repeats of feature sequences
can indicate some favored modes of flow activity.

41

For identifying patterns between different data sets, the degree of overlap in the same or
similar categorical feature values between two sets can be used as a similarity metric.
Vector differences of various kinds can provide similarity metrics for numeric features.
Much of machine learning is based on comparing data sets, to determine how they are
related. Clustering and classification algorithms compare data instances based on similarity,
applying a distancemetric or rule set to group similar instances together and provide decision
boundaries between dissimilar instances. For our analysis, we applied machine-learning
algorithms to our data sets to determine how well the patterns they identify in the data sets
map well to the roles of the users associated with the data.

3.2.1 Direct and Indirect Feature Patterns
In a set of flows exchanged between a client and one or more servers, the presence of
one or more direct or indirect features repeating with greater frequency than others can
be an indication of automatic network activity. We examined the relative frequencies of
bidirectional flows to evaluate how well they indicate automatic activity.

For each flow subset sharing a common user, client IP address, protocol, server port, and
endpoint IP address (D[ui][c_ip j][prk][spl][e_ipm]) we identified sequential flow pairs,
matching each flow with the response (if present) from the other system. We then converted
the bidirectional flows into vectors: the server port, protocol, packets, bytes, flag values
from flow one and server port, protocol, packets, bytes, flag values from flow two. If
no matching return flow was observed, default values (zero for numerical fields, an empty
string for flags) were added. We then counted the relative frequency of value vectors derived
from the subset. We refer to these flow-value vectors as flow signatures.

We also investigated relative frequencies of the intervals between flow starts as an indicator
of automatic activity. For a given flow record subset defined by shared user, client IP
address, protocol, server port and end-point IP address (D[ui][c_ip j][prk][spl][e_ipm])
feature values, we can take a count of the intervals between flow start times (rounded to
the nearest second) for each direction of flow. Intervals reflective of bursts of traffic are not
counted (e.g. intervals of less than one second), because at that point most flow-interval
values fall within the rounding window.

42

3.2.2 Aggregate-Feature Patterns
The features of individual flows provide fairly fine grained views on the activities of a
computer user and the computer being used. Groups of flows provide more comprehensive
views of network activities, particularly when the flows in the group are not narrowly defined
(i.e. using flows drawn from exchanges between one client and multiple servers, rather than
one client and one server).

For our research we used a standard approach to identifying and defining groups of flow
records, i.e. groupings based on flows having start times within defined sampling periods
(e.g. 15 minutes). The flows generated during this period can be characterized by aggregate
features, or features about aggregates of individual flow features. Once grouped we can
create distance or similarity measures based on the aggregate features selected, providing
a means of comparison between different samples of flow records. Potential aggregate
features can come in a number of forms; we focused on two categories: aggregate statistical
measures and rank ordering of feature values.

Aggregate Statistical Measures
Statistical descriptors of a flow set can include:

• Standard statistical measures (count, mean, mode, first and third quartiles, minimum,
maximum, standard deviation, etc.) of numerical direct or indirect Netflow features
(e.g. bytes, packets, duration)

• Aggregate measures dependent on flow direction (e.g. total bytes or packets in and
out, fraction of flows inbound, ratio of bytes in to bytes out)

• Protocol dependent measures (fraction of TCP flows with no payload, fraction of TCP
flows with SYN flag set, number of broadcast flows, etc.)

• Information theory measures: Entropy is a measure of the randomness of a set of
discrete (bytes, packets, IP addresses, ports, protocol) values. Entropy is computed
over a set of values (xi ∈ X) as H (X) = −

∑
xi∈X

p(xi)log(p(xi)), where p(xi) is the

probability of the value xi occurring within X .
• Distributions of direct or indirect feature values. Examples include the distribution
(histogram) of flow byte values, TCP flag values, or interflow intervals (rounded to
some multiple of seconds) observed within a flow set. Distributions can also be made

43

of aggregate-feature values such as the mean byte values within flow samples taken
every 15 minutes, over the period of a day. A disadvantage of distributions is that
they provide a larger amount of data than statistical measures like mean and standard
deviation.

Of these, feature value distributions provide additional dimensions relative to single value
statistical measures, and thus can be more descriptive of how direct or indirect flow feature
values vary within a flow set. On the other hand, standard statistical measures such as mean
and standard deviation or information theory measures such as entropy are succinct. For the
same set of direct or indirect Netflow features, a concatenation of feature value distributions
can result in much longer value vectors to describe the same data set.

Rank Ordering of Feature Values
Categorical Netflow features (IP addresses, ports, protocols) observed within a flow data
set can be expressed as sorted lists. Examples include the sorting of port and protocol
values based on the number of flows, number of bytes, or number of packets passed via
that port and protocol. The port and protocol combination associated with the highest total
value (e.g. total bytes), would be listed first, followed by the second highest, and so on. A
variation of this aggregate feature that we used in our work is the Port Priority Vector (PPV)
described below.

Port Priority Vectors

If the flow records derived from multiple users are extracted and the observed tuples of
source port and source protocol, and destination port and destination protocol are sorted, this
sequence of port and protocol values can be used to create an index list for comparing specific
users and system activities. Sorting (what we call “rank order”) is by associated measures
(total flows, packets or bytes) of each observed port and protocol combination, where we
order the port-protocol pairs by decreasing measured values. Let P∗ = [p, p2, ..., pm] be a
vector of rank-ordered port-protocol values derived from flows associated with the activities
of a group of users, U = {u1, u2, ..., un}. Let Pi = [q1, q2, ..., qo] be the rank-ordered port-
protocol values based on the activities of user ui ∈ U . We can define a mapping function,
r (qj), which provides the index value of port, protocol qj in P∗. With this mapping

44

function, we can create a Port Priority Vector, PPVi = [r (q1), r (q2), ..., r (qo)], which is a
list of indices mapping the ports in Pi to their positions in P∗. This concept is shown in
Figure 3.4, where the rank-ordered port, protocol (TCP=6, UDP=17) combinations (e.g.
port 80 traffic using UDP protocol, or 80, 6 in Figure 3.4) from a user’s flow data are
compared to the rank-ordered list from a larger group of users, to create a Port Priority
Vector.

Figure 3.4. Port Priority Vectors

Using the Port Priority Vector (PPV) concept, we can quickly see if a user’s system is
significantly employing unusual server ports (as high index values are listed near front of
the PPV), or is employing server ports in proportions similar to the other users (Figure 3.5).
Like feature value distributions, PPVs are more descriptive than lists of single Netflow
feature values because they provide a comparison between data from an individual user and
the average behavior of a larger population.

45

Figure 3.5. PPV Example

3.3 Data Collection

3.3.1 Campus Data Collection
The Netflow records used for this research came from packet capture files collected from
a large campus academic building over a five-week period, February 3rd to March 9th,
2013. The captured network traffic was converted into Netflow records using the SiLK [5]
software tool set. Altogether over 1.162 × 109 Netflow records were captured.

The network traffic was collected from a spanning port on a switch serving a building
with four academic departments, hundreds of people, as well as dozens of classrooms and
computer labs. Most systems attached to the building’s wired infrastructure connected
under a single /21 IPv4 subnet, and a wireless system occupied a /20 subnet address spaces.
In addition, a /21 subnet for VPN connection traffic was visible in the data. A total of 2985
unique internal IP addresses were present in the traffic traces from the wired, wireless and
VPN networks. This number does not equal the total number of systems connected on these
networks, however. As most network IP addresses were assigned using DHCP, during the
observation period a system may use one or more IP addresses, and IP addresses may be

46

assigned (at different times) to more than one system.

To correlate users on the network with their group affiliations, we accessed the SafeConnect
network access-control data used by the NPS Information Technology and Communications
Services (ITACS) office. The ITACS database system automatically collects system infor-
mation when a user connects to the network, including user name, the host hardware (media
access control, or MAC) address, operating system, and IP address. This information for
each system was correlated with organizational data available on the campus Lightweight
Directory Access Protocol (LDAP) server, to associate user titles and departments with
the user logon records. For systems employed by multiple users, we identified the points
in time when different users logged on to the systems, and used these points to identify
windows of time during which each specific user could be associated with the system. After
scrubbing the logon data we could identify users that could be classified under the roles
listed in Table 3.3.

Confidentiality of user information in captured network traffic was ensured through several
methods. First, the maximum packet size during capture was limited to 100 bytes; any
additional data was discarded. This eliminated much of the packet data content from being
recorded, and reduced the total storage requirements needed for the data. Second, captured
packet data was stored in encrypted form, to eliminate inadvertent leakage. Finally, after
the initial analysis of the captured network data and the attribution of user roles, identifying
data that could be used to associate specific user names to network traffic was deleted. From
that point on, user-identification numbers were used to track individuals within each group,
decoupling individual users (and potential privacy issues) from the Netflow records.

The host operating system types were captured by implants ITACS mandated be installed
on Windows/Apple computers connecting to the NPS network. The observed systems used
on the target networks were primarily Apple (581), Windows 7 (1151), and Windows XP
(3346), with 55 Windows Vista and 71 Windows 8 systems reported as well (Table 3.4).
Linux based operating systems were not well documented in the logon data, as SafeConnect
did not have implants for Linux systems: they were primarily detected as hosts forMicrosoft
Windows virtual machines that connected to the network. The operating system breakout
listed in Table 3.4 represents the total recorded during the collection period for the entire
campus. Not all these systems detected were observed in our collected traffic data.

47

Categories Role Groups Count

Staff

Administration 29
Admin 30

Class management 8
Funding/acquisition 12

IT support 35

Faculty
Lecturer 42

Research Assistant 84
Tenure 151

Student
Distance Learning Student 16

Masters 954
PhD Student 12

Unclassified Unclassified 208
Table 3.3. Counts of the Role Groups in Data Set

MacIntel 84
OSX 10 496
iPad 1
Vista 55
WIN7 1151
WIN8 71
WINXP 334
UNKNOWN 27
Win32 184
Win64 1
Linux 19

Table 3.4. Counts of the Operating Systems in the Data Set

Because each major operating system generates automatic flow patterns characteristic to
that operating system, we limited the data set we evaluated to flows generated by Microsoft
Windows based systems. Originally we tried combining data from the Apple systems
with that of the Windows systems, but found there were too many differences in regard
to software and protocols to enable meaningful generalizations. When we correlated our
feature sets against both our role groups and the different operating system types in the
data, the strongest correlations found were to specific operating systems rather than to user
groups.

48

3.4 Pre-Processing Analysis
Netflow provides a valuable means of monitoring network status. Using Netflow records,
a network administrator can identify issues including systems and application that hog the
available bandwidth, DDoS attacks, and routing problems. To use Netflow as a means of
monitoring user behavior however, it makes sense to isolate the Netflow records that reflect
user activities. In many cases, records have little to no bearing on what users are doing with
their computers on the network. We evaluated the flow records we collected at NPS, and to
the extent possible removed those that did not appear to reflect the activities of users on the
wired, wireless and VPN subnets we identified.

3.4.1 Non-Algorithmic Analysis
The network traffic used for our research was extracted from a spanning port on an NPS
router servicing the Computer Science/International Studies/Operations Research (Glas-
gow) building on campus. Traffic collected from the tap included all traffic to and from
Glasgow, as well as data exchanges transiting the router. To get a sense of the kinds of
traffic within the data capture, we evaluated the Netflow data in terms of:

• The subnet end-points of each flow.
• The TCP/UDP server ports used
• The total flows being passed per day

Several categories of traffic not relevant to our analysis of user behaviors were identified
(Figure 3.6).

• On 11-12 February 2013 traffic to/from one server on the network dominated the flows
generated during that period. The server intensely port scanned numerous systems on
the network, sending TCP SYN and UDP packets across a number of common service
ports as well as selected port ranges for each scanned system. These scans contributed
approximately 27% of the total flows observed during the collection period.

• During 3-25 February 2013, a large portion of the collected data flows were attempted
(outgoing SYN packets only) connections from a small number (11) of internal
systems over port 5223. Port 5223 is associated with Apple Push Notification traffic;
whois queries of the target IP addresses verified the attempted connections were to
servers owned by Apple.

49

Figure 3.6. First Flow Analysis Breakout

• A significant portion of the captured flow traffic did not have any endpoint within the
subnets our analysis was focused on; these flows were labeled as external.

• We evaluated the ports used in in the data set. Ports 67 and 68 (DHCP), plus port
123 (NTP), contributed to the total flow count in the data but had little relevance to
evaluating user caused traffic patterns as obtaining or renewing system IP addresses
or syncing to network time are typically actions performed automatically.

The flows associated with the above observations were flagged for removal, which signif-
icantly reduced the total number of flows to analyze. Table 3.5 shows a breakout of the
categories of flows determined to be not relevant to our analysis.

Name Total flows
All flows 1.162 x 109

Scanner flows 3.122 x 108

Apple Push Notification 3.79 x 108

External flows 1.032 x 108

Ports 67, 68, 123 2.11 x 106

Table 3.5. Non-Relevant Flows in Our Data

50

3.4.2 Feature Pattern Based Analysis
An important characteristic of normal traffic is that a significant fraction of the recorded
flows can correspond to automatic system activities, i.e. the flows were not directly ini-
tiated by a user action. Examples include mail clients checking with mail servers for
new messages, applications and operating systems polling repository servers for updates,
applications checking the local network for available services they can connect to, etc.
These automatic flows can pose a problem for systems using Netflow for evaluating user
behaviors, as they add noise to the data. Complicating user behavior analysis further, dif-
ferent applications and operating systems exhibit different patterns of automatic flows. For
example, older Microsoft operating systems and applications typically employ ports and
protocols associated with NetBIOS over IP (137/UDP, 138/UDP, 139/TCP) far more than
Linux based systems. Many Apple computers use the port/protocols 5223/TCP, 2195/TCP
and 2196/TCP to support the Apple Push Notification Service, a push protocol for updating
data on some Apple applications. For enterprise networks hosting a variety of user com-
puter configurations, similarity measurements between individual or groups of users could
be skewed by flows tied to the system configurations used to access the network. Some
of these configuration-based differences can be filtered out by enumerating configuration
dependent flow types and filtering these out of the data, but at the expense of losing poten-
tially valuable information. Many of the flows associated with specific operating systems
are automatically generated, and can be removed from data sets if correctly identified.

Timing
Recognizing flows created by automated processes is a necessary step before removing them
from the flow data. Vazquez et al. [48] found that for web browsing and other computer use
activities, people tend to perform bursts of activity between long periods of inactivity. The
distribution of wait times between human actions was long tailed (P(τw) ∼ τ−1

w). Programs
behave less randomly than humans. Karasaridis et al. [46] used repeating interflow arrival
periods as an indicator of bot traffic. Bilge et al. [47] also used interflow arrival periods
and flow-size distributions as features for detecting bot-generated flows. Such repeating
characteristics in the flow traffic provided indications of the automated traffic flows from
bots. Bartlett et al. [53] used Haar wavelets to detect network flows recurring over regular
periods, including BitTorrent control messages, RSS feed aggregators polling for updates,
keyloggers, operating-system updates, and other automatic flow activities.

51

Figure 3.7 shows the distribution of intervals (in seconds) between flow start times for the
port 8443/TCP (SafeConnect) flows in our test data. As the figure shows, the most common
interval values were about 60 seconds. The second most common interval was less than
one second (flow-burst activity), followed by intervals of 30 seconds between flow starts.
Note these have far higher counts than the background activity and so are easy to recognize.

Seconds Between Flow Starts

Figure 3.7. Repeating Interflow Intervals

We examined the timing behavior of subsets of the scripted flow data, each subset defined by
sharing the same source and destination IP addresses, server port, protocol, and endpoint IP
address values (D[ui][c_ip j][prk][spl][e_ipm]). Figure 3.8 shows distributions of interflow
interval values, rounded to the nearest second, for selected flow subsets. It is apparent
that for some flow exchanges between a server and a client some interflow interval values
greater than one second are far more common than other values. While not all client-server
interactions exhibited high interval counts (as shown in the port 53 plots), it was fairly
common to find high counts for interval values close to some multiple of 15 seconds.

Based on our hypothesis that repeated patterns indicate automatic flows, we developed an
algorithm to identify flows following intervals with high count values as automatic. For each
client IP address in a user data set (D[ui][c_ip j]) , flowswere divided into subgroups sharing
the same protocol, server port and distant end IP address (D[ui][c_ip j][prk][spl][e_ipm]).
Each subgroup was sorted chronologically by flow start times, and divided again based on
flow direction (to or from the local system). For each flow direction, the interval values
between flow start times were rounded to the nearest second. In most cases for a large flow
set the dominant interval values were low (0-1 second), due to the number of bidirectional

52

Figure 3.8. Example Interval Distributions

flow and response exchanges. To filter out these, we ignored interflow interval values of less
than two seconds. The occurrence of each interval value was counted, and outlier values
were identified via the Tukey outlier algorithm described in Section 3.4.2. Flows identified
as occurring immediately after outlier interval values were flagged as automatic.

53

Bidirectional Flow Vectors
Repeating features occur when an application must fulfill a set of functions that would
need to be repeated periodically (i.e. checking for updates or services). Applications can
generate both automated and user-initiated flows, depending on whether a human is actively
using the application (e.g. generating mails via an mail client) or if the application is left
idle (e.g. the mail client polling the mail server for new messages). In such a case we would
expect that bidirectional data exchanges between a client and server would include repeated
queries and responses, with corresponding repeated byte and packet count values for each
exchange.

