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Abstract—We investigate the data-parallel implementation of a set of “information
filters” used to rule out uninteresting data from a database or data stream. We
develop an analytic model for the costs and advantages of load rebalancing the
parallel filtering processes, as well as a quick heuristic for its desirability. Our
model uses binomial models of the filter processes and fits key parameters to the
results of extensive simulations. Experiments confirm our model. Rebalancing
should pay off whenever processor communications costs are high. Further
experiments showed it can also pay off even with low communications costs for
16-64 processes and 1-10 data items per processor; then, imbalances can
increase processing time by up to 52 percent in representative cases, and
rebalancing can increase it by 78 percent, so our quick predictive model can be
valuable. Results also show that our proposed heuristic rebalancing criterion gives
close to optimal balancing. We also extend our model to handle variations in filter
processing time per data item.

Index Terms—Information filtering, data parallelism, load balancing, information
retrieval, conjunctions, optimality, and Monte Carlo methods.
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1 INTRODUCTION

SUPPOSE we have a query which is a conjunction of restrictions on
data we wish to retrieve from a big database. These restrictions can
be considered as “information filters” [1], or as programs that take
some set of data items as input and return some small subset of
“interesting” items as output. For instance, in retrieving pictures of
buildings under construction, we can look in an index first for the
pictures that show buildings and then exclude those that do not
show construction, applying two information filters in succession.
Signature methods [4] are an important subcase of information
filtering; these check against hashes of information in a complex
data structure. We would like to filter in the fastest way. Rowe [8]
and Jarke and Koch [5] discuss the potentially dramatic advantages
of reordering the conjuncts and of inserting redundant conjuncts.
But, those results are primarily for sequential machines.

Efficiency issues are becoming increasingly important with
multimedia libraries [9]. Multimedia data can be considerably
more costly to retrieve than text data; for instance, a long paper
requires 10K bytes while a single television picture requires
1,000K, so data transfer is slower and slower storage media are
often required. Content analysis of multimedia data can be very
slow; recognizing a shape in a picture, for instance, requires
complex data structures and many passes through the picture. So,
it helps considerably to summarize multimedia data and index it.
Information filters can then check the indexes quickly. Parallel
information filtering then could speed things up considerably
more. For instance, to find pictures of buildings under construction
when we have 100 processors, we could have each of the 100 look
in a different part of the database, or, alternatively, we could have
50 look for buildings in the database while 50 looked for things
under construction.
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While optimization of parallel information filtering is a
scheduling problem, general scheduling methods such as [11] are
too general to be efficient for it. Also, not directly helpful are
experiments with expensive massively-parallel machines [10] and
with thousands of filters [7] since the resources required for those
approaches are beyond the capabilities of most computer facilities
and workstations, precluding the real-time application of the
methods there. Instead, we will assume that under 100 filters are
easily available multiprocessor software, and we will exploit the
problem-specific feature that each filter in a filtering sequence has
fewer data items to work on.

Section 2 of this paper proves, by a theorem, that we can
narrow our investigation to data parallelism. Section 3 intro-
duces the statistical metrics we will need to assess, the benefits
and costs of load balancing, and will develop quick approx-
imations of them. Section 4 discusses the obvious cases for load
balancing in data-parallel filtering and then develops a simple
and quick criterion for when it is desirable. Section 5 extends
these results into an algorithm for deciding where to balance
loads in a long sequence of filters. Section 6 reports on a wide
range of simulation experiments we conducted; Section 7
reports on more focused experiments about an IRIS multi-
processor. All experiments supported our analytic models.
Section 8 extends the results of Sections 3 and 4 to the case
in which filter cost per data item can vary.

