
EAI Endorsed Transactions on Security and Safety

MM -MM YYYY | Volume __ | Issue __ | e_

EAI Endorsed Transactions
on Security and Safety Editorial

 1

Identifying forensically uninteresting files in a large
corpus
N. C. Rowe1*

1 U.S. Naval Postgraduate School, GE-328, 1411 Cunningham Road, Monterey, CA 93943 USA

Abstract

For digital forensics, eliminating the uninteresting is often more critical than finding the interesting since there is so much
more of it. Published software-file hash values like those of the National Software Reference Library (NSRL) have
limited scope. We discuss methods based on analysis of file context using the metadata of a large corpus. Tests were done
with an international corpus of 262.7 million files obtained from 4018 drives. For malware investigations, we identify
clues to malware in context, and show that using a Bayesian ranking formula on metadata can increase recall by 5.1 while
increasing precision by 1.7 times over inspecting executables alone. For more general investigations, we show that using
together two of nine criteria for uninteresting files, with exceptions for some special interesting files, can exclude 77.4% of
our corpus instead of the 23.8% that were excluded by NSRL. For a test set of 19,784 randomly selected files from our
corpus that were manually inspected, false positives after file exclusion (interesting files identified as uninteresting) were
0.18% and false negatives (uninteresting files identified as interesting) were 29.31% using our methods. The generality of
the methods was confirmed by separately testing two halves of our corpus. Few of our excluded files were matched in two
commercial hash sets. This work provides both new uninteresting hash values and programs for finding more.

Keywords: digital forensics, metadata, files, corpus, data reduction, hashes, triage, whitelists, classification, malware, camouflage.

Received on 16 11 2015, accepted on 28 11 2015, published on DD MM YYYY

Copyright © 2015 Author et al., licensed to ICST. This is an open access article distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and
reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/_______________

*Corresponding author Neil C. Rowe. Email: ncrowe@nps.edu.

1. Introduction

As digital forensics has grown, larger and larger corpora of
drive data are available. To speed subsequent processing, it
is essential that the drive triage process first eliminate from
consideration those files that are clearly unrelated to an
investigation [13]. This can be done either by directly
eliminating files from drive images or by removing their
indexing. We define as “uninteresting” those files whose
contents do not provide forensically useful information
about usage of a drive in the form of either user-created or
user-discriminating information. Mostly these are
operating-system and applications-software files plus
common Internet downloads. (Metadata on uninteresting
files may still be interesting as in indicating time usage

patterns.) This definition applies to most criminal
investigations and data mining tasks. It can be further
refined for malware investigations where the "user" of
interest is the malware.

We can confirm that files are uninteresting by opening
them and inspecting them. Additional files may also be
uninteresting depending on the type of investigation, such as
medical records in an investigation of accounting fraud.
Uninteresting files usually comprise most of a drive, so
eliminating them significantly reduces the size of the
investigation. Unfortunately, uninteresting files occur in
many places on a drive, so finding the uninteresting is not
always straightforward.

 Most decisions about interestingness can be made from
file-directory metadata without examining file contents.
That is important because directory metadata requires

http://creativecommons.org/licenses/by/3.0/

EAI Endorsed Transactions on

MM -MM YYYY | Volume __ | Issue __ | e_

N. C. Rowe

 2

roughly 0.1% of the storage of file contents. Directory
metadata can provide the name of a file, its path, its times,
and its size, and this can give us a good idea of the nature of
a file [1]. We also include in this the hash value computed
on the contents of the file, which enables recognition of file
copies. Forensic tools like SleuthKit routinely extract
directory metadata and hash values from drive images.

We can generally eliminate files whose hash values
match those in published "whitelisting" sets [8]. However,
published hash values miss many kinds of files. This paper
will discuss methods for improving this performance by
additional filtering based on analysis of a large corpus of
drives, in particular by correlating files across it. This
provides both a new set of hash values and new methods for
finding them.