These bidirectional exchanges can be codified as signatures, and counted to determine
which exchanges occur more frequently than others. For our analyses, a bidirectional flow
signature consists of the server port, protocol, outgoing packets, outgoing number of bytes,
outgoing TCP flags, incoming number of packets, incoming number of bytes and incoming
TCP flag values of a bidirectional flow. Figure 3.9 plots the count values (ordered by
decreasing count values) for signatures representing four services observed in our test data,
DNS (port 53/UDP), HTTP (port 80/TCP), HTTPS (Port 443/TCP) and flows created by
a SafeConnect [54] implant (port 8443/TCP). SafeConnect implants on host systems were
used by NPS to monitor user network accesses, and ensure connected systems had up to
date antivirus programs running. We can see that some bidirectional flow signatures occur
far more frequently than others. The repeated signatures are indications of repeated actions.

Figure 3.9. Bidirectional Flow Distributions

We examined the frequency at which bidirectional flow pairs (flow between a client and

54

server, and a response flow back) occurred within the flows collected from the Windows
7 and Ubuntu virtual machines. To count flow pair incidences, we selected flow subsets
sharing the same feature values (D[ui][c_ip j][prk][spl][e_ipm]). Each subset was sorted
chronologically, and we defined flow pair signatures as value vectors consisting of the flow
server port, protocol, number of packets, number of bytes and flag values of an initial flow
concatenated with the return flow packets, bytes and flags values. If no return flow was
found, default values for the return flow features (zero packets, zero bytes, no flags) were
inserted. If flow start times in the flow pair appeared equal, we assumed the client to server
flow occurred first when creating the signature.

Figure 3.10 shows the relative frequencies at which the same flow pair signatures occur
within the flow subsets. The counts of each signature observed within a subset are sorted in
descending order to create a distribution-like list of values (usually exponential in appear-
ance), which is used to provide a sense of how quickly the signature counts drop off. The
different lines in each graph represent signature distributions from flows to different distant
end servers. While the many flow subsets demonstrate some high count flow pair signature
instances, in most cases the great majority of flow pair signatures exhibit very low count
values.

Figure 3.10. Per Server Signature Pseudo-Distributions

Again, based on our assertion that highly repeated patterns indicate automatic activity, we

55

developed an algorithm that identifies flows associated with high count signatures as being
automatically generated. For each D[ui][c_ip j], flow-pair signature vectors were generated
using the approach described above and each flow-pair signature was counted. Outlier count
values were identified via the Tukey outlier algorithm described in Figure 3.4.2. Flows with
outlier counts were flagged as being automatic.

We also evaluated the relative frequencies of signatures derived from a client communicating
with multiple servers, by studying the flow subsets sharing the same client IP address,
server port and protocol values (D[ui][c_ip j][prk][spl]). Figure 3.11 shows the pseudo-
distributions of the signatures found per subset in the Netflow data. Upon selecting flows
flagged based on outlier signature counts, the selected records primarily consisted of TCP
handshake (SYN, FIN, or RST) related flows. This is consistent with evaluating signature
frequencies across the same server port and protocol values, as TCP handshake signatures
would be shared across all completed TCP client-server interactions. TCP handshakes were
common across both user generated and automatic flow sets however, and so searching for
outlier signature counts from this perspective was not useful for differentiating the two sets.

Figure 3.11. Per Port/Protocol Pseudo-Distributions

Flow Sequences
To observe flow patterns of traffic known to be automatically generated, it is especially
helpful to examine the flows produced by the virtual machines when the systems were not
being actively used. Figure 3.12 shows a representative extraction of flow records when
the Windows 7 system was idle. Two characteristics are apparent; the first being that flow
sequences repeated (as shown by color coded sections), and the second characteristic was
that the sequences appeared to be separated by larger interval gaps between flow start times.

Sequence features were often not exact repeats: note the mail related sequences highlighted

56

in light blue; where the numbers of packets and bytes do not match exactly for the third
and fourth flows. This means that a similarity threshold is needed to define how similar
flows in two sequences must be to declare a match. Another necessary threshold is the
gap size between flow starts required to separate two sequences. This gap threshold is less
critical when evaluating flow sequences within flows sharing the same client and server
IP addresses, server port and protocol, rather than evaluating sequences between a client
and two or more servers. In most cases this increases the average time between discrete
sequence starts to much more than one second. This was the approach we took, and we
used one second as our interval threshold.

Figure 3.12. Repeating Idle Sequences

We examined the relative frequencies at which similar sequences appear in the data set to
identify outlier instance counts, by grouping sequences based on shared source IP address,
destination IP address, protocol, packet count and TCP flag sequence values and similar
flow byte values. For each D[ui][c_ip j], we divided flows into subgroups sharing the same
protocol, server port and distant end IP address (D[ui][c_ip j][prk][spl][e_ipm]). Subgroup
flows were further subdivided into sequences based on the intervals between flow start
times, where intervals between flow starts within a sequence had to be less than a threshold
θs. Intervals between flows greater than θs demarcated the end of one sequence and the
start of another.

To group similar sequences together for comparison, for each sequence of length >2 the flow
records were sorted in turn by the flow packet count, TCP flag, and source IP values. Flow
start times were recorded to the closest millisecond; this step ordered the flow sequences
independently of the flow start-time stamps as many sequences contain flows with the
same start time values. The ordered lists of the sequence source IP address, destination IP

57

address, protocol, packet count and TCP flag values are concatenated and hashed, and the
flow sequences are then grouped based on hash values. At this point, sequences sharing the
same hash value could only differ in byte and temporal (flow start, end and duration) values.

For each sequence group (sharing the same hash value), let S = {s1, s2, ...sn) represent the
identified sequences. Let Q = ∅, an empty sequence set to hold sequences dropped from
S if required. Let M be a byte value matrix, where the bytes in row i are byte values for
the ith row for each sequence in S and the jth column represents the ordered byte values
of sequence s j . For each row i in M , let µi be the mean byte value and σi the standard
deviation. Let θb be the byte value similarity threshold, such that if θi/µi > θb, one or more
byte values in row i are too different. The byte value in row i farthest from µi is determined
and all sequences in S with that byte value in flow i are extracted and placed in Q. This
process is repeated until θi/µi > θb for each row of the sequences in S. The sequence set Q

containing the outlier byte values is added to the sets still to be evaluated.

After all sequence groups are evaluated and regrouped (if necessary) for similarity, the
number of sequences in each group is counted. For sequence of three or more flows (longer
than the bidirectional flows tested in the flow feature vector method), very few sequences
repeated frequently enough to be identified as outliers. Of those that were identified, 90%+
of the flows were also flagged by the timing and bidirectional signature algorithms as being
automatic. Because of this and the high processing cost of this algorithm, this approach
was not used to clean the data.

Web Page Reloads
Another form of repeating sequences was observed if a web browser was left open on certain
websites (e.g. www.cnn.com, www.foxnews.com) while the system was left unattended.
For these websites, pages would reload automatically at set intervals (~30 minutes for
CNN, ~10 minutes for Fox News). Figure 3.13 shows a representation of this behavior, by
graphically plotting the observed number of flows per second generated while a browser
was left on www.cnn.com. As the Figure shows, the web page reloads showed similar, but
not identical, flow counts in loading the web page. An examination of the flow data showed
that the reload flow sequences were not identical either, but share similar amounts of data
transfer with an overlap in the IP addresses connected to.

58

Based on these observations, plus the intuition that automatic flows would be characterized
by repeating characteristics, we developed and tested detection algorithms for identifying
automatic web-page reloads.

0 500 1000 1500 2000 2500 3000 3500
Seconds

0

20

40

60

80

100

120

140

160

180

F
lo

w
s

pe
r

S
ec

on
d

Total Flows per Second

Figure 3.13. Web Page Reload Flow Rates for CNN on Chrome Browser

Depending on the web-page site, page loads can result in numerous flows created in rapid
succession. HTTP, HTTPS and DNS (ports 80, 443 and 53) usually constitute the majority
of the flows, although other server ports can be found in the page load records. To identify
web-page reloads, we set the following criteria for tagging web page load activity:

• Web page loads were preceded and succeeded by intervals (τ) between flow starts
greater than threshold θs, or τ ≥ θs (see Section 3.4.2 for discussion of thresholds).

• Excluding DNS and TCP flows with no payload, the number of flows (n) in a web
page loads was greater than threshold θI , or n ≥ θl .

• The fraction of the bytes transferred via HTTP or HTTPS connections (f) was greater
than threshold θw , or f ≥ θw .

To identify web page reload flow sets, we extracted flow subsets that met our web-page load
criteria and then grouped them based on similarity. Flow sets F1 and F2 were considered to
be similar if they:

• Didnot differ in the number of flows by greater than threshold θc, ormin(|F1 |/|F2 |, |F2 |/|F1 |) ≤
θc.

• Had similar total byte transfer distributions for both server IP addresses and server
ports. Let the number of bytes passed between the client and a server at IP address ai

in flow sets F1 and F2 be b(F1[ai]) and b(F2[ai]), respectively, where b(x) represents

59

the number of bytes passed by the flows in x. For each server IP address A =

{a1, ..., ai, ..., am} in F1 and F2, we measure the difference in bytes passed between
the client and server for the two flow sets as (d(F1, F2, ai) = |b(F1[ai]) − b(F2[ai]) |).
Likewise, let the number of bytes passed between the client and the servers over port
p j in flow sets F1 and F2 be b(F1[p j]) and b(F2[p j]), respectively. For each server
port P = {p1, ...p j, ..., pn} observed in the the combined page load flow sets F1 and
F2, we measure the difference in bytes passed between the client and server for the
two flow sets as (d(F1, F2, p j) =

���b(F1[p j]) − b(F2[p j])���). We defined the distance

between the sets as being d =
[
i=1]m

∑d(F1, F2, ai)/m+
[
j=1]n

∑d(F1, F2, p j)/n
2 , or the

average of the mean differences for IP address and server port byte transfers. We
required the distance between flow sets to be less than the threshold θd for them to be
grouped together.

Figure 3.14 shows web page load subsets as boxes, with ik the most common interval
observed between subset starts. The blue boxes represent a set (F) of similar web page
loads. Within a group of similar page load flow sets, the intervals between flow set start
times was captured. The interval values were rounded by values proportional to the interval
length. For each interval I between web-page loads, a rounding value d = Itdelta was
computed.. Because even shorter web page reload intervals (~10 minutes) could vary by
10 seconds or more, the rounding values (d) were set to the nearest multiple of 10 seconds.
Each interval value was rounded as I′ = d •

⌊
((I + 0.5d) • d−1)

⌋
. The rounded interval

values in I′ are counted, and web page load sequences where two or more sequences in a
row follow an outlier (rounded) interval value are labeled as automatic.

Figure 3.14. Web Reload Selection

Because automatic flows are the result of varied applications and operating-system functions,
it should be expected that automatic flows should exhibit only some of the repeating features
identified in the test data. This means each detection algorithm emphasized precision, not

60

recall on the test data. Put together however, the detection algorithms should have good
recall (a “set covering” approach)

Threshold Testing
Outlier Detection Threshold

The algorithms developed to detect automatic flows employ several thresholds that can be
set to determine if flows are automatic or user generated. A threshold common to the
signature, timing, and web reload algorithms is the outlier detection threshold θo, where for
a set of count values sorted in increasing value, we determine outlier counts via application
of the Tukey [55] box plot creation algorithm:

Compute the InterQuartile Range: IQR = 3rd quartile value − 1st quartile value

Identify the high outlier values: Co = {c
′

j ≥ 3rdquartile value + θo × IQR | c
′

j ∈ C}.
We tested the effect of varying the value of θo between 1.0 and 2.0 in increments of 0.1
for the cleaning algorithms that employed the outlier detection method. Our criteria for
an acceptable result was one where the precision of the selection process was greater than
0.95. For our experiments, θo was set to 1.5.

Web Reload Thresholds

Several threshold values are associated with identifying web-page reloads. Besides using
an outlier threshold θo and a sequence-interval threshold θs, the algorithm also requires
thresholds on identifying flow groups as web-page loads, grouping similar web-load flow
sets together for testing for repeated interval values, and a value rounding factor for compar-
ing inter-page load intervals. The values enclosed in square brackets below were the values
we used for our analysis.

Flow groups were defined as consecutive flows with intervals between flow start times ≤ θs

[4 seconds]. Web page loads were identified as flow groups where most of the bytes passed
were HTTP(S) related (the ratio of total bytes passed via ports 80 and 443 to total flow
group bytes was ≥ θw [0.9]), and the flow group was large enough (number of flows in the
group was ≥ θl [20 non-DNS or empty-payload flows]. To ensure any interval analysis was

61

performed on related web page loads, for flow sets a and b the flow lengths needed to be
similar (| |a | − |b| | ≤ θc ∗ min(|a |, |b|) [θc = 0.25]. In addition, flow sets a and b needed
to be similar in terms of port usage and IP addresses visited. The distance algorithm and
threshold, θd [0.9], is described in Section 3.4.2. Our factor τdelta for rounding off interval
values between web page loads was set to 0.08. These values were determined using a grid
search for best recall with maximum precision.

3.5 Cleaning Data
This section discusses how the algorithms discussed in Section 3.4 was applied to the data.

3.5.1 Non-Algorithmic Cleaning
Based on our evaluation of the captured traffic (Section 3.4.1), the first cleaning phase
consisted of removing flows from the data that were irrelevant to our analysis. Flows
to/from IP addresses not within the subnets selected for analysis were dropped, as were
network-security port-scan related flows. Flows to and from ports 5223 (Apple Push
Notification), ports 67 and 68 (DHCP), and 123 (NTP) were also removed as irrelevant to
user behavior analysis. While the port-based record removals could have been performed
using the automatic flow-detection algorithmswe developed, removing themup front greatly
reduced the subsequent number of flow records to process as shown in Table 3.5.

The remaining flows after this filtering process were then evaluated using algorithmic
processes for detecting automatic flows. Analyses comparing role-group data sets in Chapter
IV were performed using “cleaned data” and “unfiltered data”, to measure the improvement
(if found) in classifier performances provided by the cleaning process. The unfiltered data
referenced in Chapter IV refers to flow data in which the irrelevant flow records had been
removed, but for which the remainder have not yet been cleaned using the algorithms
discussed in Section 3.4.2 and in Section 3.5.2.

3.5.2 Algorithmic cleaning
For each of the patterns identified in Section 3.4.2, algorithms were written to identify
flows matching those patterns. Flow data for each user ID within our role defined groups
(Table 3.3) was extracted, and separated into flow subsets based on which IP address

62

associated with that user ID (D[ui][c_ip j]) from the ITEC logon database was present. Flow
subsets from non-Microsoft Windows based systems were discarded, and each remaining
flow subset was tested for the presence of automatic flows, via algorithms described below.

Timing
For each D[ui][c_ip j], flows were divided into subgroups sharing the same protocol, server
port and distant end IP address (D[ui][c_ip j][prk][spl][e_ipm]). Each subgroup was sorted
chronologically by flow start times, and divided again based on flow direction (to or from the
local system). Interval values between flow start times were rounded to the nearest second,
and outlier counts of interval values greater than two seconds identified via the Tukey
outlier algorithm described in Section 3.4.2. Flows identified as occurring immediately
after outlier interval values were flagged as automatic.

Bidirectional Flow Vectors
For each D[ui][c_ip j], flows were divided into subgroups sharing the same protocol, server
port and distant end IP address (D[ui][c_ip j][prk][spl][e_ipm]). Each subgroup was sorted
chronologically by flow start times, flow pair signature vectors were generated using the
approach described in Section 3.4.2 and each unique flow pair signature counted. Outlier
count values were identified via the Tukey outlier algorithm described in Section 3.4.2.
Flows identified as corresponding to flow signatures with outlier counts were flagged as
being automatic.

Web Page Reloads
For each D[ui][c_ip j], flows were divided into subgroups based on the intervals between
flow start times, where each subgroup was preceded and succeeded by intervals ≥ θs. Flow
subgroups representing web page loads were identified and grouped based on flow feature
similarities as described in Section 3.4.2. The intervals between sequential, similar web
page loads were rounded proportionally (i.e. longer intervals meant larger rounding values),
and the rounded interval values counted. Outlier counts of interval values were identified
via the Tukey outlier algorithm described in Section 3.4.2.For instances where web pages
were found to reload for two or more times following outlier interval values, the flows
associated with the web reload events were marked as automatic.

63

3.6 Comparing User Groups

3.6.1 Comparisons Through Classifiers
The relationship between a user’s organizational role and the Netflow data they generate was
tested through the use of two classifier algorithms, a nearest centroid classifier (also known
as the nearest mean classifier) and a support vector machine (SVM) [56]. A nearest centroid
classifier determines themean feature values (centroid) for each class in a training set of data.
For a given set of training feature-vectors and class labels {(−→x1, y1), ..., (−→xi, yi), ..., (−→xn, yn)},
the mean value for each feature is computed per class (−→µk =

1
|Ck |
Σ

j∈Ck

−→x j), where Ck is the

set of yi index values and yi= class k. Histogram-based vectors are treated in the same
manner, where each position in the vector is considered a feature. Once the class centroids
are defined, test vectors are classified based on the closest class centroid. Nearest centroid
classifiers are linear discriminators, providing a simple test on the separability of the test
vectors and can be used to differentiate between multiple classes. We used the nearest
centroid module in the scikit-learn Python library [57] to provide the classifier for these
tests.