2 ASSUMPTIONS

Suppose data items must pass through m information filters; that
is, a data item must separately pass the test administered by each
filter if that data item is to be part of the query answer. Assume
that the event of a data item passing a test is independent of the
event of any other data item passing any test. Assume that each
filter has an average cost of execution per data item of ¢; and an a
priori probability of passing a random data item of p;, where 0 <
pi < 1 to avoid considering trivial cases. Let p; ; be the probability
of passing filters ¢ through j. Assume further that times are
independent of probabilities, or that the time to test whether an
item passes a filter is independent of the success or failure of the
test or any other test on that data item; this is true of testing of
uniform-size data by hash table lookups in signature files, for
instance. If the filters are applied in sequence, the expected total
time per data item of passing filters one through m will be:

Clyn =1+ P11+ 3pra + -+ CuPrm—1- (1)

The time and probability parameters can be estimated either from
past statistics of the filters on similar problems, or by applying the
filters to a small random sample of the database.

Now, suppose we have R identical processors available on a
single-user multiprocessor. We can show that it never makes sense
to execute different information filters in parallel given the
reasonable assumption that initialization time is proportional to
the number of processors. That is because data parallelism, where
all processors work on the same filter at the same time, is proven to
be better.

Data-Parallelism Theorem. Suppose the execution time of two
information filters in parallel (functional parallelism) for a set of
data items is kR + max(c;/r1, ca/r2), where k > 0 is a constant, R is
the number of available identical processors, r; is the number of
processors allocated to filter i, and ¢; is the total execution time cost
for filter i. Then, functional parallelism is always slower than data
parallelism for those processors.

Proof. The time for data parallelism (using all R processors for one
filter, then all R for the other filter) is kR + (c1/R) + (p1c2/R) if
filter 1 goes first, and kR + (c2/R) + (p2c1/R) if filter 2 goes
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first, where p; is the probability of success of filter i. The time
for functional parallelism is kR + max(ci/r1,c2/(R—11)) as-
suming negligible time to intersect the results of the two filters.
The minimum of the latter with respect to r; occurs with perfect
load balancing (if possible) of the two processors, or when
¢1/r1 = ¢3/(R—ry), or when 71 = Rey/(c1 + ¢2). Then, the time
becomes kR + ((¢1 + ¢2)/R) = kR + (c1/R) + (¢2/R). Compar-
ing terms with the formula for data parallelism with filter 1
first, we see that kR = kR, ¢;/R=c1/R, and ¢2/R > pica/R.
Comparing terms with the formula for data parallelism with
filter 2 first, we see that kR=kR, ¢2/R=cy/R, and
¢1/R > pyc1/R. Hence, functional parallelism is always slower
than data parallelism even with our conservative assumptions
and no matter what R, ¢;, ¢, and k are (and even if k=0). O

Thus, data parallelism is the best way to exploit R identical
processors for filtering. For maximum advantage, we should
assign data items randomly to processors to prevent related
items from ending up on the same processor and affecting its
rate of filtering success. We should also initially assign equal
numbers of data items to each processor if processing time per
data item is either constant or unpredictable. Data items should
remain with their processors for the second and subsequent
filtering actions if necessary, so no data needs to be transferred
between processors, and a processor that finishes early on a
filter can start early on the next.

But, if the number of remaining data items per processor can
vary significantly over processors after a sequence of filtering
actions, data transfers might significantly reduce total processing
time. General load-balancing algorithms for data-parallel compu-
tations (like [6] using run-time decision-theoretic analysis and [3]
using run-time monitors of processor performance) could be used,
but information filtering is a special case for which special
techniques should work better. Filtering is a chain of simple
linearly-dependent actions, and we can randomly assign data to
processors. This means that associated random variables will fit
well to classic distributions like the binomial and normal, unlike
many applications of data parallelism.