2. Previous work

The standard forensic approach today is to eliminate from
consideration those files whose hash values match those in
the Reference Data Set of the National Software Reference
Library (NSRL-RDS) from the U.S. National Institute of
Standards and Technology (NIST). The quality of the data
provided in the NSRL is high [10]. However, tests found
that it did not provide much coverage [16]. Less than one
file of four in our international corpus appeared in the
NSRL, and there were surprising gaps in the coverage of
well-known software. In part this is due to NIST's usual
approach of purchasing software, installing it, and finding
hash values for the files left on a drive. This will not find
files created only during software execution, most Internet
downloads, and user-specific configuration files.
Furthermore, the fraction of files recognized by NSRL on a
typical drive is decreasing as storage capacity increases. To
fill the gap, commercial vendors like bit9.com and
hashsets.com sell additional hash values beyond NSRL.

The work [4] investigates the problem of recognizing
uninteresting files and suggests that pieces of files need to
be hashed separately, a technique that considerably increases
the workload. The work [19] details efficient methods for
indexing and matching hash values found on files. Many of
the issues are similar to the important problems of file
deduplication [12] and file-existence checking [20] for
which file hashes are useful. Analogous work has examined
elimination of uninteresting network packets from analysis
[6].

The work [19] investigated methods for improving a hash
set of uninteresting files by using locality and time of origin
to rule out portions of the hash values in the NSRL, and
their experiments showed they could reduce the size of the
hash set by 51.8% without significantly impacting
performance. They also identified as uninteresting those
files occurring on multiple drives, similarly to [16]. Their
experiments were based on less than one million files, a
weakness since files in cyberspace are highly varied. A
more serious weakness is that they used human expertise to
provide guidance in indicating uninteresting files, and then
trained a model. This seems risky because it may miss

forensic evidence that is atypical or unanticipated. Legal
requirements also often dictate that forensic evidence be
complete, in which case elimination of forensic evidence
must be done by better-justified methods than heuristic ones.

3. Experimental setup

The experiments reported here, except for some in section
5.6, were done with a corpus assembled in January 2015. It
consisted of 4018 drives with 262.7 million files having
35.80 million distinct hash values. It included the January
2015 version of the Real Drive Corpus [5] (3397 drives and
104 million files purchased as used equipment)
supplemented with files from classroom and general
laboratory computers at our school (157 drives and 126
million files) and miscellaneous sources including our
laboratory (464 drives and 33 million files). The school
computers were centrally managed and had much software
in common, thus providing data representative of large
organizations. The miscellaneous sources included files
extracted from compressed archives in the Real Drive
Corpus including ZIP, GZIP, RAR, and CAB formats.

We extracted directory metadata with SleuthKit and the
Fiwalk tool for the non-school drives and with our own
extraction programs calling upon the operating system for
the school drives. All these drives had normal users, and we
saw little concealment or camouflage on them. Thus hash
values on their contents should not show any manipulation,
an issue important in some forensic applications [7]. We
still checked, however (see Table 7).

We also obtained the April 2015 version of the NSRL-
RDS from www.nsrl.nist.gov. Our malware work used
SHA-1hash values and our general-file work used MD5
hash values. Both are widely used and are catalogued for
the NSRL.

The programs reported here were implemented in Python
3 with only default packages.

4. Finding uninteresting files in malware
investigations

For malware investigations, uninteresting files are those not
containing malware nor affected by malware. A sufficient
condition for most files is if their hash values are
unmodified from their initial values on installing the file.
But this can entail looking up a large number of hash values,
and there are many nonmalicious reasons to change a file’s
contents. Thus it is valuable to have more specific criteria
for when a file is worth checking. Although there has been
much work on malware detection [3, 9, 11], it is almost
entirely focused on analysis of file and packet contents, and
methods that examine the smaller amount of metadata and
hashes could be a useful first step.

Identifying Forensically Uninteresting Files Using a Large Corpus

3

4.1. Testing malware clues

The following methods were used to identify malware in
our corpus [17]:

• Files in our corpus whose SHA-1 hash values were
tagged as “threats” in the database of the Bit9 Forensic
Service (www.bit9.com).

• Files in our corpus whose computed hash values matched
those of malicious software in the Open Malware corpus
(oc.gtisc.gatech.edu:8080) of about 3 million files.

• Files in our corpus whose computed hash values matched
those of malicious software in the VirusShare database
(virusshare.com) of about 18 million files, after mapping
its MD5 hash values to SHA-1.