Support Vector Machines (SVMs) identify class boundaries or hyperplanes that provide
the largest margin between data points comprising the different classes. For classification
problems where the data points are not linearly separable, SVMs can use a non-linear kernel
function to map data points into a higher dimensional space where the data points may be
separable. SVMs are inherently binary classifiers, discriminating between two classes of
data. For multi-class classification problems, they can be used in a “one versus the rest”
approach, where for n classes n classifiers are created, with each classifier trained to separate
the data from one class from the rest of the data set. They can also be used in a “one against
one” approach, where for n classes n ∗ (n − 1)/2 classifiers are created, with each classifier
trained to separate the data from two classes. For our tests we used SVMs with a radial-
basis-function (rbf) kernel, to enable testing for non-linear boundaries between the different
classes. The SVMs were trained in a “one versus the rest” classification approach. For our
experiments, we used the SVC module in the scikit-learn Python library [57].

To test identification of user roles we created control data sets including data vectors from
each of the role groups. For each classification test we randomly selected users from each

64

role group and extracted without replacement their associated feature vectors. For n groups,
the fraction of total feature vectors removed from each group was set at 100∗n/(n+1)±2%.
These selected users and their data were used to create a pseudo-role group, so named
because the group was created to be role-neutral.

If the classifiers can discriminate data of role-groupA from that of other role groups, it would
mean that some portion of the feature vectors in role-group A are more similar to each other
than to vectors from the other role groups. Creating a group that consists of a mixture of
data extracted proportionately from the true-role groups would blend those features unique
to each role group. If user roles do have a measurable effect on the Netflow records each
user generates, the recall or precision for either classifier in correctly identifying members
of the pseudo-role group should be consistently worse as compared to the valid role groups.

3.6.2 Comparisons Through Clustering
To test whether feature vectors associated with users in the same role group were inherently
similar, we clustered feature vectors using the K-means++ algorithm. The number of
clusters (k) was set to 50, to provide enough cluster centers for smaller groups of similar
clusters to emerge. If clusters are found with highly uneven representation by the different
role groups (i.e. the cluster membership is dominated by one or two role groups), this would
indicate that some subset of flow patterns was associated primarily with those one or two
groups.

3.6.3 Comparisons By Users
While classification algorithms can be used to test how separable feature data is for a few
classes, they are less useful when comparing data sets associated with hundreds of users.
To compare the differences between users within the role-groups, we performed a pairwise
comparison between the users in our role groups based on the feature vectors associated
with each user.

Let U = {u1, ..., ui, ..., um} be the set of users identified for our research, and Vi =

{v1, ..., vk, ..., vn} a set of feature vectors associated with a user ui. For each ui ∈ U we
group the feature vectors by week of the sampling interval used to generate them and for
each vector group we compute the mean values for each feature in the vector group to create

65

a centroid vector. Let V ′i be the set of centroid vectors created from the feature-vector-data
set of user ui. For each ui and u j ∈ U , let di j represent the mean of the pairwise euclidean
distances between the centroid vectors in V ′i and V ′j . For m users, this produces an m × m

matrix of distance values, D.

Let G = {g1, ..., gk, ..., gp}, where gk is one of the defined role groups each containing
a subset of the users. For each subset of users, we collected three types of distance-
value distributions. The first distribution focused on the self-similarity of feature vectors
produced by the same user. For each user ui in group gk we collected the dii distance values,
or the mean-pairwise distance between the centroid vectors in vi. This set of self-similarity
distances provide a measure of how similar centroid vectors generated by the same user are
over time.

The second distance distribution focused on themean distances between the centroid vectors
of pairs of users in group gk . For each user ui, u j ∈ gk where i , j, we collected the di j

distances. This set of distances show how similar centroid vectors generated by users in the
same role group are.

The third type of distance distributions focused on the mean pairwise distances between
centroid vectors generated by users in group gk and the feature vectors generated by users
in other role groups. For each role group gl , where l , k, we collected mean pairwise
distances di j between each user ui ∈ gk and user u j ∈ gl . This set of distances show how
similar the centroid vectors generated by users in one role group are to centroid vectors
generated by users in other role groups.

Through these comparisons we can determine if user flow patterns are consistent over time
(i.e. self-similar), and if user flow patterns are more similar to those of users in their own
role group than they are to users in other role groups.

66

CHAPTER 4:
Design of Experiments

This chapter describes the experiments used to evaluate the hypothesis that users behave
far more as individuals, with their own patterns of behavior when accessing enterprise
networks, than they behave as members sharing common tasks and behaviors associated
with an organizational role. The level of effect of a user’s role on computer usage is
examined based on comparing Netflow-derived aggregate features, extracted from network
traffic generated by users associated with different role groups. To reduce the potential
impact of operating-system-specific flow behaviors affecting the features extracted from the
data, we limited the flow data used for our analyses to that from hosts running a version of
MicrosoftWindows. Experiments were performed twice, using flow-record data both before
and after data cleaning (i.e. removing flows identified as being automatically generated), to
measure the impact of that cleaning of the data.

In designing the experiments testing the relationship between user roles and the Netflow
records they generate, we first defined four sets of Netflow-derived features to compare. We
then extracted the feature data sets from the records associated with each user in our defined
role-groups. For each of the feature data sets, we extracted a subset of users and their
associated flow data from each role-group to create an additional, artificial group, which we
designated as the pseudo group. We used the term pseudo group because unlike the data
sets extracted from one of our identified role-groups, this artificial group was designed to
be role neutral. It is therefore a false, or pseudo, role-group created for testing the impact
of roles in our flow data sets.

Using these feature vectors, we tested them using two different classifier algorithms, to
determine if the classifiers could differentiate feature vectors derived from data associated
with the original role groups better than those of the pseudo group. In addition, we clustered
the feature vector data sets using K-means++ to determine if portions of the data from the
same role group will cluster together. Finally, we performed a pairwise comparison all the
identified users based on the mean distances between each user’s feature vector data sets,
determining how similar each user’s feature vectors are to themselves, to the feature vectors

67

of other users in their role group, and to the vectors of users in the other role groups. The
results of these tests are discussed in Chapter 5.

4.1 Feature Definitions
To test the level of relationship between the roles of users in an organization and the
characteristics of the Netflow records they produce, we generated four derived data sets.

• The first derived data set consisted of vectors of port-protocol volume measures
(fraction of total bytes in, fraction of total bytes out, standard deviation of byte
values) for selected port-protocol combinations (Table 4.3) plus aggregate statistical
and information theory based features. The complete list of features for this data set
is provided in Table 4.4. This data set was used to test how well user roles could be
matched with a diverse set of aggregate Netflow derived features.

• The second derived data set consisted of a subset (Port Behavior) of the features
listed in Table 4.4, tested separately from the other feature types. This port-protocol
oriented feature set was tested by itself to compare classifier results with two other
(third and fourth data sets) representations of port-protocol usage.

• The third derived data set consisted of pairs of byte value distributions (explained in
more detail in Section 4.1.3). For each of the port-protocol combinations in Table 4.3,
byte value distributions are created for each direction of flow, and the pairs of byte
value distributions concatenated into vectors.

• The fourth derived data set incorporated Port Priority Vectors (Section 3.2.2), which
are composed of indexed references to a consolidated (based on all user data) ordered
listing of port and protocol usages. PPVs provide additional context to user port and
protocol usage relative to that global norm.

4.1.1 Baseline Feature Set
Research into identifying anomalous host behaviors via machine learning techniques and
Netflow data has often employed statistical measures of well-known ports as features. Frias-
Martinez [28] created profiles using standard deviation and mean values of the number of
hosts connected to, the number of packets and the bytes per packet for ports 21, 22, 25 and
80. In another experiment, Frias-Martinez created host system profiles based on the total

68

number of flows, average bytes per flow, average bytes per packet, average flow durations,
total packets, average packets per flow and total unique IP addresses connected to using
ports 80 and 22. For each approach, profiles were clustered to group similar hosts together,
and the feature ranges per cluster used to determine the normality of new feature values.
While this approach was successful in detecting synthetically generated attacks (those that
involved introducing profiles with outlier feature values), limiting the feature set to a few
well known ports ignored much of the available Netflow data that can be used for profiling.

To identify the most potentially useful features for differentiating role-based groups, we first
examined the flow traffic captured over the five week collection period. Table 4.1 shows the
20 most frequently observed ports (source or destination) and protocols for each role group
in the data prior to cleaning, listed in descending order based on flow counts. Also listed
are the top 20 ports and protocols for all the traffic. Table 4.2 show the top 20 ports and
protocols found after cleaning the data.

One difference between the two tables that can be seen is that Table 4.2 showsmore dynamic
ports listed, in the range used by Windows services (MS Dynamic RPC range, ports 49152-
65535 for MS Server 2008, Windows Vista and later versions). With the elimination of
many flows not user generated (automatic), ports associated with flows containing less
repetitive patterns become more prominent. SSH traffic, for example, emerges in the top
20 ports/protocols used by PhD students in the cleaned data, while traffic to/from port 1900
(Universal Plug N’ Play, an automatic process) became less prevalent.

Based on the server ports observed in the cleaned flow data, we chose the port-protocol
combinations listed in Table 4.3 for generating port based flow features. Port values of zero
(observed in non-TCP/UDP flows), ICMP type/code values (Netflow encodes these values
as 256 x ICMP type + ICMP code), port 8443 (used by the SafeConnect system employed
by NPS) and port 123 (NTP) were not used to create features.

For each of the selected top-server-port-protocol (p2) combinations listed in Table 4.3 we
defined measures based on the total bytes out (

−−→
bp2), total bytes in (

←−−
bp2), the mean byte value

passed (µp2), the standard deviation of the byte values passed (σb2), as well as the total bytes
passed (|b|) during each measured interval for each user. From these values, we defined
features reflecting the fraction of bytes passed out (

−−→
bp2/ |b|), the fraction of bytes passed in

69

Admin Admini-
stration

Class
mgmt

DL
Student

Funding/
acq

IT
support

Lecturer

Port Prot Port Prot Port Prot Port Prot Port Prot Port Prot Port Prot
80 TCP 53 UDP 80 TCP 80 TCP 60001 TCP 137 UDP 53 UDP
443 TCP 137 UDP 137 UDP 443 TCP 80 TCP 0 IGMP 80 TCP
137 UDP 80 TCP 139 TCP 53 UDP 137 UDP 389 UDP 137 UDP
53 UDP 389 UDP 443 TCP 5222 TCP 0 IGMP 80 TCP 389 UDP
0 IGMP 0 IGMP 0 IGMP 60000 TCP 443 TCP 443 TCP 0 IGMP
445 TCP 443 TCP 2524 TCP 137 UDP 60000 TCP 445 TCP 443 TCP
60000 TCP 8080 TCP 53 UDP 5355 UDP 53 UDP 53 UDP 8080 TCP
60001 TCP 9100 TCP 60001 TCP 0 IGMP 445 TCP 60000 TCP 60000 TCP
389 TCP 8055 TCP 60000 TCP 8443 TCP 389 TCP 389 TCP 445 TCP
88 TCP 60000 TCP 2668 TCP 1900 UDP 138 UDP 1720 TCP 389 TCP
8443 TCP 1900 UDP 8443 TCP 88 TCP 88 TCP 57621 UDP 138 UDP
135 TCP 445 TCP 389 TCP 50165 TCP 8443 TCP 88 TCP 88 TCP
138 UDP 138 UDP 0 ICMP 3702 UDP 8014 TCP 9443 TCP 8055 TCP
0 ICMP 8443 TCP 445 TCP 63949 TCP 389 UDP 5222 TCP 8443 TCP
139 TCP 161 UDP 135 TCP 49900 TCP 49155 TCP 8443 TCP 8014 TCP
49155 TCP 0 ICMP 2967 TCP 49361 TCP 135 TCP 49443 TCP 61087 TCP
389 UDP 771 ICMP 49155 TCP 53171 TCP 12174 TCP 8080 TCP 61084 TCP
8014 TCP 389 TCP 138 UDP 5353 UDP 5355 UDP 138 UDP 49155 TCP
9443 TCP 88 TCP 5222 TCP 49375 TCP 0 ICMP 26822 TCP 49330 TCP
5353 UDP 8014 TCP 2048 ICMP 53622 TCP 771 ICMP 49503 TCP 135 TCP

Masters
Student

PhD
Student

Program
Mgmt

Research
Asst Tenure overall

Port Prot Port Prot Port Prot Port Prot Port Prot Port Prot
80 TCP 80 TCP 137 UDP 80 TCP 137 UDP 80 TCP
0 IGMP 53 UDP 0 IGMP 137 UDP 80 TCP 137 UDP
137 UDP 443 TCP 3283 TCP 0 IGMP 443 TCP 0 IGMP
53 UDP 60000 TCP 53 UDP 53 UDP 0 IGMP 53 UDP
8080 TCP 5222 TCP 445 TCP 443 TCP 53 UDP 443 TCP
443 TCP 137 UDP 80 TCP 445 TCP 8080 TCP 8080 TCP
389 UDP 8443 TCP 389 TCP 60000 TCP 389 UDP 389 UDP
445 TCP 993 TCP 138 UDP 9443 TCP 445 TCP 445 TCP
9443 TCP 0 IGMP 88 TCP 389 TCP 9443 TCP 60000 TCP
8055 TCP 49238 TCP 8014 TCP 8443 TCP 60000 TCP 9443 TCP
389 TCP 49240 TCP 389 UDP 60001 TCP 389 TCP 389 TCP
138 UDP 161 UDP 443 TCP 138 UDP 8055 TCP 60001 TCP
88 TCP 445 TCP 49155 TCP 135 TCP 138 UDP 138 UDP
8014 TCP 138 UDP 135 TCP 2967 TCP 8443 TCP 88 TCP
60000 TCP 5355 UDP 5355 UDP 3571 TCP 88 TCP 8055 TCP
49159 TCP 88 TCP 50497 TCP 88 TCP 0 ICMP 8443 TCP
8443 TCP 902 TCP 0 ICMP 49155 TCP 4385 TCP 8014 TCP
135 TCP 1900 UDP 33355 UDP 0 ICMP 135 TCP 135 TCP
49155 TCP 49211 TCP 771 ICMP 389 UDP 49155 TCP 0 ICMP
0 TCP 49197 TCP 49351 TCP 2232 TCP 10019 UDP 49155 TCP

Table 4.1. Top port-protocol Combinations Observed Before Cleaning

70

Admin Administration Class mgmt DL Student Funding/
acquisi-
tion

IT support Lecturer

Port Prot Port Prot Port Prot Port Prot Port Prot Port Prot Port Prot
80 TCP 53 UDP 443 TCP 443 TCP 60001 TCP 443 TCP 53 UDP
443 TCP 389 UDP 53 UDP 80 TCP 80 TCP 0 IGMP 389 UDP
53 UDP 0 IGMP 49178 TCP 53 UDP 443 TCP 137 UDP 137 UDP
137 UDP 8080 TCP 49174 TCP 5353 UDP 137 UDP 60000 TCP 0 IGMP
0 IGMP 137 UDP 993 TCP 137 UDP 53 UDP 80 TCP 8080 TCP
445 TCP 8055 TCP 8443 TCP 5355 UDP 60000 TCP 445 TCP 80 TCP
60000 TCP 445 TCP 80 TCP 8443 TCP 445 TCP 57621 UDP 60000 TCP
389 TCP 80 TCP 137 UDP 993 TCP 0 IGMP 5222 TCP 443 TCP
9443 TCP 443 TCP 49181 TCP 5222 TCP 88 TCP 53 UDP 445 TCP
61845 TCP 138 UDP 49176 TCP 60000 TCP 389 TCP 49443 TCP 389 TCP
88 TCP 389 TCP 50102 TCP 61934 TCP 138 UDP 8080 TCP 8055 TCP
138 UDP 8014 TCP 50792 TCP 61795 TCP 8443 TCP 49503 TCP 61087 TCP
8443 TCP 88 TCP 5353 UDP 3389 TCP 389 TCP 8443 TCP 61084 TCP
61906 TCP 60000 TCP 445 TCP 61765 TCP 8014 TCP 389 TCP 138 UDP
8014 TCP 49155 TCP 55664 TCP 61682 TCP 49155 TCP 50708 TCP 88 TCP
389 UDP 135 TCP 55488 TCP 2598 TCP 58221 TCP 53323 TCP 49330 TCP
49155 TCP 5355 UDP 51227 TCP 49279 TCP 58226 TCP 49694 TCP 8443 TCP
61100 TCP 0, 1) ICMP 53390 TCP 60117 TCP 135 TCP 56404 TCP 8014 TCP
135 TCP 9443 TCP 50103 TCP 61678 TCP 49793 TCP 49744 TCP 49197 TCP
8080 TCP 5353 UDP 53423 TCP 58725 TCP 0, 1) ICMP 61348 TCP 49155 TCP