3 ESTIMATING THE DEGREE OF LOAD IMBALANCE

We need to model the expected load imbalance after applying
filters on multiple identical data-parallel processors, or the degree
to which some processors will have more data items to work on
than others even when they start with the same number. The event
of a random data item passing filters 1 through 4 is a binomial
process. For n data items initially supplied to each processor (for
Rn = N total data items), the expected mean number of data items
resulting from filter i on a processor will be np; ; and the standard
deviation about that mean will be o; = \/npi1,(1 — p1;). The p1;
decreases monotonically with 4, so both the mean and the standard
deviation of the expected number of data items remaining will
decrease; but, generally, filter time ¢; increases in a good sequence
order [8] (quick filters should generally be first to reduce work
faster), so it is not easy to guess the best places to rebalance.

We assume for now that filtering time is the same for every data
item, as with common filtering methods like lookups in hash
tables. Thus, an extra k data items, for a filter that requires time of
¢; per data item, mean an extra kc; in processing time. But, Section 8
will provide some results when filtering time can vary.

Two statistics which are helpful for analyzing imbalance are the
excess number of data items supplied to the most overburdened of
R processors (which measures the benefit of rebalancing), and the
minimum number of data items that must be transferred among
R processors to rebalance them (which measures the cost of
rebalancing). Mathematically, these are, respectively, the differ-

ence between the maximum and mean of R random variables
drawn on a binomial distribution (what we will call “maxdev”)
and the average of the absolute values of the deviations of the same
R variables about their mean (what we will call “absdev”) times R.
“Maxdev” is usually the L., norm used in numerical analysis [2]
(since our distributions usually skew toward the maximum) and
“absdev” is the L; norm. Published analyses of these norms
usually assume a normal distribution, not a good approximation
for a binomial distribution in this application where both the
number of data items and the probability of filter success can be
very small. So, we pragmatically used “Monte Carlo” techniques
(experiments with random numbers) and regression on the results
of the experiments to get approximate formulas relating “maxdev”
and “absdev” to the standard deviation of the binomial distribu-
tion since, intuitively, both should be proportional to the standard
deviation.

We generated sets of 8,192 random variables on binomial
distributions with probabilities p;; = 0.01*2* for k = —4 to 46 and
with universe sizes n =2/ for j =2 to 13. Then, we computed
“maxdev” and “absdev” taking those variable values as the
number of data items on R processors, R = 2l for [ = 2 to 9. Since
magnitudes of these parameters vary widely, it makes sense to
take their logarithms before doing a regression. The best models
found corresponded to the equations:

maxdevi = 0.9756 0_;),8322J;i().23()3711103077 (2)

absdev; = 0.7039 o117, (3)

where o; is the observed standard deviation of the number of items
remaining after filter i has been applied; its theoretical value is

nypyi (1 — pyi), where b is the number of the most recent previous
filter before which the data items were balanced. The coefficient of
determination (or degree of confidence) was 0.983 for “maxdev”
and 0.981 for “absdev.” We investigated the addition of a number
of other terms to these models, but none added anything
statistically significant. Note the closeness of the exponents of o
to 1 which says these statistics are closely connected to the
standard deviation.

As an example, suppose we have 8,000 data items, 16 identical
processors, and a filter with success probability p; (probability of a
random data item of passing the filter) of 0.1. Then, 500 data items
should be initially assigned to each processor. An expected
number of 50 data items per processor should remain after
applying the filter, with a standard deviation over processors in
the number of data items remaining of

o1 =v500 % 0.1 x 0.9 =6.708.

Then, our formulas say

mazdev, = 0.9756 * 6.708%5322 5 162353 4 5009307 = 11.050

and

absdevy = 0.7039 % 6.708'1%7 = 5.719.

This says that, on the average, the most overburdened of the
16 processors after the first filter will have 11.05 more data items
than the average processor; and the average processor will need to
send or receive 5.719 data items in order to rebalance after the first
filter.

4 EVALUATING THE BENEFITS AND COSTS OF THE
LOAD BALANCING OF FILTER PROCESSORS

One way to rebalance is incremental: Have a “control” processor or
shared memory keep lists of data items that need to be filtered, one
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for each filter plus a final-result list. When a filter processor
becomes idle, it asks the control processor to send it some item
from the list for filter ¢ for some ¢ and the control processor deletes
the item from the list. The filter processor applies filter i to the
item. If the item passes, the processor returns it to the control
processor to be added to the list for filter ¢ + 1. Initially, all lists are
empty except the list for filter 1, which should contain all data
items; work terminates when all lists are empty except possibly the
final-result list.