• Files identified as threats by Symantec antivirus software
(www.symantec.com/endpoint-protection) in a sample of
files extracted from the corpus. The sample was
downloaded to a home computer with the antivirus
software installed, and every file that Symantec
complained about was recorded. Only a sample could be
tested because the corpus is too big to store online and
extraction of files is time-consuming. The sample
included about 300,000 random files plus 30,000
embedded files of type zip, gzip, cab, 7z, and bz2 because
of their higher fraction of malware. Also included were
7,331 files from the Open Malware corpus whose
hashcodes matched those of our corpus files, of which
only 721 were flagged as malicious by Symantec.

• Files identified as threats by ClamAV open-source
antivirus software (www.clamav.net) in the same sample
of files tested by Symantec.

398,949 distinct hash values of malware were found in
the 31 million distinct hash values in our 2015 corpus. Bit9
identified 238,704, Open Malware matched 4,786,
VirusShare matched 145,449, Symantec identified 1,401,
and ClamAV identified 877. Surprisingly, there was little
overlap between the malware identified by the five methods.

For testing, we created a control set from a random
sample of 303,322 distinct hash codes from files from our
2015 corpus minus those that appeared in any of the
malware sets. While this did not exclude unrecognized
malware, the low frequency of recognized malware suggests
that the unrecognized malware was unlikely to have much
statistical effect on the comparison results. A taxonomy of
extensions, top-level directories, and immediate directories
was used that we have been developing [16].

Table 1 shows the results of testing of a variety of
possible metadata clues to malware. Only clues with some
observed promise are shown. The quantity listed is the
number of standard deviations for the occurrence of
malware greater than the expected value, 0.0013 (the
fraction of malware in the corpus) times the size of the

sample. The count used was the number of distinct malware
hash values associated with the clue, since we saw drives
where the same malware hash value occurred in hundreds of
files it had infected. The five malware identification
methods clearly seem to be addressing different kinds of
files, consistent with the results of [11] on a larger number
of malware detection methods but fewer files. Taking as
valid those clues occurring more than two standard
deviations in the same direction on at least three of the five
methods, the positive clues were files whose size had a
natural logarithm of more than 15, files at the top level of
the directory hierarchy, deleted files (not helpful because
many were deleted by anti-malware software), files where
the file extension category was incompatible with its type
based on its header and other “magic numbers”, files created
at odd creation times for their directory, files with single-
occurrence hash values, files with unusual characters in their
paths, executables, files related to hardware, temporary files,
and files not in major categories. Negative clues were files
at level 10 or more in the file hierarchy, double extensions,
files with no extension, video extensions, engineering-
related extensions, game top-level directories, operating-
system immediate directories, backup immediate directories,
and data-related immediate directories.

One surprising result was that the number of drives on
which malware occurred could be considerable (Figure 1).
One malware occurred on 296 drives in our corpus, and
many other kinds of malware that occurred on 10 or more
drives. This result challenges the notion of using
“reputation” as a factor in discovering possible new
malware, since usually reputation is estimated as the number
of places in which something occurs.

Figure 1. Observed fraction of malware versus
number of drives on which a hash value appears.

Highest peak is 0.08 at 16 drives.

 Drives 200

0.05

Frac.

EAI Endorsed Transactions on

MM -MM YYYY | Volume __ | Issue __ | e_

N. C. Rowe

 4

Table 1. Strengths of various malware clues, measured as number of standard deviations plus or minus of the
expected random frequency, counting by hash values.

Malware set Bit9 Open Malware VirusShare Symantec ClamAV
Total count in corpus identified as malicious 1,201 7,331 151,621 626 1,662
Total count in corpus identified as
nonmalicious

303,332 303,332 303,332 303,332 303,332

File size 0 or 1 -0.3 -0.7 -0.9 -0.2 -0.3
Rounded log file size = 5 -5.5 -19.5 +112 -5.2 -7.1
Rounded log file size = 10 +9.3 +22.5 -9.0 -6.5 -3.1
Rounded log file size = 15 +2.5 +23.4 +16.8 +4.6 +16.9
Level = 1 +26.2 +9.7 -47.1 -2.4 +14.7
Level = 5 +2.5 +7.4 -85.2 -5.3 +5.5
Level = 10 -6.6 -15.8 -8.2 -1.2 -8.0
Level = 15 -2.3 -5.3 -24.5 -1.6 -2.7
Deleted file +4.2 +3.1 +1159 -1.4 +10.6
Extension/ libmagic
incompatible