Masters Student PhD Student Program mgmt Research Asst Tenure All Traffic
Port Prot Port Prot Port Prot Port Prot Port Prot Port Prot
80 TCP 80 TCP 137 UDP 137 UDP 137 UDP 80 TCP
137 UDP 53 UDP 0 IGMP 0 IGMP 80 TCP 137 UDP
0 IGMP 443 TCP 3283 TCP 80 TCP 0 IGMP 0 IGMP
8080 TCP 5222 TCP 53 UDP 445 TCP 443 TCP 53 UDP
53 UDP 993 TCP 445 TCP 53 UDP 9443 TCP 8080 TCP
443 TCP 161 UDP 80 TCP 60000 TCP 8080 TCP 443 TCP
445 TCP 137 UDP 389 TCP 443 TCP 53 UDP 389 UDP
389 UDP 0 IGMP 138 UDP 389 TCP 445 TCP 445 TCP
9443 TCP 902 TCP 88 TCP 88 TCP 389 UDP 60001 TCP
8055 TCP 8443 TCP 8014 TCP 138 UDP 8055 TCP 9443 TCP
389 TCP 22 TCP 389 UDP 49334 TCP 389 TCP 60000 TCP
138 UDP 49170 TCP 443 TCP 65300 TCP 88 TCP 389 TCP
88 TCP 49168 TCP 49155 TCP 65286 TCP 8014 TCP 8055 TCP
8014 TCP 51496 TCP 135 TCP 8014 TCP 8443 TCP 138 UDP
60000 TCP 49167 TCP 5355 UDP 389 UDP 138 UDP 88 TCP
8443 TCP 51500 TCP 50497 TCP 49155 TCP 60000 TCP 8014 TCP
49159 TCP 49165 TCP 0 ICMP 135 TCP 49155 TCP 8443 TCP
135 TCP 51135 TCP 33355 UDP 8443 TCP 5355 UDP 135 TCP
49155 TCP 51145 TCP 771 ICMP 49359 TCP 135 TCP 49155 TCP
5355 UDP 52432 TCP 49351 TCP 3910 TCP 52217 TCP 49159 TCP

Table 4.2. Top port-protocol Combinations Observed After Cleaning

71

Port Protocol Often used for:
22 TCP Secure shell
80 TCP HTTP
88 TCP Kerberos
137 UDP NETBIOS Name Service
138 UDP NETBIOS Datagram Service
389 UDP LDAP
443 TCP HTTPS
445 TCP Microsoft Directory Services (SMB)
5222 TCP Jabber/GoogleTalk Client Connection
5353 UDP Multicast DNS
8080 TCP HTTP-alt
8055 TCP Senomix Timesheets Server
9443 TCP VMware HTTPS, SSL
60000 TCP MS Exchange RPC Client Access Service
60001 TCP MS Exchange Address Book

Table 4.3. Selected Ports and Protocols for Features

(
←−−
bp2/|b|), and the byte-value coefficient of variation (standard deviation normalized by the
mean), or σp2/µp2 . These features are referenced in Table 4.4 as port_X_in, port_X_out
and port_X_std, respectively, where X refers to one of the port-protocol combinations listed
in Table 4.3. In addition to these measures specific to the port-protocol listing in Table 4.3,
we also created a feature measuring the entropy of the port-protocol counts observed during
a measured interval. This set of port-protocol measures is referred to in Table 4.4 as port-
behavior features, and are reused as a separate data set for comparing role-groups based on
Netflow derived features.

Table 4.4 shows a listing of the statistical features extracted for our analysis, including
features intended to summarize aspects of:

• Port behaviors
• Volume and flow density
• Protocol behaviors
• Handshaking (TCP flag) behaviors
• Temporal behaviors:
• IP address related measures

72

Feature
Name

Type Description Rationale

port_X_in
Port
Behavior

Total port X bytes inbound/
total bytes all ports

Shows consumption of data
passed for port service

port_X_out Total port X bytes outbound/
total bytes all ports

Shows production of data
passed for port service

port_X_std Port X standard deviation/
mean of byte values

Shows uniformity of data
passed for port service

port_entropy entropy of distant ports Diversity of services
accessed

bytes_out Volume &
Flow
Density

Total bytes outbound/total
bytes passed

Ratio of data production/
data consumption

packets_out Total packets outbound/total
packets passed

Ratio of data production/
data consumption

bpp Average bytes per packet Density of traffic passed
tcp_frac

Protocol
TCP fraction of total flows Reflects use of TCP based

services
udp_frac UDP fraction of total flows Use of UDP based services
igmp_frac IGMP fraction of total flows Ue of multicast services
multicast Fraction of multicast IP

address flows (224.0.0.0/4)
Use of multicast services

flag_entropy Handshaking Entropy of TCP flag counts Uniformity of TCP flag use
duration_std Temporal

Behavior

Standard deviation of flow
duration values

Mix of short and long
duration connections

interval_mean Average interval between
flow start times

Shows the density of flow
occurrences during interval

interval_std Standard deviation of flow
start time intervals

Reflects mix of density of
flow occurrences

ip_distance_
std

Address
Related
Features

Standard deviation of src/dst
IP address distance/232

Reflects the diversity of
address spaces connected to

ip_distance_
mean

Mean of src/dst IP address
distance/232

Reflects mix of local and
non-local connections

addr_entropy Entropy of the IP addresses
connected to

Measure of the diversity of
address spaces connected to

direction Fraction of flows outgoing Ratio of data production/
data consumption

Table 4.4. Statistical and Information-Theory-Derived Features

All combined, 61 different features were created. Most of the features generated were
normalized based on an overall measure of the set of flows processed. Port_X_in measured
the total inbound bytes passed over port-protocol X divided by the total bytes passed during
the interval, giving the fraction of total bytes passed for that service. Likewise, bytes_out
measured the fraction of total bytes that were in outbound flows, and tcp_frac measured the

73

fraction of flows using the TCP protocol. Measures such as bpp, flag entropy or ip_distance
mean were not normalized, because they were not dependent on the total number of flows,
packets or bytes passed during the interval.

Our decision to not use features reflecting absolute flow-volume measures was based on
the observation that for some interval periods (in particular the longer periods), the active
data transfers attributed to a user often spanned only a fraction of the interval. Using rel-
ative rather than absolute flow-volume features enables proportional comparisons between
interval samples with unequal flow time spans.

4.1.2 Port Behavior Features
The second derived feature-vector-data set consisted of the port-behavior features described
in Section 4.1.1. Port-behavior features are comprised of sets of individual measures
(fraction of bytes in, fraction of bytes out, standard deviation of byte values) of the traffic
for a given port-protocol combination, as well as a measure of the entropy of the different
port-protocol combinations observed.

4.1.3 Port-Protocol Byte Value Distribution Features
Byte value distributions provide sequences of values describing the activity of a given port-
protocol set of flows, with an additional dimension of behavioral description as compared
to the individual measures described in Section 4.1.2. For each user data set and sampling
interval, flow records were extracted for each port-protocol combination listed in Table 4.3,
and flow byte value distributions computed for both outgoing and incoming flows. The
distribution bins were roughly based on a logarithmic progression of byte value ranges:
0 > b ≤ 41, 41 > b ≤ 80, 80 > b ≤ 160, 160 > b ≤ 320, 320 > b ≤ 640, 640 > b ≤ 1280,
b > 1280. The top value of the first bin range, 0 > b ≤ 41, was selected to count TCP
packets with minimal payloads. The distributions were concatenated into one feature vector
for each sampled interval.

4.1.4 Port Priority Vectors
Port Priority Vectors (PPVs) provide additional context in understanding an individual’s
usage of different port-protocol combinations, by providing a direct comparison with a

74

global (all user) norm (Section 3.2.2). The length of the PPVs generated for each sample
interval was capped at 20 values. Index values for each PPV were capped at 500, as the
higher index values in the global port-protocol reference list were primarily associated with
ephemeral port values. If n port-protocol combinations are observed in the sample period
and n < 20, the index values placed in vector positions n + 1 to 20 were set to 1000 to
indicate incomplete lists.

4.1.5 Comparing Port-Behavior Representations
The feature vectors discussed in Section 4.1.2, Section 4.1.3 and Section 4.1.4 each represent
different methods of expressing flow activity, with a focus on ports and protocols as a
means of compartmentalizing the flow data. Applying these three different approaches
to our Netflow data sets enabled a comparison of their utility in comparing the different
role-group data sets. The statistical values are compact, leading to shorter feature vectors as
compared to the distribution-based feature vectors. Distributions of byte data provide more
detail in describing the types of flows that occurred (large transfers vs. small exchanges),
but cause longer feature vectors. Our implementation of port priority vectors limited the
vector lengths to 20 points, which made them the shortest of the feature-vector types tested.

4.2 Data Processing Factors

4.2.1 Impact of Sampling Intervals
To convert flow data into feature vectors, for each user we divided their flow data into
smaller chunks based on the times the flow activity occurred. If the start of the day in which
data collection started is t0 and the interval between sampling period starts is ∆t, then for
every interval t0 + n∆t to t0 + (n + 1)∆t during which flow data was recorded, for each
user their flows during that interval were used to create feature vectors. A flow starting in
one sampling period and ending in another would be split proportionally, such that each
spanned interval would include a flow record with the same five-tuple (source IP address,
destination IP address, source port, destination port and protocol) but with packet and byte
values proportional to the fraction of flow duration that overlapped that interval.

For each user ID assigned to a role-based group, all flow records (across one or more hosts,

75

during one ormore periods) associatedwith that user were combined, sorted chronologically
by flow start times and divided based on a selected interval value. Interval samples in which
flow activity covered only a small fraction of the interval period (time between first flow
start and last flow end < 0.1 x interval period) were discarded.

During each sampling interval, flow records associated with the user (if present) were
processed to create feature-value vectors, i.e. arrays of values in which each position
in the array corresponds to either a feature (see Table 4.4) or a position in a byte value
distribution or list (see Section 4.1.3). Each feature vector provides a representation of
the flow records generated by a user during one of evenly separated intervals of network
activity, by containing features, distributions or lists that measure specific aspects of the
flow activity during the interval.

We computed our feature vectors over multiple intervals (15, 30, 60minutes and one day), to
test which sampling interval resulted in the best association of the feature vectors with user
roles. Data sampling over shorter intervals allows capturing more transient user behaviors,
which can be expressed as greater variability in terms of feature values. Longer sampling
periods capture longer term summaries of behavior, in which the feature value variations
caused by transient activities are averaged out. Each vector was labeled with the role group
(Table 3.3) the user was assigned to.

4.2.2 Impact of Data Cleaning
For each sampling interval, feature vectors of each type (baseline, port-behavior, port
distributions and PPVs) were created twice, once based on flow record data sets before data
cleaning and again after cleaning. Cleaned flow records were flow data sets in which the
flows tagged as being automatically generated were removed. Both cleaned and unfiltered
feature-vector- data sets were tested in our experiments, to observe whether cleaning the
data improved the abilities of the classifiers to differentiate between role-group-data sets.

4.3 Data Pre-Processing
For each of the data classification experiments, the feature set data was pre-processed to:

• Down-sample the larger role-group data sets to reduce class imbalances

76

• Normalize the values for each feature in the feature value set to zero mean and unit
variance

• Reduce the effective feature vector lengths through Principal Component Analysis
(PCA), for the longer (non-PPV) feature-vector types.

• Create a pseudo role-group, to serve as a control group for the experiments

4.3.1 Down-Sampling of Larger Role-Group Data Sets
The membership for the role-groups listed in Table 3.3 is unbalanced, and as a result the
number of flow data samples extracted for each role group is also unbalanced. The Tenure
and Masters Students role-groups were associated with the largest numbers of extracted
feature vectors. To prevent these groups from completely dominating classifier decisions,
for each iteration of data classification the data from the Tenure group was randomly down-
sampled by 50%, and data from the Masters student group was down-sampled by 85%.
Even with the down-sampling of the largest groups, the data was still unbalanced as shown
in Figure 4.1, which shows the number of per role-group vectors after down-sampling for
both cleaned and unfiltered flow data sampled at 15-minute intervals.

4.3.2 Data Normalization
For each iteration of the experiments, the values for each feature in the selected data set
were normalized to have a zero mean and unit variance (i.e. we applied the coefficient of
variation). This was done to ensure each feature in the extracted feature vectors contribute
equally in classifying the data.

4.3.3 Dimension-Reduction of Feature-Vectors
As the number of features in a feature vector increases, the dimensionality of the space
that distance measurements between vectors are made within also increases. Increasing
dimensionality reduces the impact that any one feature has on overall distances between
vectors. This effect is known as the "Curse of Dimensionality" [58]. The feature-vector
lengths obtained by concatenating different feature sets can create very long vectors. To
address this, we applied Principal Component Analysis (PCA) to each feature vector set,
reducing the number of dimensions to a number that conserved 95% of the variability
found in the data sets. Using this approach, the statistically-derived, port-behavior and

77

Figure 4.1. Vectors per Role Group

port-distribution feature-vector dimensions were reduced to 31, 52 and 28 dimensions
respectively.

4.3.4 Pseudo-group Creation
To test the relationship between a user’s role and the flow data they generate, we created
pseudo-role groups designed to be non-role specific. The pseudo-role groupswere generated
by randomly selecting users from each of the defined role groups, and extracting without
replacement the data vectors associated with them. Because the number of feature vectors
per user varied, as each user was selected the total number of associated feature vectors
was counted. If the total was between 10 and 20 percent of the total vectors for the role
group, random selection and extraction for that role group was stopped. If adding a user

78

associated with a large number of feature vectors caused the total selected feature-vector
count to exceed 20 percent, the data from that user was not extracted.

The intent of creating the pseudo-role group was to determine whether classifiers would
perform any differently with data from an arbitrarily defined set of users than they would
with data extracted from our defined role groups. If the performance of the classifiers with
pseudo-group data is approximately the same as with our defined role groups, then the use
of roles in creating our groups of users did not enhance our analysis of user behaviors.

4.4 Role-Based User Group Experiments

4.4.1 Data Classification
The classification experiments performed to detect and measure the relationship between
user roles and the network traffic the users generated contained several dimensions of
investigation. These dimensions were:

• Use of two different classifiers, one linear (Nearest Centroid Classifier) and the other
non-linear (Support Vector Machine with a radial basis function kernel)

• Use of four different feature sets (Section 4.1)
• Use of unfiltered and cleaned Netflow records
• Use of four data sampling intervals (15 minutes, 30 minutes, 60 minutes and 1 day)

For each combination of these dimensions (classifier, feature set, data cleaning and sampling
period), classification experiments were repeated 10 times. For each iteration the set
feature vectors were pre-processed (Section 4.3). The classifier was trained on a subset
of the feature vectors (70% randomly selected from each of the role-groups) and tested
on the remaining 30%. Classification results from the 10 iterations were averaged. The
classification experiments were performed twice, once for each version of pseudo-group
generation.

4.4.2 Data Clustering
Feature vectors derived from flow records that summarize a user’s data transfers over the
network provide some measure of the flow patterns generated by that user. These patterns

79

can be considered to be a description of user behaviors over the network, and if user roles
strongly influence user behaviors we would expect that users in the same role group would
share similar behaviors on the network.

Clustering algorithms associate data points based on relative distances; data points can be
grouped as belonging to a cluster if the distances between the points are small relative to
distances to other data points. If user network behaviors are in part determined by their
organizational role, we would expect that users in the same role group would share common
behaviors which would be reflected in sharing similar feature vectors in their data sets.
Clustering the data sets of all the users should lead to the generation of clusters containing
feature vectors derived from one or two of the role groups.

For each of the four feature sets (Section 4.1), data vectors were clustered using k-means++
to determine if the clusters formed reflected the similarities within each role-group.

4.4.3 Feature-Vector Distance
While classification algorithms can be used to test how separable feature data is for a few
classes, they are less useful when comparing data sets associated with hundreds of classes.
To compare the differences between users within the role-groups, we performed a pairwise
comparison between the users in our role groups based on the feature vectors associated
with each user.

Let U = {u1, ..., ui, ..., um} be the set of users identified for our research, and Vi =

{v1, ..., vk, ..., vn} the set of feature vectors associated with a user ui. For each ui ∈ U

and u j ∈ U, let di j represent the mean of the pairwise euclidean distances between the
feature vectors in Vi and Vj . For m users, this produces an m ×m matrix of distance values,
D.

Let G = {g1, ..., gk, ..., gp}, where gk is one of the defined role groups each containing a
subset of the users. For each subset of users in each gk ∈ G, we collected three types of
distance-value distributions. The first distribution focused on the self-similarity of feature
vectors produced by the same user. For each user ui in group gk we collected the dii

distance values, or the mean-pairwise distance between the feature vectors in vi. This set of
self-similarity distances provide a measure of how similar feature vectors generated by the

80

same user are over time.

The second distance distribution focused on the mean distances between the feature vectors
of pairs of users in group gk . For each user ui, u j ∈ gk where i , j, we collected the di j

distances. This set of distances show how similar feature vectors generated by users in the
same role group are.

The third type of distance distributions focused on the mean pairwise distances between
feature vectors generated by users in group gk and the feature vectors generated by users
in other role groups. For each role group gl , where l , k, we collected mean pairwise
distances di j between each user ui ∈ gk and user u j ∈ gl . This set of distances show
how similar the feature vectors generated by users in one role group are to feature vectors
generated by users in other role groups.