This method is simple and prevents any significant imbalance.
Unfortunately, it entails considerable message traffic and resource
contention for the control processor since each filtering action on
each data item requires messages to and from the control
processor. This is intolerable in the many important applications
where communication is costly, as for filters on different Internet
sites or for remote environmental sensors distributed over a
terrain. This can also be intolerable with less communication costs
and a large number of data items or processors, especially if
filtering requires as much information about the data item as with
the multimedia data items that are our chief application interest. A
fix might be to store on each filtering processor all the information
about every data item, so that only item pointers need be
transferred to and from the control processor. But, that could
entail impossible memory requirements in each processor, as for
millions of multimedia data items.

In general, some load balancing will usually be desirable
whenever communications costs between filters are large and
some filters are costly. That does not mean, however, balancing
before every filter. The imbalance may not be large enough, nor the
expected cost improvement. And judicious balancing can still be
desirable even with low communication costs. So, we need to
analyze a sequence of filters carefully to find good balancing
opportunities.

We explore the following efficient rebalancing method using
some ideas from Section 6.2 of [11]. Assume that each process
when completing filter ¢ reports its number of data items
remaining to a control processor. (Centralized control is more
efficient than rebalancing by messages between pairs of processors
since obtaining perfect balance requires information from all
processors.) When the control processor receives messages from all
R processors for filter i, and if the difference between the number
of data items on the busiest and least-busy processors is large
enough, it sends orders to the processors to transfer certain
numbers of data items. These transfers need not slow processing
much if processors have already begun filter i + 1 because the
transferred items can be done last when executing filter 7 + 1.

Perfect balance is impossible when the number of data items is
not a multiple of R. But, if each processor timestamps information
sent to the central processor, compensation can be done later by
giving earlier finishing processors additional items to work on. For
instance, with three processors and 28 data items, one processor
must initially take 10 items instead of nine. Suppose the next filter
passes six of the 10, four of the nine, and four of the other nine. If
each filter takes the same amount of time per data item, transfer
one of the six to each of the other two processors and this should
compensate.

Now, let t, be the time for a processor to report its set size; let ¢,
be the time for a processor to receive, decipher, and initialize a
rebalancing order from the control processor; let t; be the time per
data item for a processor to transmit or receive a single data item to
or from another processor; and let ¢;;1,, be the expected time per
data item of executing the remaining filters i + 1 through m, using
the notation of (1). Also, let m be the number of filters, n the initial
number of data items on each processor, and R the number of

processors. Perfect load rebalancing just after filter ¢ will have a
time advantage of:

D; = [¢it1.m * mazdev;| — [ts + ty — (t: * R * absdev;)]. (4)

(This conservatively assumes the worst case of a bus architecture,
where all processors examine all R * absdev; transferred data items;
but, with a star processor architecture for instance, where every
processor has a unique connection to every other processor, the most
unbalanced processor determines rebalancing time, and R * absdev;
can be replaced by maxdev;.)

As an example, take the one in the last section where we have
8,000 data items, 16 processors, 500 items initially assigned to each
processor, and a filter with success probability p; = 0.1. There we
found mazdev, = 11.050 and absdev; = 5.719. Assume the time
cost of the remaining filters per data item is ¢y, =10 and
ts =t, = t; = 1. Then,

Dy = (10 % 11.05) — (1 + 1 + (1 % 16 % 5.719)) = 16.996,

which says rebalancing is advantageous.
In general, we can substitute (2) and (3) into (4) to obtain:

Dj = ¢;41m[0.975607) %2 RO 00007 — [t 4, + Rt,[0.70390;'77]],
(5)

where o; is the standard deviation of the number of data items per
processor after filter i. Rebalancing will only be desirable if this is
positive, or if:

Citim > [10250(1‘& 4 tb)0_;0.8322Rfl).2353n—0.(}307}

4 [0.7215tto_0.2785R0.7647n—0.0307}.