+6.4 -4.1 -60.0 +9.1 +6.6

Odd creation time +17.7 +9.1 -46.1 -2.0 +13.2
Rare hash value -0.3 +2.1 -1.6 -0.2 -0.3
Rare extension +2151 +583 -24.4 +2874 +3287
Double extension -1.6 -6.2 -17.0 +12.8 +5.3
Long extension -0.9 -1.5 +8.0 -0.7 -0.2
Encryption extension -1.9 -4.2 -17.6 -0.6 -2.2
Odd characters in path +6.4 +7.2 +29.0 -3.6 -0.6
Repeated pattern in path -0.4 +0.8 +16.4 -0.3 +75.5
Misspelling in path -1.2 -1.2 -11.9 -0.8 +0.1
Extension type: None -10.5 -27.5 -17.9 -8.2 -12.8
Extension type: Photograph -5.3 -14.8 +110 -3.1 -4.6
Extension type: Link +4.8 -1.8 -15.9 -1.0 -1.1
Extension type: Video -2.2 -5.0 -12.6 -1.6 -2.5
Extension type: Executable +54.5 +162 -166 +18.2 +25.3
Extension type: Drive image -1.1 -2.3 -8.1 -0.8 -1.3
Extension type: Query -0.9 -2.3 +20.8 -0.7 -1.1
Extension type: Installation +6.4 -5.0 -43.8 -2.2 -0.4
Extension type: Networking -0.8 -0.9 -8.5 -0.6 -0.9
Extension type: Hardware -0.4 +1.8 -14.0 -0.9 -1.5
Extension type: Engineering -2.5 -6.2 -27.0 -1.8 -3.0
Extension type: Miscellaneous -1.5 -1.1 +19.0 -1.1 +2.1
Top-level directory type: Hardware -2.3 +3.0 +47.9 +11.3 +42.4
Top-level directory type: Temporaries +2.6 +8.1 -121 +14.4 -2.3
Top-level directory type: Games -2.5 +3.5 -46.1 -2.7 -3.2
Top-level directory type: Miscellaneous +24.7 +20.2 -42.1 -1.8 +33.8
Immediate directory type: Operating system +6.0 +9.5 -56.0 -8.8 -9.1
Immediate directory type: Backup -5.7 -16.6 -80.0 -5.5 -5.7
Immediate directory type: Audio -2.2 -3.8 +90.7 -2.6 +0.3
Immediate directory type: Data +2.5 -6.4 +60.0 -2.0 -4.4
Immediate directory type: Security +14.5 +20.8 +18.3 +20.1 +2.0
Immediate directory type: Games +1.0 +10.8 +907 -0.2 -0.5
Immediate directory type: Miscellaneous +15.8 +28.4 -22.5 -1.5 +50.1

4.2. Building a better quick scan

These results can reduce the time to find malware on a
system. Malware could hide anywhere, but our conditional
probabilities enable us to rank its likelihood from context so
we can try the most likely places first. This is useful in
designing “quick scans” for malware in which we only
check part of a drive.

To compute odds of each clue, the set of hash values in
our corpus was split randomly. Files were found
corresponding to the two half-sets of hash values, about 124
million files each. Conditional probabilities for the clues
discussed above were calculated and converted into odds for
one half of the corpus. Additional clues that were tested
were the actual file extension, top-level directory, bottom-
level directory, and file name. Clues relating to the times of
the file were excluded, however, because prediction is the
goal and there is no guarantee that current time patterns will

Identifying Forensically Uninteresting Files Using a Large Corpus

5

reoccur. Clues were only included if they occurred at least
R times and were significant at a level greater than 2.0
standard deviations above or below the expected value.
Clues were then tested for each file in the other half of the
corpus. Assessment was by a normalization of the Naïve
Bayes odds formula:

1 2
1 (1/N)

1 2

(M | (C ...))