4.5 Similarity-Based User Group Experiments
The underlying assumption behind grouping users by roles in order to define normal user
network activity is that users within the same role group would perform similar tasks, and
so the patterns of network traffic for these users would be similar. If true, feature-value
distributions derived from the network traffic of users in the same role group could be used
to define the bounds of normal behavior for users in that role-group. Another approach
to identifying users with similar network behaviors is to not assume similarities based on
roles, but to observe their network behaviors and group them by similarity.

To find groups based on similarities in user behaviors, we adapted some of the methodology
described by Frias-Martinez [28] (see Section 2.3.2). Frias-Martinez clustered feature vec-
tors derived from user-flow-data sets to identify users with similar behaviors, and compared
new feature vectors for each user against the existing clusters. Feature vector distances too
far from the majority of points in a user’s cluster were declared anomalous. Our process
was not as complex as the methods used by Frias-Martinez, but it served to demonstrate
that user-data sets can be clustered based on similar behaviors.

For a given set of feature vectors, the vectors are grouped based on the week the represented
data was collected. For each user and week, centroid vectors (vectors of mean values for
each feature in a feature-vector set) are calculated. The centroid vectors are clustered using

81

K-means++, and user groups defined by which user centroids grouped in each cluster. A
pseudo group is generated by extracting users and associated data vectors from the defined
groups to test whether classifiers performed more poorly with a mixed-group set.

Using the redefined groups, the experiments in Section 4.4.1 are repeated, to determine if
the classifiers perform differently for the similarity-based-user groups than was observed
with the role-based-user groups.

82

CHAPTER 5:
Results and Discussion

This chapter provides the results of the experiments discussed in Chapter 4, and analyses
of the experimental results. The suitability and limitations of employing single features
for comparing user network behaviors is reviewed in Section 5.1. The performance of the
nearest centroid and SVMclassifiers using vectors of statistical and information theory based
features is discussed in Section 5.2. These features include volume-based port-behavior
measures (bytes in/total bytes passed, bytes out/total bytes passed, standard deviation of byte
values) over the ports and protocols listed in Table 4.2, as well as statistical and information-
theoretic measures based on flow protocol, TCP handshaking, flow temporal behavior, and
IP address values (listed in Table 4.4). This feature set provides a baseline for classifier
performance relative to the other data sets, in that it incorporates both port-protocol flow
volumemeasures as well as the other statistical and information-theoretic features described
in Table 4.4.

In the following three sections, we discuss the performance of the classifiers against different
feature-vector types used to describe flow patterns over the different ports and protocols.
In Section 5.3, we discuss the performance of the classifiers on a subset (Port-Behavior)
of the features listed in Table 4.4. These features consist of measures of flow activity
over the port-protocols listed in Table 4.3, plus a measure of distant-port entropy. In
Section 5.4 the performance of the classifiers on feature vectors consisting of flow byte-value
distributions for each of the selected ports and protocols is discussed. The performance
of the classifiers using Port Priority Vectors as the discriminating features is covered in
Section 5.5. Section 5.6 discusses the impact of consolidating the 11 user-role groups into
threemore general user categories and equalizing data set sizes prior to classification testing,
and comparison of classification results for all of the feature-vector types is discussed in
Section 5.7.

The results observed from clustering the different feature vector types using K-means++
are reviewed in Section 5.8, and Section 5.9 discusses the relative feature-vector distances
between users; to themselves, to others in their role group and to users in the other role

83

groups. Finally, Section 5.10 discusses the results obtained from grouping user data sets
based on behavioral similarities, and repeating the tests performed against the role-based
user groups.

5.1 Single Feature Discriminators
We will not describe here the many negative results we obtained with simpler features on
this data. For instance, as can be seen in Figure 5.1, total bytes in the flow is not a good
discriminator of user groups since flows vary too much in this measure and this overrides
any effect of user group. The same can be said for measuring the bytes per packet in flows
(Figure 5.2).

Figure 5.1. Flow Bytes vs. Role Group Figure 5.2. Bytes Per Packet vs. Role Group

Most features are not useful on an individual basis for discrimination between user behaviors.
Use of multiple features together provides more detail for comparison.

5.2 Aggregate Netflow Statistics

5.2.1 Nearest Centroid Classification
To perform these experiments, we used the nearest centroid classifier provided by the scikit-
learn python library [57]. The classifier was trained and tested on value vectors containing
the features described in Table 4.4. Feature-vector data sets were created eight times, for

84

each combination of data cleaning (cleaned and not cleaned) and data sampling interval
(15, 30, 60 minute and one day).

Classification trials for each feature-vector-data set were repeated 10 times, and the results
averaged. Averaging of the results was necessary due to the random sampling applied for
each iteration to:

• Down-sample the larger (Tenure and Masters Student) group data Section 4.3.1,
• Extract between 10-20% of feature vectors from each role group to create the pseudo
group data set Section 4.3.4, and

• Extract 30% of the feature vectors from each role group to create the test data set.

Sampling was performed through feature vector extraction without replacement. For each
role-group classifier, the number of feature vectors selected from each of the role-groups
was averaged across the 10 trials. These average values were used to create the confusion
matrices and plots presented in this section.

Confusion Matrix Analysis
Table 5.1 shows the confusion matrix for the nearest-centroid classifier, when trained and
tested on features described in Table 4.4. The data used to create the feature vectors used
for this experiment was derived from non-cleaned flow data (no removal of flows flagged
as automatically generated), that was sampled on 30 minute intervals.

For each cell ci, j in the confusion matrix, the cell shows the number of feature vectors
(averaged across the 10 trials) from role-group i labeled by the classifier as belonging to
role-group j. True positive classifications are counted in those cells where the column and
row role-group names match. In Table 5.1 the matrix cells with the true positive values for
each role-group classifier are bounded by border lines, while each cell ci, j containing bolded
numbers indicate the role-group i with the maximum number of feature vectors selected by
the classifier as belonging to role-group j. The precision and recall measures for each role
group are provided in the corresponding labeled row and column bordering the confusion
matrix.

Of the 12 role groups shown in Table 5.1, seven of the true-positive values were also the
maximum selected (shown in bold) for their column’s role group (including the pseudo

85

Ad
mi
n

Ad
mi
nis
tra
tio
n

Cl
ass

Mg
mt

DL
Stu
de
nt

Fu
nd
ing
/ac
q

IT
Su
pp
ort

Le
ctu
rer

Ma
ste
rs
Stu
de
nt

Ph
D
Stu
de
nt

Re
sea
rch

As
st

Te
nu
re

Ps
eu
do Re

cal
l

Admin 1140 12 183 118 448 289 39 9 23 101 2 197 0.45
Administration 323 566 33 53 115 49 32 66 24 72 8 81 0.40
Class Mgmt 9 0 112 10 10 13 0 0 2 11 0 4 0.65
DL Student 5 0 5 80 0 0 1 0 12 6 0 2 0.73
Funding/acq 234 0 58 64 157 93 9 9 15 33 0 21 0.23
IT support 340 53 106 77 207 409 13 18 19 64 3 37 0.30
Lecturer 560 231 129 173 274 85 71 46 44 92 21 66 0.04
Masters Student 685 543 144 481 263 287 75 128 113 163 27 147 0.04
PhD Student 3 0 64 142 2 9 0 0 157 17 0 32 0.37
Research Asst 925 1 374 291 432 421 28 19 108 701 20 287 0.19
Tenure 582 503 168 326 287 239 61 68 102 234 61 297 0.02
pseudo 361 215 229 505 184 303 36 41 103 209 11 337 0.13
Precision 0.22 0.27 0.07 0.03 0.07 0.19 0.20 0.32 0.22 0.41 0.40 0.22

Table 5.1. Non-Cleaned Data Confusion Matrix

group). In other words, in those cases the classifier selected more feature vectors from
the correct role group than from any of the other role groups. For the pseudo group the
classifier had a precision of 0.22 and a recall of 0.13, performing as well as or better than
the scores received for some of the other role groups.

The confusion matrix shown in Table 5.2 shows the results of training and testing the
nearest-centroid classifier using feature vectors derived from data sampled over 30 minute
intervals and cleaned of flows flagged as automatic. Removing the automatic flows did
not change the results significantly; the classifier again recalled more feature vectors from
the correct role group than selected from the other groups for seven of the 12 role groups.
Classification of the pseudo-group data had a precision score of 0.06 and a recall score of
0.33, not too dissimilar to the performances for the Tenure and Admin role groups.

Table 5.1 and Table 5.2 provide detailed results on the testing results for the nearest-centroid
classifier on two of the eight versions ([clean vs. not cleaned] x [four sampling intervals])
of derived data sets. For the rest of this chapter, we will primarily display test results in
graph form, which is more succinct.

86

Ad
mi
n

Ad
mi
nis
tra
tio
n

Cl
ass

Mg
mt

DL
Stu
de
nt

Fu
nd
ing
/ac
q

IT
Su
pp
ort

Le
ctu
rer

Ma
ste
rs
Stu
de
nt

Ph
D
Stu
de
nt

Re
sea
rch

As
st

Te
nu
re

Ps
eu
do Re

cal
l

Admin 195 374 338 237 462 381 190 52 51 190 6 41 0.08
Administration 28 382 46 117 130 78 101 178 32 87 24 21 0.31
Class Mgmt 4 0 116 11 11 12 0 0 4 7 0 1 0.69
DL Student 2 0 0 37 0 0 0 0 4 0 0 0 0.86
Funding/acq 9 90 71 35 195 89 58 19 20 44 1 6 0.31
IT support 79 65 145 42 248 432 45 33 28 60 6 20 0.36
Lecturer 39 334 130 116 279 166 176 103 66 58 19 25 0.12
Masters Student 73 501 213 150 215 300 142 348 78 61 37 43 0.16
PhD Student 5 0 72 74 1 4 0 0 121 12 3 5 0.41
Research Asst 127 326 416 191 457 411 178 94 105 730 23 61 0.23
Tenure 103 437 233 222 317 268 185 264 108 166 136 67 0.05
pseudo 105 412 232 240 304 209 178 232 76 123 29 144 0.06
Precision 0.25 0.13 0.06 0.03 0.07 0.18 0.14 0.26 0.17 0.47 0.48 0.33

Table 5.2. Cleaned Data Confusion Matrix

Graphical Analysis
Figure 5.3 shows the nearest-centroid classifier’s precision and recall scores for each sam-
pling interval value on both the unprocessed and cleaned Netflow data sets. We ordered the
sequence of role-group names listed on the independent variable (x) axis based on the sizes
of the role-group feature-vector-data sets, largest data set first and the other groups listed
in descending set-size order. This ordering of group names enables easier comparisons of
the precision and recall value relationships, as well as the relationships of the scores to the
role-group-set sizes. Note: the relative sizes of the role-group data sets were determined
after the extraction of user-feature vectors to create the pseudo-role group.

Several observations can be made based on Figure 5.3:

• With some exceptions, average precision scores for each role group decreased as the
number of feature vectors per role group decreased. The correlation was not exact;
for example the Admin-role group received lower precision scores than observed for
the smaller Masters-role group.

• Cleaning the data of automatic flows did not appear to create a consistent difference
in the precision or recall measures relative to flow data that was not cleaned.

87

Figure 5.3. Baseline Set Precision/Recall Scores for Nearest Centroid Classifier

• The pseudo group had precision and recall scores comperable to those of the Research
Assistant and Tenure-role groups, which were similar in feature-vector-set size.

Based on the results shown in Figure 5.3, there appears to be a strong correlation between
the size of the role-group data sets and the precision scores achieved by the classifier. To
test this apparent correlation, we set the maximum role-group vector-set size to be no larger
than that of the IT Support role group. Larger data sets were randomly sampled for each
classifier test iteration, selecting a number of feature vectors equal to that of the IT Support
group. Figure 5.4 shows the classifier results of the down-sampled data.

88

Figure 5.4. Down-sampled Baseline Set Precision/Recall Scores for Nearest Centroid
Classifier

As can be seen in Figure 5.4, down-sampling the larger groups appears had an impact on
the classification results. The average precision results for the larger role-groups flattened
out for the larger data sets. The recall values had dropped significantly, however. Because
down-sampling did not significantly improve the overall classification patterns observed,
only the largest role-group data sets (Masters and Tenure) were down-sampled (as described
in Section 4.3.1) for the remaining classification tests.

5.2.2 Support Vector Machine Classification
Testing and training of the Support Vector Machine classifier was performed in the same
manner and on the same data as the nearest-centroid classifier tests. To perform these
experiments, we used the support-vector-machine classifier provided by the scikit-learn

89

python library [57]. As was done for the nearest-centroid classifier, the classification trials
were repeated 10 times and the average results collected.

Confusion Matrix Analysis
Table 5.3 shows the confusion matrix for the Support Vector Machine classifier tested
and trained on the features described in Table 4.4, extracted from user flow data that was
sampled on 30 minute intervals and not cleaned of automatic flow records. Table 5.4 shows
the confusion matrix for the SVM trained on the same features extracted from cleaned flow
data, again sampled on 30 minute intervals.

Ad
mi
n

Ad
mi
nis
tra
tio
n

Cl
ass

Mg
mt

DL
Stu
de
nt

Fu
nd
ing
/ac
q

IT
Su
pp
ort

Le
ctu
rer

Ma
ste
rs
Stu
de
nt

Ph
D
Stu
de
nt

Re
sea
rch

As
st

Te
nu
re

Ps
eu
do

Re
cal
l

Admin 1000 25 239 89 748 176 9 37 154 118 20 50 0.38
Administration 132 682 34 91 128 31 44 54 76 25 23 26 0.51
Class Mgmt 17 0 125 2 8 1 0 0 6 3 1 3 0.75
DL Student 0 0 1 94 0 0 3 1 9 1 1 2 0.84
Funding/acq 111 2 11 40 393 56 3 10 29 20 4 9 0.57
IT support 138 69 18 98 249 475 10 111 35 43 14 26 0.37
Lecturer 167 351 31 180 437 135 180 147 96 49 34 37 0.10
Masters Student 141 623 64 586 102 172 77 909 162 69 71 87 0.30
PhD Student 10 4 7 75 7 5 7 7 280 13 8 5 0.65
Research Asst 455 21 172 258 640 400 18 153 252 1100 37 66 0.31
Tenure 348 572 118 261 394 169 67 182 180 95 443 74 0.15
pseudo 323 321 131 297 191 142 41 220 117 80 52 656 0.26

Precision 0.35 0.26 0.13 0.05 0.12 0.27 0.39 0.50 0.20 0.68 0.63 0.63
Table 5.3. Non-Cleaned Data SVM Confusion Matrix

As can be observed in Table 5.3 and Table 5.4, the SVM classifier showed better recall
performance than the nearest-centroid classifier. For the non-cleaned data, the SVMselected
more of the correct role-group data vectors for 9 of the 12 role groups. For the cleaned
data, the SVM selected more correct role-group vectors for 8 of the 12 role groups. As was
observed for the nearest-centroid classifier the precision and recall scores for the pseudo-
group detection in the two tables were not distinctly different from some of the scores
achieved for the original role groups.

90

Ad
mi
n

Ad
mi
nis
tra
tio
n

Cl
ass

Mg
mt

DL
Stu
de
nt

Fu
nd
ing
/ac
q

IT
Su
pp
ort

Le
ctu
rer

Ma
ste
rs
Stu
de
nt

Ph
D
Stu
de
nt

Re
sea
rch

As
st

Te
nu
re

Ps
eu
do

Re
cal
l

Admin 1220 3 214 22 463 171 47 125 92 138 26 52 0.47
Administration 141 605 32 29 66 30 32 104 38 30 38 23 0.52
Class Mgmt 19 0 124 1 4 1 2 7 2 4 1 3 0.74
DL Student 0 1 2 32 1 0 2 2 2 0 1 2 0.73
Funding/acq 168 2 13 2 298 29 10 22 17 18 6 5 0.51
IT support 176 4 27 17 171 610 14 49 10 48 8 14 0.53
Lecturer 276 168 21 36 194 134 269 190 55 60 37 23 0.18
Masters Student 126 387 65 33 75 180 63 931 50 90 87 72 0.43
PhD Student 10 2 8 21 5 4 7 16 204 9 5 4 0.69
Research Asst 559 15 152 18 388 457 52 219 186 998 25 32 0.32
Tenure 355 465 104 34 159 236 69 281 110 103 520 59 0.21
pseudo 449 396 135 51 182 202 49 349 85 93 66 415 0.17

Precision 0.35 0.30 0.14 0.11 0.15 0.30 0.44 0.41 0.24 0.63 0.63 0.59
Table 5.4. Cleaned Data SVM Confusion Matrix

Graphical Analysis
Figure 5.5 shows the SVM classifier precision and recall scores for each sampling interval
value on both the unprocessed and cleaned Netflow data sets. Several observations can be
made based on Figure 5.5:

• As was seen in Section 5.2.1, decreasing precision measures roughly correlated with
the decreasing numbers of feature vectors per role group.

• Both precision and recall measures based on the one-day sampling interval were more
often the minimum or maximum values per role group. Measures based on the 15,
30 or 60-minute sampling intervals tended to be closer in value.

• Cleaning the data of automatic flows did not appear to create a consistent difference
in the precision or recall measures.

• The pseudo group had precision and recall values between those of the Research
Assistant and Tenure role-groups, which were similar in terms of feature-vector set
sizes.