(6)

These formulae hold for any number of filters m even if m < R for
R the number of processors. They also hold for the total number of
data items less than R. However, in the latter case, the speedup
obtained by parallelism for filter ¢ is limited to the number of data
items as input to 4, although some partial compensation can be
obtained with the timestamp approach mentioned above.

5 AN ALGORITHM FOR LOAD REBALANCING

More than one rebalancing may help in a sequence of filters. But,
rebalancing reduces the need for subsequent rebalances in the filter
sequence. In particular, if rebalancing is done just before filter ¢, the
standard deviation of the number of items remaining after filter j
on a processor changes from \/np; ;j(1 —py;) to

\/npl,i(pl‘j/pl‘i)(l — (p1j/p1)) = \/npl‘j(l — (p1.j/p12))-

Since often this change has little effect, we can use a heuristic
“greedy” algorithm to find the best rebalancing plan for a filter
sequence:

1.  Compute D; for every filter 0 < i < m from (5).

2. If the maximum unused D; is nonpositive, stop.

3. Else find D;, the maximum unused D;; mark it as used,

and make a note to rebalance after filter j.

4. Recompute D; from (5) for all i > j and go to Step 2.
This algorithm is O(m?), m is the number of filters.

As an example, suppose we have three filters in this order:
filter 1 which requires 10 time units and has a success probability
0.1, filter 2 which requires 30 and has a success probability 0.05,
and filter 3 which requires eight and has a success probability of
0.5. Hence, ¢33 =30+4+0.05+8 =304 and c33 = c3 = 8. Assume
8,000 initial data items assigned to 16 processors, so ny = 500,
ny = 50, and ny = 2.5. Then:
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TABLE 1
Example Results of the First Experiment
No. of filters  No. of No. of data r, for r. for 7. for 7 for
processors items per e . i .
processor L!mlorm u.m[orm um[qrm umlqrm
times: times: log times: log times:

3 4 32 0.081 0.037 0.090 0.037
4 4 32 0.113 0.047 0.129 0.049
5 4 32 0.141 0.047 0.165 0.049
6 4 32 0.164 0.044 0.196 0.045
7 4 32 0.185 0.039 0.224 0.041

8 4 32 0.198 0.035 0.244 0.036
9 4 32 0.210 0.031 0.264 0.033
10 4 32 0.217 0.028 0.270 0.030
3 64 2 0.142 0.590 0.174 0.601

4 64 2 0.200 0.752 0.243 0.779
5 64 2 0.246 0.743 0.314 0.777
6 64 2 0.285 0.695 0.376 0.726
7 64 2 0.321 0.627 0.428 0.659
8 64 2 0.342 0.566 0.468 0.591

9 64 2 0.366 0.505 0.505 0.532
10 64 2 0.381 0.443 0.522 0.472
3 4 2048 0.009 0.005 0.009 0.006
4 4 2048 0.013 0.006 0.013 0.007
5 4 2048 0.016 0.006 0.017 0.007
6 4 2048 0.018 0.006 0.020 0.007
7 4 2048 0.020 0.005 0.022 0.006
8 4 2048 0.022 0.005 0.025 0.006
9 4 2048 0.024 0.004 0.027 0.005

10 4 2048 0.024 0.004 0.027 0.005

3 64 128 0.016 0.081 0.017 0.093

4 64 128 0.022 0.103 0.025 0.120
5 64 128 0.027 0.103 0.031 0.121

6 64 128 0.031 0.096 0.038 0.113

7 64 128 0.036 0.085 0.043 0.100
8 64 128 0.038 0.076 0.047 0.090
9 64 128 0.040 0.069 0.050 0.080
10 64 128 0.042 0.062 0.052 0.072

o1 =Vv500*0.1%0.9=6.708,
o2 = V500 * 0.005 * 0.995 = 1.577.

Assume also that t;, =0, t, =0, and ¢, = 1. Then:

Dy = (30.4 % 0.9756 + 6.708" %% % 16" x 500" 7)
— (16 % 1 % 0.7039  6.708"197) = 205.9

[)2 — (8 % 0.9756 * 1.5770.8322 % 160’2353 % 5000.0307)
— (16 % 1 % 0.7039 * 1.57741%07) = 0.079.

Hence, the best place to rebalance is after filter 1. If we do that,
oy is changed to v/50 % 0.05 * 0.95 = 1.541 and D, to:

Dy = (8 0.9756 * 1.54175522 5 167233 x 5000%57)
— (16 % 1% 0.7039 * 1.5411197) = _1.536.

So, we should rebalance only after filter 1 and not after filter 2.
The algorithm tries to anticipate the need to balance loads, but
rebalancing can also be done at execution time when set sizes are
unexpectedly large. To do this, use (4) to compute D; using the
actual processor allocations for “maxdev” and “absdev;” rebalance
if D; > 0. This entails a usually negligible overhead of t, per filter.

6 EXPERIMENTS ON THE DEGREE OF LOAD IMBALANCE
IN SIMULATED FILTERING
We first generated 5,000 random filter sequences (created by the

program in [8]) to study average-case performance of our methods.
The program is assigned to filter a random p; on the range 0.001 to

0.999. In one set of experiments, filter times were initially evenly
distributed from 0 to 10; in another set, logarithms of times were
evenly distributed from 0.01 to 0.99. But, for both, we occasionally
increased the time of later filters as necessary to ensure that no
filter took less than a preceding filter that it logically entailed. Since
optimizing the filter sequence is important for realistic balancing
analysis, we found the locally-optimal sequence using the heuristic
methods of [8], methods which we showed there to almost always
find the globally optimal sequence. We then computed two ratios
for this sequence: r;, the ratio of the extra time incurred by never
rebalancing the expected imbalances in the filter sequence to
n * ¢1.4,, the time if no imbalances ever occurred; and r,, the ratio of
the expected number of data items that must be shifted to always
maintain perfect balance to the filter processing load m *n, the
product of the initial number of data items and the number of
filters. So, , measures the relative benefit of rebalancing and r.
measures the relative cost of rebalancing; both are dimensionless
quantities. We can rewrite (4) using them:

D; = [ciyim xn*ry| — [ts + 6y + (ty %7 * mxn)].

Table 1 shows some representative data for r, and r., where the
four right columns represent geometric means of r; and r. over the
5,000 points. We can make three observations from Table 1. First,
imbalance can increase processing time by up to 52 percent in these
cases, and rebalancing actions can amount to 78 percent of the
number of filtering actions, so, imbalance analysis can be
important. Second, rebalancing is more desirable with a uniform
distribution of the logarithms of the times; that suggests that more
uneven time distributions will show even more advantage. Third,
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rebalancing is most helpful when the number of data items is near
to or less than the number of processors. Such cases are not trivial;
however, important applications occur with small numbers of
items and costly filters, as with the natural-language and image-
processing filters in [8].

Our experiments can be summarized with regression formulae
predicting r, and 7. from the number of filters m, the logarithm of
the number of processors log(R), and the logarithm of the number
of starting data items log(n). These formulae permit us to quickly
judge when load balancing by the algorithm is worthwhile using ,
and r.. The best models we obtained on 1,152 data points were
(with coefficients of determination of 0.988 and 0.959, respectively):