91

Figure 5.5. Baseline Set Precision/Recall Scores for SVM Classifier

5.3 Port Volumetric Feature Analysis
The data vectors used for this analysis consisted of the port behaviors features listed in Ta-
ble 4.4. As described in Section 5.2.1, the Netflow data was processed for each combination
of data cleaning (cleaned and not cleaned) and data sampling interval (15, 30, 60 minute
and one day). Classification trials were repeated 10 times, and the averaged results used to
create the plots in this section.

5.3.1 Nearest Centroid Classification
Figure 5.6 shows the nearest-centroid classifier precision and recall scores for each of the
port-behavior feature-vector data sets. As was done in the result graphs in Section 5.2, the
sequence of role-group names listed on the independent variable (x) axis was ordered based

92

on the sizes of the role-group feature-vector-data sets, largest data set first and the other
groups listed in descending set-size order. The precision and recall results were lower than
what was observed in Section 5.2.1, implying that the non-port-behavior features included
in Table 4.4 did contribute to the classifier’s performance. Average pseudo group precision
and recall values were similar to those of the Research Assistant and Tenure-role groups.

Figure 5.6. Port Volumetric Set Precision/Recall Scores for Nearest Centroid Classifier

5.3.2 Support Vector Machine Classification
Figure 5.7 shows the precision and recall scores for the SVM classifier using the port-
behavior based feature-vectors. The general trends observed in Section 5.2.2 apply for
the results for this feature set as well. Contrary to what was noted in Section 5.3.1, the
precision and recall values for the port-behavior only classification results were similar to
those achieved when using the all features listed in Table 4.4.

93

Figure 5.7. Port Volumetric Set Precision/Recall Scores for SVM

5.4 Port Distributions Analysis
The data vectors used for this analysis consisted of byte-value distributions (Section 4.1.3) for
both incoming and outgoing traffic over the port-protocol combinations listed in Table 4.3.
As described in Section 5.2.1, the Netflow data was processed for each combination of data
cleaning (cleaned and not cleaned) and data sampling interval (15, 30, 60 minute and one
day). Classification trials were repeated 10 times, and the averaged results used to create
the plots in this section.

5.4.1 Nearest Centroid Classification
As was performed with baseline feature set discussed in Section 5.2, the sequence of role-
group names listed on the independent variable (x) axis is ordered based on the sizes of
the role-group feature-vector-data sets, largest data set first and the other groups listed in
descending set-size order.

94

Several observations can be made based on Figure 5.8:

• As observed in Figure 5.3 and Figure 5.6, cleaning the data had no consistent effect on
the precision and recall values. The average pseudo-group recall and precision values
were similar to those received by the Research Associate and Tenure-role groups.

• The group-size, precision-value relationships observed in Section 5.2 and Section 5.3
were more mixed for the port-protocol byte distribution data vectors, in that the trend
in precision values did not correlate as closely with the role-group data-sample size.

• The precision and recall measures based on the one day sampling interval deviated
significantly from the per-role average values of the other sampling intervals. Mea-
sures based on the 15, 30 or 60 minute sampling intervals tended to be closer in
value.

Figure 5.8. Port Distribution Set Precision/Recall Scores for Nearest Centroid Classifier

95

5.4.2 Support Vector Machine Classification
Figure 5.9 shows the precision and recall scores for the SVM classifier using the port-
protocol byte-value distribution-based feature-vectors.

Several observations can be made based on Figure 5.9. In general, as noted in Section 5.4.1
the relationship between precision values and role-group data set size was mixed, and
the precision and recall values for the one-day sampling interval data tended to deviate
significantly from the per-role average values of the other sampling intervals. The pseudo-
group precision and recall valueswere, as found in Section 5.2 and Section 5.3, close to those
of the Research Assistant and Tenure-role groups. As with the other SVM classification
experiments, the average precision scores were higher than was observed using the nearest-
centroid classifier. The cleaning of the data set did not appear tomake a consistent difference
in the recall or precision results.

5.5 Port Priority Vector Analysis
The data vectors used for this analysis consisted of port-priority vectors (Section 4.1.4). As
described in Section 5.2.1, the Netflow data was processed for each combination of data
cleaning (cleaned and not cleaned) and data sampling interval (15, 30, 60 minute and one
day). Classification trials were repeated 10 times, and the averaged results used to create
the plots in this section.

5.5.1 Nearest Centroid Classification
Figure 5.10 shows the nearest-centroid classifier precision and recall scores for each of the
port-priority-vector data sets.

Several observations can be made based on Figure 5.10:

• In general, precision values decreased with role-group data set size. The average
precision and recall values were noticeably lower than those observed with the other
feature-vector data sets.

• Precision and recall measures based on the interval extremes (15 minute and one day)
were more often the maximum or minimum values per role group. Measures based
on the 30 or 60 minute sampling intervals tended towards the median value.

96

Figure 5.9. Port Distribution Set Precision/Recall Scores for SVM Classifier

• Cleaning the data of automatic flows did not appear to create a consistent difference
in the precision or recall measures relative to flow data that was not cleaned.

• The pseudo group had precision and recall values that were generally close to those
of the Research Assistant and Tenure-role groups.

5.5.2 Support Vector Machine Classification
Figure 5.11 shows the SVM classifier precision and recall scores for the port-priority-vector
data sets. While average recall and precision values (with the exception of the pseudo
group) were higher than found using the nearest-centroid classifier Section 5.5.1, the same
observations apply to the SVM results.

97

Figure 5.10. PPV Set Precision/Recall Scores for Nearest Centroid Classifier

5.6 User Class Consolidation
Because the results of our classification sets were visibly impacted by the unbalanced-
data sets used to train the classifiers, we tested our classifiers on user group data sets
approximately equal in size. To do this, we collapsed the groups listed in Table 3.3 into
the larger categories of Faculty, Student and Staff. To equalize the group data set sizes, for
each feature-vector type we removed randomly selected user data sets from the larger two
groups until the numbers of feature vectors for each group was within +/- 2%. To create the
test (pseudo) group, users were randomly selected from the three groups and the associated
data extracted. Because the intent was to create four balanced role-group-data sets, the user
data sets extracted from each role group equaled 25% ± 1%.

Figure 5.12 shows the precision and recall scores for each role group based on training and

98

Figure 5.11. PPV Set Precision/Recall Scores for SVM Classifier

testing the Nearest Centroid classifier on the baseline feature-vector-data sets. As can be
seen in the figure, the classifier performed equally well on the Faculty and pseudo-group
data sets, indicating that the precision and recall scores were primarily related to the type
of feature vectors being processed and the size of the data sets.

A plot of the classifier performances on the consolidated-role groups for each of the feature-
vector sets is presented in Section 5.7, based on the cleaned, 30 minute sampled Netflow
data associated with the users in the role groups.

99

Figure 5.12. Baseline Set Precision/Recall Scores for Nearest Centroid Clas-
sifier - Consolidated Groups

5.7 Feature Set Classification Comparisons
In sections 5.2 through 5.5, we tested the ability of our two classifiers to differentiate
between data sets representing the network activities of 12 role-based groups, using four
different feature vector types. The four feature vector types included feature sets based
on aggregate statistical measures of Netflow record samples (see Table 4.4), statistical
measures on the 15 port-protocol combinations listed in Table 4.3, byte-value distributions
(see Section 5.4) for flows over the selected 15 port-protocol combinations, and port-
priority vectors (Section 3.2.2), which relate the ordered listing of observed port-protocol
combinations in a flow data set to a global (all collected flow data) ordered listing of
port-protocol combinations.

100

Figure 5.13 shows the precision and recall results of the classifiers for the feature vectors
derived from cleaned data sampled on 30minute intervals. Data derived from the 30-minute
sampled data sets was used because the classifier results for data sampled at this interval
showed fewer wide swings in precision and recall scores across the role-groups.

Figure 5.13. Comparison of Approaches

From this figurewe can see that in general, for both theNearest Centroid and SVMclassifiers
the smaller role-group data sets (DL Student, Class Management, Funding/Acquisition)
tended to show lower precision and higher recall values, while the larger role-based group
data sets (Admin, Lecturer, Master’s Student, Research Assistant, Tenure) tended towards
higher precision and lower recall values. In both cases, these relationships between data-
set class size and precision and recall values reflect the effects of training classifiers on

101

unbalanced classes. Figure 5.13 also shows that the precision and recall values of the
pseudo-group were not far from the scores for the Research Assistant and Tenure-role
groups, which were the closest in size in terms of total feature vectors per role group.

Each of the classifiers was able to identify some fraction of the test data correctly, but
it is difficult from the precision and recall graphs to determine which feature vector set
provided the best classification results. Table 5.5 provides the mean F1-scores obtained
by the classifiers for each feature vector type. The values shown in Table 5.5 are the
average F1-score across each of the role groups tested (including the pseudo group). For
our experiments, the Support Vector Machine with a radial-basis-function kernel performed
on average better than the simpler Nearest-Centroid classifier. Both classifiers performed
best with the feature vectors based on port-protocol byte-value distributions (Dist), and
on cleaned Netflow records sampled over 30 or 60-minute intervals. Both classifiers also
performed most poorly with the port-priority vector (PPV) data sets.

Centroid SVM
Sample
Interval Cleaned Stats Ports Dist PPVs Stats Ports Dist PPVs
15_Min No 0.168 0.141 0.182 0.122 0.290 0.306 0.324 0.175
15_Min Yes 0.141 0.130 0.188 0.083 0.314 0.316 0.364 0.162
30_Min No 0.169 0.147 0.195 0.096 0.282 0.293 0.316 0.206
30_Min Yes 0.156 0.165 0.199 0.110 0.321 0.322 0.360 0.214
60_Min No 0.159 0.162 0.185 0.103 0.281 0.293 0.319 0.215
60_Min Yes 0.163 0.143 0.205 0.095 0.303 0.313 0.353 0.209
1_Day No 0.145 0.140 0.147 0.094 0.247 0.237 0.285 0.213
1_Day Yes 0.182 0.152 0.163 0.098 0.259 0.261 0.301 0.212

Table 5.5. Mean F1-Scores vs. Cleaning and Sample Intervals

Table 5.6 shows the average F1-score performance of each classifier on each of the feature
vector types versus the role groups used for our analysis. Based on these scores, the
classifiers consistently performed better data associated with the Admin-role group.

Role-Group Consolidation : Figure 5.14 shows the precision and recall scores achieved
in classifying the different feature-vector-data sets for the equally sized consolidated-role
group (Faculty, Student, Staff) data sets. The ranges of the precision and recall scores for
the pseudo and Faculty-role groups were effectively the same, indicating that the scores
were not based on how the role-group-data sets were formed, but instead were more directly

102

Cl
ass
ifie
r

Fe
atu
re
vec
tor

Re
sea
rch

As
st

Ps
eu
do

Te
nu
re

Ad
mi
n

Ma
ste
rs

Le
ctu
rer

Ad
mi
nis
tra
tio
n

IT
sup
po
rt

Fu
nd
ing
/ac
q

Ph
D
Stu
de
nt

Cl
ass

mg
mt

DL
Stu
de
nt

Centroid Stats 0.235 0.169 0.066 0.257 0.135 0.099 0.280 0.192 0.085 0.242 0.100 0.062
Centroid Ports 0.189 0.107 0.051 0.241 0.174 0.109 0.241 0.224 0.095 0.222 0.057 0.057
Centroid Dist 0.292 0.143 0.170 0.246 0.167 0.131 0.130 0.236 0.122 0.272 0.221 0.066
Centroid PPVs 0.051 0.053 0.081 0.180 0.043 0.021 0.131 0.133 0.128 0.139 0.202 0.040
SVM Stats 0.399 0.254 0.244 0.410 0.371 0.230 0.342 0.325 0.233 0.323 0.195 0.119
SVM Ports 0.399 0.279 0.250 0.418 0.366 0.253 0.353 0.324 0.235 0.314 0.204 0.118
SVM Dist 0.505 0.383 0.328 0.529 0.289 0.284 0.256 0.431 0.206 0.297 0.265 0.158
SVM PPVs 0.220 0.141 0.149 0.279 0.174 0.112 0.271 0.330 0.201 0.280 0.173 0.079

Table 5.6. Mean F1-Scores vs. Role-Group

related to the feature-vector type and the relative sizes of the data sets.

Figure 5.14. Comparison of Results - Consolidated Groups

103

5.8 Clustering Analysis
To examinewhether some fraction of flow trafficpatterns generated by users are recognizably
unique to their role group, we clustered data from each of the four feature-vector data sets
using the K-means++ algorithm provided by the scikit-learn python library [57]. For each
feature vector type, we clustered the feature vectors derived from cleaned Netflow record
data sampled at 30 minute intervals. The number of clusters was set at 50, enough to discern
whether some relatively pure (dominated by one role group) are formed. Figure 5.15 shows
the results of clustering the baseline-feature-data set (discussed in Section 5.2.1).

Figure 5.15. Group Membership of K-Means Clusters for Statistically Derived Feature
Vectors

The larger clusters were quite mixed in terms of the role groups represented, with the
largest role-group data sets (Masters Student, Research Assistant, Admin, Tenure, Lecturer)
dominating the cluster memberships. In some of the smaller clusters the memberships were
less mixed; clusters #8, #9, #14, and #28 consisted primarily of data vectors from the Admin
role group and cluster #14 held data-vectors mostly associated with the Research Assistant
role group.

Figure 5.16 shows the results of clustering the Port-Behavior feature-vector-data set. The
larger clusters are again highly mixed in terms of role-group membership, with membership
proportions roughly correlating with role-group data set sizes. Of the smaller clusters,
clusters #8, #10 and #23 primarily contain data vectors derived from the Admin role group
while cluster #3 consists mostly of Admin-group-feature vectors.

The results of clustering the port distribution based feature vectors are shown in Figure 5.17.

104

Figure 5.16. Group Membership of K-Means Clusters for Port Flow Derived Feature
Vectors

This data set continues the trend of creating larger clusters containing data-vectors derived
from multiple role groups. The smaller cluster #16 contained a mixture of mostly Tenure
and Research Assistant feature vectors.

Figure 5.17. Group Membership of K-Means Clusters for Port Flow Distribution Derived
Feature Vectors

For the PPV data (Figure 5.18), cluster memberships were more uniformly mixed for both
large and smaller clusters. No cluster was dominated by feature vectors from one or two
role groups. Based on this, it is reasonable that a classifier would have a more difficult
time differentiating role groups based on PPV data. This is born out by the performance
of the classifiers on the PPV data. For the Nearest Centroid classifier, the correct role-
group vectors were selected more often only three times for the cleaned, 30 minute-interval
based data and four times for the non-cleaned data. Using the SVM classifier, the correct

105

role-group vectors were selected more often (six of the 11 true role groups), for both the
cleaned and non-cleaned data. These results represent significantly poorer classification
performance than was achieved with the baseline-feature vectors evaluated in Section 5.2.2.

Figure 5.18. Group Membership of K-Means Clusters for PPV Feature Vectors

The fact that the clusters generated did not align well to specific role-groups is not a
definitive measure of the lack of pattern similarities within role groups, however. These
results show how the feature vectors we defined cluster together, using the K-means++
algorithm. Other combinations of features, shorter feature vectors less impacted by the
curse of dimensionality, or other clustering algorithms could have shown different results.

5.9 Feature Vector Distance Experiments
Based on the results observed in Sections 5.2 through 5.5, there does not appear to be
a strong relationship between user roles and the network traffic patterns they generate.
Comparing the data sets of users directly however, to themselves (self similarity), to the
users in their group (intra-group distance) and to users in other groups (intra-group distance),
can provide a more fine-grained view of the relationships between users and their roles.
Distances between user data sets were determined by consolidating the feature vectors
for each user and week of network activity into centroid vectors. Each centroid vector
consisted of the mean feature values for a user during one week of activity (Section 4.4.3).
Figure 5.19 shows the distance distributions observed when comparing the mean-feature-
vector distances between user-data sets.

Self-similarity distributions were obtained by measuring the mean euclidean distances

106

Figure 5.19. Self-Similar, Intra- and Inter-Group Distances for Aggregate Statistical
Features

107

between the centroid vector set associatedwith each group user and itself. Distances between
the same centroid vectors within a set (where the distance equals zero) were excluded from
determining the mean distance values. Intra-group distributions were created by computing
the mean-pairwise distances between the data sets of users within the same user group.
The remaining distributions shown for each role group are based on the mean-euclidean
distances between the data sets of users in the subject-role group (e.g. the Admin group
for the first row in Figure 5.19) and the data sets of users in other role groups. The feature
vectors used for this graphic were based on cleaned Netflow data sampled every 30 minutes.

Several observations are apparent from these distributions. First, the self-similarity distri-
butions had noticeably lower interquartile ranges than those of the intra-group and other
group distributions. This indicates that flow patterns generated by users tends to be consis-
tent over time. In addition, for most of the role groups the mean feature-vector distances
between users within the same role group were not significantly different from the distances
to user-data sets in other role groups. The intra-group distributions associated with the PhD
students and the Funding/Acquisition role group appear to be exceptions, probably due to
these groups having the smallest data sets.

The distribution patterns observed in Figure 5.19 are repeated in Figure 5.20, which shows
the distance distributions obtained using the port-behavior-feature vectors (Section 4.1.2).
Likewise, Figure 5.21 shows the self-similarity distributions are also lower when using the
byte-distribution-feature vectors (Section 5.4). The intra-group distances obtained using
port priority vectors (Section 4.1.4) feature data were also lower than the comparisons with
role-groups, but only slightly (Figure 5.22). This supports the observation that the port
priority vectors were not as useful for machine-learning related algorithms as compared to
the other feature vector types.