75 = —0.0379 + 0.2967m + 0.2304 log(R) — 0.2442 log(n)
+ 0.0062m log(R) — 0.0622m log(n) — 0.0678 log(R) log(n)
— 0.0059m? + 0.0112log?(r) + 0.0626 log®(n) + 0.0003 log®(r)
— 0.0037log®(n)0.006m log?(r) + 0.0009m* log(n)
— 0.0028m log?(n) — 0.0021 log?(R) log(n)
4 0.0047 log(R) log?(n),
re = 1.1840 4+ 0.8502m — 0.4592log(R) — 0.9494 log(n)
— 0.1774m? + 0.2316 log? (r) + 0.1866 log?(n)
+0.0075m® + 0.0642log®(r) — 0.0131 log®(n) + 0.2184m log(R)
— 0.0185m log(n) — 0.2707 log(R) log(n) — 0.0121m?* log(R)
— 0.0123mlog?(R) + 0.0081m? log(n) — 0.0047m log?(n)
— 0.09501log?(r) log(n) + 0.0539 log(R) log?(n).

To test the importance of using the optimal filter sequence, we
also ran experiments using the reverse of the optimal filter order
and logarithmic times. This did improve the degree of balance
since r;, decreased consistently to about 0.2 of its previous value,
while 7, only increased to 1.2 of its previous value. But, the time of
executing the filter sequence increased on average by a factor of 7.0
for 5 filters and 24.9 for 10 filters, which seems a poor bargain.

7 EXPERIMENTS FOR A PARTICULAR
PARALLEL MACHINE

We also studied a real multiprocessor, the IRIS 3D/340, to see the
effects of modest overheads on parallelism. (Again, many applica-
tions do not have such low overheads.) We did a filtering
implementation with a master thread for the control processor
which forked threads for the filtering processors. When a thread
finished applying a filter to its share of data, it proceeds to the next
filter, except if it had received an order directing it to suspend
execution. Then, the master thread assessed workloads, rebalanced
them, and restarted the threads. Our runs provided a least-squares
estimate of t,+ ¢, =2.65R+ 16.5 microseconds, R being the
number of processors; the rebalancing cost factor, ¢;, was observed
to be negligible for this shared-memory machine. (The first fork is
much more time-consuming than subsequent forks, but represents
constant overhead for all execution plans.)

Real-time filtering on the IRIS encountered performance
variations due to uncontrollable operating system behavior and
the presence of other users on the machines’ network. So, we opted
to simulate the machine with parameters derived from the runs.
Instead of random filter sequences unlikely to occur in applica-
tions, we used filter sequences like those found to be optimal in [8].
So, we assumed the “work-spread” between filters, ¢;11p1,i+1/cip1i
using the notation of Section 2, was approximately constant. Thus,
work spread was a fourth input in these experiments besides the
three of Table 1. For output, we measured sequence-time speedup,
the time when using one processor divided by the time when using
all processors. We compared three approaches: 1) no rebalancing,
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Fig. 1. An example of our results for 32 processors and four independent filters.

2) heuristic rebalancing using the algorithm of Section 5, and
3) optimal rebalancing, trying all 2"~! ways of rebalancing and
choosing the one of minimum time as predicted from (1) and (5).

Our experiments showed the work-spread parameter was most
important in affecting balancing, and higher spreads caused higher
imbalances. We also found 1) when more than 100 items were
assigned to a processor, imbalance never ran more than 10 percent
over optimum time; 2) otherwise, rebalancing was unnecessary if
work-spread < 1.5; and 3) the need to rebalance was not
significantly related to the number of filters. We also identified
upper bounds on the benefit of rebalancing by analyzing filter
sequences with optimal rebalancing assuming t, = t, = t; = 0. We
then focused on regions of the search space where the speed
without rebalancing was more than 10 percent of the optimum.
Confirming Table 1, imbalance was more significant when the
number of items per processor was small and when the number of
processors was large.