Figure 5.23 shows self-similar, intra- and inter-group distance distributions for equally
sized, consolidated role-group data sets. The feature-vector type used for the distance
comparisons in Figure 5.23 was the baseline (Section 4.1.1) set of features, derived from
cleaned, 30-minute sampled Netflow data. As observed in the other distance comparisons,
the self-similar interquartile ranges were noticeably lower than the interquartile ranges for
the intra- and inter-group data set distances.

108

Figure 5.20. Self-Similar, Intra- and Inter-Group Distances for Statistical Port Features

109

Figure 5.21. Self-Similar, Intra- and Inter-Group Distances for Port Byte Distribution
Features

110

Figure 5.22. Self-Similar, Intra- and Inter-Group Distances for PPV Features

111

Figure 5.23. Self-Similar, Intra- and Inter-Group Distances for Aggregate Statistical
Features

5.10 Grouping Users by Similarity
Based on the analysis thus far, we can conclude that the roles that we attributed to our users
had little apparent effect on their network behaviors, as measured by the features we defined.
The classifiers performed no better with data derived from our defined role groups than they
did for the pseudo groups. The predicted similarities in behaviors by users sharing similar
roles were not apparent in testing, based on any of the feature-vector-data sets. Clustering
of the feature-vector-data sets created a few small role-group dominated clusters, but the
majority of the clusters were highly mixed in terms of role-group representation. Finally,
when the average distances between user-data sets were measured, in general distance
comparisons of user-data sets within the same role group were no closer comparisons
between user-data sets from different role groups. The only data sets that appeared to
exhibit consistent similarities were user-data sets compared to themselves.

To identify user groups that do contain users with similar network behaviors, we adapted
a methodology described by Frias-Martinez [28]. We clustered the users based on the
similarities between their feature-vector-data sets (described in Section 4.5). For a given
set of feature vectors, the vectors are grouped based on the week the represented data was
collected. For each user and week, centroid vectors (vectors of mean values for each feature
in a feature-vector set) are calculated. The centroid vectors are clustered using K-means++,

112

and user groups defined by which user centroids grouped in each cluster. A pseudo group
is generated by extracting users and associated data vectors from the defined groups to test
whether classifiers performed more poorly with a mixed-group set.

5.10.1 Classifier Testing of Behavior-Based-User Groups
The feature-vectors for each week were used to train and test a Nearest-Centroid classifier.
To enable comparisons of the data clusters across each week of data evaluated, the center
coordinates for the k clusters generated from the first week’s data were used as the initial
cluster centers for clustering data for the other weeks. While some drift in cluster centers
was expected during the following weeks, we expected that this process would enable us to
treat each cluster as representing similar behaviors over the data collection period. Table 5.7
shows the confusion matrix for the classifier tested on the baseline feature set (Table 4.4),
derived from cleaned, 1-day sampled Netflow data.

0 1 2 3 4 5 6 7 8 9 10 pseudo Recall

0 15 1 0 1 1 0 0 0 1 3 2 0 0.581
1 2 10 1 0 0 2 0 1 1 4 2 0 0.441
2 3 0 31 1 0 14 1 4 2 2 1 1 0.522
3 0 0 0 12 0 0 0 3 0 0 0 0 0.747
4 3 1 1 1 32 1 1 1 5 2 4 2 0.615
5 1 0 14 1 0 73 0 6 3 1 0 0 0.731
6 1 1 0 0 1 0 5 0 1 2 1 0 0.424
7 1 2 11 21 1 21 0 17 4 2 1 1 0.211
8 7 3 6 2 5 6 0 2 26 8 4 3 0.360
9 3 4 1 0 3 0 0 0 2 28 5 1 0.584
10 7 7 1 2 7 2 2 1 5 14 29 2 0.368
pseudo 3 2 6 4 4 9 2 3 5 5 3 1 0.026
Precision 0.319 0.335 0.435 0.274 0.590 0.567 0.455 0.266 0.474 0.393 0.556 0.098

Table 5.7. Confusion Matrix For Clustered Groups

The number of clusters for this experiment was set to 11, to enable comparisons with the
analyses using the 11 plus one (pseudo) role groups performed in Sections 5.2 through
5.5. The values in the table are averages, based on classification results for each of the five

113

weeks of collected traffic. As can be seen in Table 5.7, the classifier performed significantly
better in differentiating between the relabeled-user groups. Unlike the confusion matrices
obtained by grouping users based on roles (Section 5.2), for 10 of the 11 new user groups
the Nearest-Centroid classifier associated more feature vectors with the correct group (i.e.
cluster) than it mislabeled from the other groups. The classifier performed most poorly with
the pseudo group, which shows that data from the user groups identified by our clustering
process were more identifiable than data associated with randomly selected users.

This pattern of higher scores was not followed for each of the sampling periods tested,
however. For the 15 and 30-minute sampled, cleaned data sets, only four of the user groups
had more of the correct user-group-data set selected, while for the 60-minute sampled,
cleaned data sets this happened for eight of the 11 user groups. Figure 5.24 shows the
precision, recall and F1-scores for the baseline-feature set (Table 4.4), comparing the scores
for the different sampling intervals.

Figure 5.24. Clustered Group Scores For Intervals

While the precision, recall and F1-scores for user data sampled over 1-day intervals remained
fairly stable across the clusters, the values associated with the 15, 30 and 60-minute intervals
fluctuated significantly. We attributed this trend to the fact that the clusters used to define

114

user groups were created based on feature values averaged over a week. Sampling flow data
over shorter periods means that any feature vectors generated reflect short-term, transient
behaviors, and thus feature values would show more variability as compared to feature
vectors based on longer sampling periods. Greater feature value variability would mean
more vectors would fall at greater distances from the weekly mean values. Because the
classifier performed best using feature vectors created from flow data sampled over one-day
intervals, the rest of this section will present results based on feature vectors created from
cleaned flow data sampled over that interval.

Figure 5.28 shows the precision, recall and F1-scores for tests of the Nearest-Centroid
classifier on each of the four feature-vector types described in Sections 5.2 through 5.5.
For these tests, the port-behavior (Section 5.3) and port-distribution (Section 5.4) based
feature vectors showed the greatest variability in scores, while the baseline (Table 4.4) and
PPV (Section 4.1.4) based feature vectors were the most stable in value across the different
clusters. The pseudo group again showed the lowest average precision, recall and F1-scores
as compared to the clustered-user groups, showing that the classifier did not find common
behaviors within the pseudo group.

Figure 5.25. Precision, Recall and F1-scores of Clustered Groups For Each Feature-
Vector Type

115

To test the effect of creating fewer user groups, consolidation was performed by reducing the
number of clusters. Figure 5.27 shows the precision, recall and F1-Score measures obtained
for classification based on five user groups, for vectors derived from 1-day sampled, cleaned
Netflow data. As observed in Figures 5.24 and 5.28, the pseudo group received the lowest
average scores. For this smaller set of user groups, only the distribution-based feature-vector
set displayed significant variation in the recall values for the different user groups.

Figure 5.26. Precision, Recall and F1-scores For Five Clustered User Groups

The average F1-score for the five-user group classification analysis was higher than was
achieved using 11 user groups. This indicates that the number of clusters used can be tuned
to optimize feature-value-detection thresholds for each user group, to enable the detecting
anomalous feature values. In the access-control system described by Frias-Martinez [28],
she performed cross-validation tests on a subset of user profiles, varying the number of
clusters used to group users in order to find a k value that resulted in the most true-positive-
anomaly detections and the fewest false-positive results.

5.10.2 Clustering Behavior-Based-User Group Data
Because user groups were defined based on behavioral similarities, we expected clustering
of the re-labeled feature-vector-data sets would result in clusters dominated by one or two

116

user groups. Figure 5.27 shows the cluster memberships obtained for one week of baseline-
feature-vector data, where 11 user groups were defined based on behavioral similarities
prior to clustering the data. The k-value set for clustering the feature vectors was set to 50.
The clusters consisted primarily of feature vectors from four user groups, indicating that
the user groups generated were imbalanced in data-set size. From the figure can see that
a number of the smaller clusters generated consist almost entirely of feature-vectors from
one user group (designated by the number 2).

Figure 5.27. Cluster Membership for Behaviorally-Defined User Groups

5.10.3 Feature Vector Distance Comparisons
In comparing the mean distances between user-data sets, we defined user groups based on
creating centroids of each user’s data over the entire collection period and clustering them
using K-means++. Averaging user-feature-vector values over the entire collection period
was necessary, because the distance comparison method we used was based on comparing
centroid vectors for each week of user activity (Section 5.9). If user groups were defined
on a per-week basis, each user would have one centroid vector per week to compare with
others and self-similar distance measurements would not be possible.

Figure 5.28 shows the self-similarity, intra- and inter-group distance distributions obtained
by comparing data-set distances with the relabeled-user groups, using baseline-set (Sec-
tion 5.2) feature vectors derived from cleaned, 1-day sampled flow data. We can see that
the self-similar interquartile distance ranges are again lower than the inter- or intra-group
ranges, but in many cases the intra-group interquartile distance ranges are a close second.

117

Figure 5.28. Self-Similarity, Intra- and Inter-Group Distances For Behavior Groups

118

The changes in intra- and inter-group distance ranges obtained by regrouping users based on
behavioral similarities show that the user groups are now measurably different, something
that was not apparent when the user data sets were grouped based on roles.

5.11 Conclusion
This chapter presented the results for the experiments discussed in Chapter 4. We com-
pared the differences in the user-group characteristics obtained when grouping users based
on their organizational roles to the characteristics of user groups generated by grouping
users based on behavioral similarities. Comparisons were performed based on how well
machine-learning classifiers differentiated between defined user-group-data sets and data
sets compiled from randomly selected users. In addition, data sets were clustered using
K-means++ to determine if any user group data clustered separately from the data of other
role-groups.

To measure the effect a user’s role has on the Netflow records they produce, we created
four different sets of Netflow derived features, to characterize the network behaviors of
users within each role-defined groups. As an experimental control, we created non-role
related (pseudo) groups by randomly extracting users and their associated data sets from
each role-group-data set. We trained and tested two different classifier algorithms to
differentiate between the role-based and pseudo groups, to determine if the classifiers
performed differently with the psuedo group that the did with the role-based groups.

Both classifiers were able to associate more feature vectors to the correct role group than to
any of the other role groups. For the pseudo-role-group data, both classifiers consistently
achieved precision and recall results similar to that achieved with similarly sized role group
data sets. The radial basis function kernel SVM performed better than the Nearest Centroid
classifier, and each classifier performed best on feature vectors representing traffic over
selected port-protocol combinations using byte-value distributions.

In the course of testing this linkage between user roles and Netflow data using classifiers, we
also evaluated the effects on classification results from varying how flow data using different
port-protocol combinations is represented, varying the sample periods used to create the
feature vectors, and the removal of flow data generated by automatic processes.

119

Clustering of feature-vector-data sets showed that in general the larger clusters contained
feature vectors drawn from most of the role-group data sets, while some smaller clusters
were dominated by data derived from one or two of the larger role-group data sets. This
indicated that much of the flow patterns observed in the collected data was similar across
the different role groups, with only small subsets of flow data characteristic of specific roles.
The exception to this observation were the clusters generated based on Port Priority Vectors
(Section 5.5), in which no one role-group dominated any clusters.

Comparing the mean euclidean distances between the feature-vector-data sets associated
with each user showed that the distances between each user’s data set and itself were
consistently lower in comparison with user-data sets in any role group, including the user’s
role group.

The conclusions that can be drawn from these experiments are that roles have little to no
impact on flow-data patterns captured as Netflow-derived-feature vectors. The flow patterns
generated by the users in our study were mostly similar across role-groups, and the only
source of behavioral consistency we observed was within the flow traffic generated by
individual users.

These results were contrasted with the results obtained by creating user groups based on
measured behavioral similarities. Users were grouped by similarity by using K-means++
to cluster centroid vectors, each vector consisting of the mean feature values for a given
feature-vector set and period of time. User groups corresponded to the cluster a user’s
centroid vector was a member of. Using this approach to define user groups, the tests used
to measure the effects of user-role groups on network traffic patterns were repeated using
the relabeled data sets.

120

CHAPTER 6:
Conclusion

This dissertation presents an approach for testing the collective network behaviors of groups
of users, and determining whether users in the groups demonstrate shared patterns of
network behavior. It also compared the behavioral similarities of users in groups defined
based on their organizational roles with the behavioral similarities of users groups defined
based on sharing similar patterns of network behavior. This analysis was performed using
flow metadata (i.e. Netflow) to capture the network activities of the users involved in this
study. The process presented represents a wide look at how network flows as summarized by
Netflow can be characterized through the selective use of groups of features, and successfully
used to demonstrate measurable relationships between users.

6.1 Dissertation Summary
We presented our methodology for reducing the number of flows in the collected data set
not relevant to an analysis of user behaviors on the network. Applying this methodology,
our cleaning processes reduced the number of flows to store and analyze by 68.5%. After
identifying the collected flow records that could be attributable to 1373 users on the network
and grouping the users into 11 roles based on their positions at the Naval Postgraduate
School, the records were anonymized by replacing user names with ID numbers.

We developed several algorithms to recognize flows generated by systems automatically.
We identified a defining trait of automatic flows, high repetition of flow related features, and
created algorithms to identify and count the times such features appear within a set of flow
records. Those flows associated with an outlier count values of the selected features were
labeled as automatic. Identifying another automatic flow process, the periodic reloading of
web pages, was performed in a similar manner. Flow-data sets where these automatic flows
were removed were referred to in this dissertation as being cleaned.

The flow-record based features we generated for comparing behaviors within different user
groups focused primarily on network services associated with known ports and protocols.
We created four different types of feature-vectors, one based on a broad set of Netflow

121

derived statistical and information theoretic measures, and three based on different ap-
proaches to describing flow activity over selected port-protocol combinations. The three
port-protocol focused approaches characterized flows using statistical measures of activity,
byte value distributions, and Port Priority Vectors (Section 4.1.2). For each user we created
multiple data sets of each feature-vector type, drawing from a user’s Netflow data both with
and without removing automatic flows as well as varying the data sampling rates used to
create the feature vectors. The total number of combinations ([cleaned versus unfiltered
flow data] x [data sampled over 15, 30, 60-minute and one-day intervals]), created eight
data sets per user per feature-vector type.

We tested for the existence of role-group effects on user network traffic by applying two
machine-learning classifiers (Nearest Centroid and Support Vector Machine) to the feature-
vector data. The Nearest Centroid classifier provided a linear discriminator comparing each
user’s feature vectors against the mean feature values observed for each role-group class.
The Support-Vector Machine (SVM) classifier operates by identifying boundaries between
data points from different classes, where a boundary is positioned at the greatest distance
between data points from a class and the rest of the data set. Our SVM was used with
a non-linear kernel, enabling searches for an optimal boundary over higher dimensions,
where more separation between data points from different classes may be found.

To serve as a control group for our tests, we randomly selected users from each role-group
and relabeled their feature vectors as belonging to a pseudo-group class. The maximum
fraction of feature vectors we extracted from any role-group was 15%. We tested and trained
the nearest centroid and support-vector machine (with a non-linear radial-basis-function
kernel) classifiers on data sets for each feature vector type, with and without automatic
flows removed, and for each sampling interval. For each trial, for each feature-vector type,
sampling interval and cleaning state, the classifiers performed just as well identifying feature
vectors associated with the pseudo group as they did with other role groups of similar size.
These results indicated that grouping data sets based on user-role groups did not provide
any apparent advantage in comparing user network behaviors.

The classification tests also demonstrated that the classifiers performed best in distinguish-
ing between our role-group-data sets with the port-protocol byte distribution based feature
vectors, and most poorly with the port priority vectors (PPVs). These results indicate that

122

using byte-value distributions to describe flow data provide more discriminating power for
classifiers than the other feature vector formats we tested. The classifiers also performed
more consistently on feature vectors derived from data sampled at 30 and 60 minute inter-
vals, while feature vectors created from data sampled every 15 minutes or every 24 hours
frequently resulted in precision or recall scores higher or lower than the median score values
for a role group. Also demonstrated was the impact of cleaning the data of automatic flows;
the impact was indeterminate. Cleaning did not consistently result in either higher or lower
precision or recall scores.

We also performed K-means++ clustering on each feature-vector type to determine if data
from any role group clustered separately from data in other role groups, which could indicate
feature-vector patterns unique to a single role-group. For each of the feature-vector types,
role-group membership (number of feature vectors per role group) of the larger clusters
were mixed, in large part in proportion to the relative sizes of the role-group data sets. A
few smaller clusters consisted primarily of feature vectors from one or two of the larger role
groups. These results imply that in large part flow patterns created by members of each
role-group are similar, with relatively small subsets that may be unique to certain roles. Of
the feature-vector data types that were clustered, the PPV feature vectors resulted in highly
mixed memberships for all the clusters generated. This indicates that classifiers would
find it more difficult to discriminate between data from different role groups based on PPV
features, which was consistent with what we observed.