Fig. 1 shows an example of our results for 32 processors and
four independent filters and displays the ratio of the speedup
obtained by parallelizing without rebalancing versus parallelizing
with rebalancing using the heuristic algorithm. The plot shows a
100 percent improvement for 32 items per processor and up to
25 percent for 256 items per processor. In these experiments,
heuristic rebalancing was no worse than 1 percent more than
optimal rebalancing. To test sensitivity to the cost of overhead, we
also ran the heuristic with the same cases and with ¢, + t;, set to
100 times the average IRIS values. Fig. 2 shows the ratio of the
subsequent heuristic speedup to the original heuristic speedup
illustrating only minor differences. This suggests that the heuristic
algorithm would still be suitable with significant communication
overheads, as for a cluster of workstations.

Overall, results of the IRIS experiments suggest that our
heuristic algorithm is useful for medium scale multiprocessing
(16-64 processors). For fewer processors, parallel filtering remains
reasonably well-balanced. For more processors, rebalancing seems
likely to cost more than its benefits.
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Fig. 2. Ratio of the subsequent heuristic speedup to the original heuristic speedup,
which shows only minor differences.

8 EXTENDING THE MODEL TO VARIABLE-TIME FILTERS

So far, we have assumed that filter time is a constant per data item.
This is appropriate when filters are implemented by hash lookups,
by searches in trees in which all leaves are at the same level, or
when the result of a numeric calculation without conditionals is
compared to a threshold. But, if filter processing time can vary,
processor imbalance increases and, thus, the advantages of
rebalancing. This requires a new formula for “maxdev” in (4);
the “absdev” formula is unchanged.

Again, we used Monte Carlo methods on sets of now
1,024 random variables to get an approximate formula for
“maxdev,” now generating a random variable z for the ratio of
filter execution time per data item to its expected value. We
assumed that x was normally distributed by 1 with standard
deviation s and with (assumed rare) truncation at 0. Then, the
random variable y for the average of k values of x will have
approximately a normal distribution with v/k times less standard
deviation:

y=(((x—1)/VE) + Dk = ((z — 1)Vk) + k.

Our experiments used the n, p, and R values of Section 3 and
took s =0.1%2¢ for d = —4 to d = +3. The best model that we
found relating s and the old “maxdev” (from (2)) to the new
“maxdev” (by regression on the square of maxdev) was:

maxdev = oldmazxdev/1.1777 4+ 2.25545>. (7)

Again, we explored a variety of additional factors, but none
added anything significant. This model had a coefficient of
determination of 0.932: not bad for a fit to 6,144 points representing
extrema of a random variable. These results were for s <1 if s
continues to increase, the normal distribution assumption no
longer always holds, but, in the limit, maxzdev should increase
proportionately to s.

As an example, take the three-filter case of Section 5 with the
rebalancing after filter 1. Now, assume that filter 2 is a lookup in a
nonuniform index in which data can be at a depth of 1, 2, or 3.
Assume with probability 0.25 that processing takes 1 unit of time,
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probability 0.5 that it takes 2 units, and probability 0.25 it takes
3 units. Then, the standard deviation of random variable z is

s = \/0.25 % 0.52 +0.5 %02 +0.25 % 0.52 = 0.3535.
Hence,

oldmazdev = 0.9756 x 1.54103322 4 16%239 4 50000307 = 3 249

maxdev = 3.249\/1.1777 + 2.2554 % 0.35352 = 3.924.

Substituting in (4):
Dy = (8%3.924) — (16 % 1 % 0.7039 * 1.5411%°7) = 13.27.

Hence, rebalancing after filter 2 has become desirable even with
rebalancing after filter 1.

9 CONCLUSIONS

We have shown that data parallelism is the best way to take
advantage of multiple processors for an information filtering
problem. We have provided the reader with quick practical tools
for measuring the degree of imbalance that can occur in data-
parallel filtering in (5) or the combination of (4) and (7). For
handling large numbers of filters, the algorithm of Section 5 will
help. Two kinds of experiments, general ones and those focused on
a particular architecture, have confirmed our analysis. Careful load
balancing can be important when communications or filter costs
are high, and a quick way to evaluate it can be valuable.
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