In our final set of experiments on role-group labeled data, for each feature-vector type we
grouped the vectors by user and the week of data collection, and for each group of feature-
vectors created centroid vectors (vectors of mean feature values). We performed pairwise
distance comparisons of the centroid-vector-data sets for each user, computing the mean
euclidean distance between the centroid vectors in the user-data sets being compared. We
found that on the average for each user, the closest match for their data sets were to their
own data sets. In other words, on average a user’s historical patterns of network activity
were consistent across the five weeks of collection, and this consistency was reflected in
the lower feature-vector distances within a user’s data set. In addition, we found that on
average each user’s feature-vector-data set was no closer to the data sets of users in their
own role-group than they were users from other role groups. This indicates that the only
consistency we observed in our experiments for comparing user behaviors was from the

123

users themselves, and not the role-group box they might be put into.

The implications of these experiments are that a user’s role within an organization does not
have a measurable impact on the patterns of network traffic they generate, as documented in
Netflow records. Similarity in behaviors appears to occur at the user level. We next created
user groups by clustering user-centroid vectors, and grouping users based on the clusters
their centroid vectors belonged to. We repeated the tests performed on the role-group-
labeled data, although for these experiments we did not use the Support Vector Machine
classifier.

The Nearest Centroid classifier

6.2 FUTUREWORK
Establishing that users act more as individuals than as members of a role category provides
a basis for refining improved methods of detecting anomalous behaviors among users. The
consistency of the results we observed using multiple forms of feature vectors indicates that
the relationships we explored between Netflow records, users and role groups will show up
for different feature sets. Frias-Martinez [28] used features drawn from flow activity over a
few ports to create a behavior based access control system, while we tested feature vectors
based on a much larger set of port-protocol combinations. There is a trade-off space that
can be explored using this approach, in terms of the number and combinations of features
that can be most effectively used in profiling users, and in terms of the sizes of the profile
clusters that would work best for setting alarm thresholds.

The performance of the classifiers using port priority vectors could be improved by exploring
other possible prioritization schemes. Our ranking of the observed port-protocol flows was
based on the total flows per port-protocol combination. Ranking could also be performed
based on the total bytes passed, mean bytes per packet, mean packets or bytes per second,
average number of packets per flow, or other possible measures. These alternative methods,
tested individually or combined into longer feature vectors, may provide better resolution
in terms of distinguishing different patterns of flow activity.

One possible big improvement to distinguishing between user patterns of behavior would
be to improve the detection of automatically generated flows. Approaches to this would

124

include identifying periods when the user is not present on the system. An idle system left
overnight still generates network traffic. While the algorithms we developed would detect
many of these automatic flows, recall for these algorithms was not 100%. Being an active
campus with students often staying late to perform experiments, it was not feasible to excise
Netflow data based on the time of day it was collected. A reliable method of detecting user
presence at the computers would help significantly in reducing the automatic flows in the
data.

6.3 CONCLUSION
The primary hypothesis for this dissertation was that the roles a user holds within an
organization has an impact on the network flow patterns a user generates, and that this
impact can be detected and measured. Our experimental results show this to not be a
valid hypothesis, and that comparing network behaviors at the level of users (or of groups of
users exhibiting similar behaviors) would be amore fruitful approach to detecting behavioral
anomalies than using role groups as behavioral standards. Our research also provides some
indications of the kinds of Netflow derived features in which the differences between user
network behaviors is most visible. While much work has been done in the area of measuring
user computer activities for the detection of anomalous behaviors and in the application of
user roles for bounding normal computer usage, this is the first such study we are aware of
that focuses on the relationship between user roles and their network activity as measured
using Netflow.

125

THIS PAGE INTENTIONALLY LEFT BLANK

126

Bibliography

[1] K. Downer and M. Bhattacharya, “BYOD Security: A New Business Challenge,”
The 5th International Symposium on Cloud and Service Computing (SC2 2015),
2015.

[2] G. F. Anderson, D. A. Selby, and M. Ramsey, “Insider attack and real-time data min-
ing of user behavior,” IBM Journal of Research and Development, vol. 51, no. 3.4,
pp. 465–475, may 2007.

[3] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better NetFlow,” SIG-
COMM Comput. Commun. Rev., vol. 34, no. 4, pp. 245–256, Aug. 2004. Available:
http://doi.acm.org/10.1145/1030194.1015495

[4] Cisco, “Introduction to Cisco IOS NetFlow - A Technical Overview,” [Online].
Available: http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-
netflow/prod_white_paper0900aecd80406232.html., [Accessed: May 29, 2013].

[5] CERT/NetSA at Carnegie Mellon University, “SiLK (System for Internet-Level
Knowledge),” [Online]. Available: http://tools.netsa.cert.org/silk., [Accessed: July
13, 2011].

[6] A. Patcha and J.-M. Park, “An overview of anomaly detection techniques: Existing
solutions and latest technological trends,” Computer networks, vol. 51, no. 12, pp.
3448–3470, 2007.

[7] R. Zuech, T. M. Khoshgoftaar, and R. Wald, “Intrusion detection and big heteroge-
neous data: a survey,” Journal of Big Data, vol. 2, no. 1, p. 3, 2015.

[8] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection system: A
comprehensive review,” Journal of Network and Computer Applications, vol. 36,
no. 1, pp. 16–24, 2013.

[9] K. Scarfone and P. Mell, “Guide to intrusion detection and prevention systems
(idps),” NIST special publication, vol. 800, no. 2007, p. 94, 2007.

[10] A. Lazarevic, V. Kumar, and J. Srivastava, “Intrusion detection: A survey,” inMan-
aging Cyber Threats. Springer, 2005, pp. 19–78.

[11] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Maciá-Fernández, and E. Vázquez,
“Anomaly-based network intrusion detection: Techniques, systems and challenges,”
computers & security, vol. 28, no. 1, pp. 18–28, 2009.

127

http://doi.acm.org/10.1145/1030194.1015495
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
http://tools.netsa.cert.org/silk

[12] R. Sommer and V. Paxson, “Outside the Closed World: On Using Machine Learning
for Network Intrusion Detection,” in Security and Privacy (SP), 2010 IEEE Sympo-
sium on, may 2010, pp. 305–316.

[13] J. Park and J. Giordano, “Role-based profile analysis for scalable and accurate
insider-anomaly detection,” in Performance, Computing, and Communications Con-
ference, 2006. IPCCC 2006. 25th IEEE International, april 2006, pp. 7 pp.–470.

[14] S. Nellikar, D. M. Nicol, and J. J. Choi, “Role-based differentiation for insider de-
tection algorithms,” in Proceedings of the 2010 ACM workshop on Insider threats
(Insider Threats ’10). New York, NY, USA: ACM, 2010, pp. 55–62. Available:
http://doi.acm.org/10.1145/1866886.1866897

[15] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witte, “The
WEKA Data Mining Software: An Update,” SIGKDD Explorations, vol. 11, no. 1,
2009.

[16] S. Mathew, M. Petropoulos, H. Ngo, and S. Upadhyaya, “A data-centric approach
to insider attack detection in database systems,” in Recent Advances in Intrusion
Detection. Springer, 2010, pp. 382–401.

[17] M. Thomas, L. Metcalf, J. Spring, P. Krystosek, and K. Prevost, “Silk: A tool suite
for unsampled network flow analysis at scale,” in Big Data (BigData Congress),
2014 IEEE International Congress on. IEEE, 2014, pp. 184–191.

[18] B. Biddle, Role Theory: Expectations, Identities, and Behaviors. Academic, 1979.

[19] L. Shore, J. Coyle-Shapiro, and L. Tetrick, The Employee-Organization Relation-
ship: Applications for the 21st Century (Applied Psychology Series). Taylor & Fran-
cis, 2012. Available: https://books.google.com/books?id=zQbDAgAAQBAJ

[20] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R. Chandramouli, “Proposed
NIST standard for role-based access control,” ACM Transactions on Information and
System Security (TISSEC), vol. 4, no. 3, pp. 224–274, 2001.

[21] D. Ferraiolo and D. Kuhn, “Natl Institute of Standards and Tech., Dept. of Com-
merce, Maryland, Role-Based Access Control,” in Proceedings of 15th Natl Com-
puter Security Conference, 1992.

[22] J. S. Park and S. M. Ho, “Composite role-based monitoring (CRBM) for countering
insider threats,” in Intelligence and Security Informatics. Springer, 2004, pp. 201–
213.

128

http://doi.acm.org/10.1145/1866886.1866897
https://books.google.com/books?id=zQbDAgAAQBAJ

[23] E. Bertino, P. Bonatti, and E. Ferrari, “TRBAC: A temporal role-based access con-
trol model,” ACM Transactions on Information and System Security (TISSEC),
vol. 4, no. 3, pp. 191–233, 2001.

[24] J. Joshi, E. Bertino, U. Latif, and A. Ghafoor, “A generalized temporal role-based
access control model,” Knowledge and Data Engineering, IEEE Transactions on,
vol. 17, no. 1, pp. 4–23, 2005.

[25] R. Simon and M. Zurko, “Separation of duty in role-based environments,” in Com-
puter Security Foundations Workshop, 1997. Proceedings., 10th. IEEE, 1997, pp.
183–194.

[26] R. Adaikkalavan, “Generalization and enforcement of role-based access control us-
ing a novel event-based approach,” 2007.

[27] N. Baracaldo and J. Joshi, “A trust-and-risk aware RBAC framework: tackling in-
sider threat,” in Proceedings of the 17th ACM symposium on Access Control Models
and Technologies (SACMAT ’12). New York, NY, USA: ACM, 2012, pp. 167–176.
Available: http://doi.acm.org/10.1145/2295136.2295168

[28] V. Frias-Martinez, “Behavior-based admission and access control for network secu-
rity,” Ph.D. dissertation, Columbia University, 2008.

[29] V. Frias-Martinez, J. Sherrick, S. Stolfo, and A. Keromytis, “A network access con-
trol mechanism based on behavior profiles,” in Computer Security Applications Con-
ference, 2009. ACSAC’09. Annual. IEEE, 2009, pp. 3–12.

[30] D. E. Denning, “An intrusion-detection model,” IEEE TRANSACTIONS ON SOFT-
WARE ENGINEERING, vol. 13, no. 2, pp. 222–232, 1987.

[31] N. Clarke, F. Li, and S. Furnell, “A novel privacy preserving user identification ap-
proach for network traffic,” Computers & Security, 2017.

[32] M. Vinupaul, R. Bhattacharjee, R. Rajesh, and G. S. Kumar, “User characterization
through network flow analysis,” in Data Science and Engineering (ICDSE), 2016
International Conference on. IEEE, 2016, pp. 1–6.

[33] F. Giroire, J. Chandrashekar, G. Iannaccone, K. Papagiannaki, E. M. Schooler, and
N. Taft, “The cubicle vs. the coffee shop: behavioral modes in enterprise end-users,”
in Proceedings of the 9th international conference on Passive and active network
measurement (PAM’08). Berlin, Heidelberg: Springer-Verlag, 2008, pp. 202–211.
Available: http://portal.acm.org/citation.cfm?id=1791949.1791977

129

http://doi.acm.org/10.1145/2295136.2295168
http://portal.acm.org/citation.cfm?id=1791949.1791977

[34] A. Kind, M. P. Stoecklin, and X. Dimitropoulos, “Histogram-based traffic anomaly
detection,” Network and Service Management, IEEE Transactions on, vol. 6, no. 2,
pp. 110–121, 2009.

[35] J. McHugh, R. McLeod, and V. Nagaonkar, “Passive network forensics: behavioural
classification of network hosts based on connection patterns,” SIGOPS Oper. Syst.
Rev., vol. 42, pp. 99–111, April 2008. Available: http://doi.acm.org/10.1145/
1368506.1368520

[36] N. Melnikov and J. Schönwälder, “User identification based on the analysis of net-
work flow patterns.”

[37] S. Coull, F. Monrose, and M. Bailey, “On Measuring the Similarity of Network
Hosts: Pitfalls, New Metrics, and Empirical Analyses,” Proceedings of the 18th An-
nual Network & Distributed System Security Symposium, Feb. 2011.

[38] I. Paschalidis and G. Smaragdakis, “Spatio-temporal network anomaly detection by
assessing deviations of empirical measures,” Networking, IEEE/ACM Transactions
on, vol. 17, no. 3, pp. 685–697, 2009.

[39] Y. Song, S. Stolfo, and T. Jebara, “Markov models for network-behavior modeling
and anonymization,” 2011.

[40] M. Kumpošt and V. Matyáš, “User Profiling and Re-identification: Case of
University-Wide Network Analysis,” Trust, Privacy and Security in Digital Business,
pp. 1–10, 2009.

[41] G. Tan, M. Poletto, J. Guttag, and F. Kaashoek, “Role classification of hosts within
enterprise networks based on connection patterns,” in Proceedings of USENIX An-
nual Technical Conference, 2003, pp. 15–28.

[42] K. Xu, F. Wang, and L. Gu, “Network-aware behavior clustering of Internet end
hosts,” in INFOCOM, 2011 Proceedings IEEE. IEEE, 2011, pp. 2078–2086.

[43] S. Valenti, D. Rossi, A. Dainotti, A. Pescapè, A. Finamore, and M. Mellia, “Review-
ing traffic classification,” in Data Traffic Monitoring and Analysis. Springer, 2013,
pp. 123–147.

[44] T. Karagiannis, K. Papagiannaki, N. Taft, and M. Faloutsos, “Profiling the end host,”
Passive and Active Network Measurement, pp. 186–196, 2007.

[45] M. Feily, A. Shahrestani, and S. Ramadass, “A survey of botnet and botnet detec-
tion,” in 2009 Third International Conference on Emerging Security Information,
Systems and Technologies. IEEE, 2009, pp. 268–273.

130

http://doi.acm.org/10.1145/1368506.1368520
http://doi.acm.org/10.1145/1368506.1368520

[46] A. Karasaridis, B. Rexroad, D. A. Hoeflin et al., “Wide-scale botnet detection and
characterization.” HotBots, vol. 7, pp. 7–7, 2007.

[47] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel, “Disclosure: de-
tecting botnet command and control servers through large-scale netflow analysis,” in
Proceedings of the 28th Annual Computer Security Applications Conference. ACM,
2012, pp. 129–138.

[48] A. Vázquez, J. G. Oliveira, Z. Dezsö, K.-I. Goh, I. Kondor, and A.-L. Barabási,
“Modeling bursts and heavy tails in human dynamics,” Physical Review E, vol. 73,
no. 3, p. 036127, 2006.

[49] Lucas, M., Network Flow Analysis. No Starch Press, 2010.

[50] Cisco Systems, Inc., “Cisco NetFlow Generation 3000 Series Appliances,” [Online].
Available: http://www.cisco.com/go/nga., [Accessed: July 23, 2016].

[51] B. Li, J. Springer, G. Bebis, and M. H. Gunes, “A survey of network flow applica-
tions,” Journal of Network and Computer Applications, no. 0, pp. –, 2013. Available:
http://www.sciencedirect.com/science/article/pii/S1084804512002676

[52] Impulse Point, “SafeConnect: Network Access Control,” [Online]. Available: http:
//www.impulse.com/., [Accessed: July 23, 2016].

[53] G. Bartlett, J. Heidemann, and C. Papadopoulos, “Using low-rate flow periodicities
for anomaly detection: Extended,” 2009.

[54] J. Knockel and J. R. Crandall, “Protecting free and open communications on the in-
ternet against man-in-the-middle attacks on third-party software: We’re foci’d.” in
FOCI, 2012.

[55] J. W. Tukey, “Box-and-whisker plots,” Exploratory Data Analysis, pp. 39–43, 1977.

[56] E. Alpaydin, Introduction to Machine Learning. The MIT Press, 2010.

[57] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine
learning in Python,” Journal of Machine Learning Research, vol. 12, no. Oct, pp.
2825–2830, 2011.

[58] P. Domingos, “A few useful things to know about machine learning,” Commun.
ACM, vol. 55, no. 10, pp. 78–87, Oct. 2012. Available: http://doi.acm.org/10.1145/
2347736.2347755

131

http://www.cisco.com/go/nga
http://www.sciencedirect.com/science/article/pii/S1084804512002676
http://www.impulse.com/
http://www.impulse.com/
http://doi.acm.org/10.1145/2347736.2347755
http://doi.acm.org/10.1145/2347736.2347755

THIS PAGE INTENTIONALLY LEFT BLANK

132

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

133

	Introduction
	Motivation
	Contributions
	Document Structure

	Prior Work
	Observing Cyber Behaviors on Networked Systems
	Detecting Anomalous User Network Behaviors
	Technical Approaches
	Netflow Based Profiling Techniques
	Detection of Automatic Flows
	Conclusion

	Methodology
	Netflow Data
	Patterns Within Flow Sets
	Data Collection
	Pre-Processing Analysis
	Cleaning Data
	Comparing User Groups

	Design of Experiments
	Feature Definitions
	Data Processing Factors
	Data Pre-Processing
	Role-Based User Group Experiments
	Similarity-Based User Group Experiments

	Results and Discussion
	Single Feature Discriminators
	Aggregate Netflow Statistics
	Port Volumetric Feature Analysis
	Port Distributions Analysis
	Port Priority Vector Analysis
	User Class Consolidation
	Feature Set Classification Comparisons
	Clustering Analysis
	Feature Vector Distance Experiments
	Grouping Users by Similarity
	Conclusion

	Conclusion
	Dissertation Summary
	FUTURE WORK
	CONCLUSION

	Bibliography
	Initial Distribution List