[(M | C) (M | C)... (M | C) / (o(M))]
M

N
M

o C C
o o o −

∧ ∧ ∧ =

Here o mans odds, M means “file was malicious”, and C
means clue. Odds were calculated with Laplace-smoothing
constant K:

(M | C) [((M& C) (* n(M) / n(O)) / n(M)] /
[(n(O& C)) / n(O)]
o n K

K
= +
+

Here n means count and O means “file is nonmalicious”.
Normalization was necessary because files varied in the
number of significant clues they presented.

Two constants R and K need to be optimized. R is the
threshold for reliable counts on clues, and K represents the
“background noise” of the clue. We did experiments on a
different random sample of 30% of our corpus to vary R and
K and measure the F-score (Table 2). There was not much
variation in effect, but the best values appeared to be R=15
and K=30 and these were used in subsequent experiments.

Table 2. Effects of varying R (minimum count) and K
(damping constant) on malware F-score.

 R=10 R=20 R=40 R=100
K=1 .1558 .1558 .1549 .1511
K=10 .1560 .1560 .1551 .1505
K=30 .1566 .1566 .1548 .1505
K=100 .1554 .1555 .1546 .1482

To test ability to rank malware, 100 evenly spaced

threshold values on the combined odds were chosen and
recall (fraction of malware over the threshold) and precision
(fraction of files over the threshold that were malware) were
calculated. Recall is important because a high value reduces
the need and rate of doing full scans for malware, but
precision is important too since a low value requires more
files to be scanned unnecessarily. F-score is the classic way
to trade them off. Malware was defined by our consensus
list of malicious hashcodes, the union of the results of the
five malware-identification methods.

We conducted this experiment three times on three
random partitions of our corpus (with a total of 612,818
instances of malware and 128,776,919 instances of non-
malware for training), using one half for training and one
half for testing. The recall values were 0.343, 0.305 and
0.333; the precision values were 0.213, 0.211, and 0.211;
and the resulting F-scores were 0.263, 0.249, and 0.259. So
there was not much variation in the results, and this supports
the generality of our corpus for training purposes. But if
one is willing to accept a much lower precision of 0.010
with our methods, we can obtain a better recall in finding

malware of 0.650. By comparison, selecting only the
executable files gave 0.005 precision (for 22,940,397
executables total) and 0.190 recall (for 116,235 malicious
executables) for an F-score of 0.0097. Hence our methods
give 5.1 times better precision with 1.7 times better recall
over inspecting executables alone. Similarly, selecting only
the files in operating-system top-level directories gave 0.003
precision and 0.189 recall, and selecting only the files in
applications top-level directories gave 0.00031 precision and
0.056 recall, so searching for malware in particular
directories is an even poorer strategy. A possible objection
is that malware in executables, the operating system, and
applications directories is more serious than in other places,
but this is questionable since malware loads from many
kinds of files today.

Our clues are straightforward to compute, and can be
done on a drive once upon setup, then recalculated every
time a file changes. Note they will be significantly faster to
obtain than signatures of files because most involve
metadata, with only a few clues requiring computation of a
hash value on a file, something often computed routinely in
investigations.

5. Finding uninteresting files in standard
investigations

In standard criminal investigations, files can be judged
interesting or uninteresting by a much wider range of
criteria. However, the criteria can be considerably stronger
than with malware; for instance, a file that occurs on 100
different drives is unlikely to provide the evidential
specificity to help in a criminal investigation. Again we use
the definition that uninteresting files do not contain user-
created nor user-discriminating data.

5.1. Proposed uninteresting-file identification
methods

Nine methods to identify uninteresting files and then their
hash values were investigated as summarized in Table 3.
Parameters of these methods were set by the experiments
reported in section 5.4. The methods were:

• HA, frequent hashes: Files on many different drives
with the same hash value on their contents. Hash
values that occur on only two drives in a corpus
could suggest sharing of information between
investigative targets. But hash values occurring
more often are likely to be distributions from a
central source and are unlikely to be forensically
interesting. An example in our corpus was
C161336552062A51C5130ECAB3F59BF3 which
occurred on five drives as Documents and
Settings/Administrator/ Local Settings/Temporary
Internet Files/ Content.IE5/ ZBX73TSW/tabs[1].js,
Documents and Settings/ Friend/Local
Settings/Temporary Internet
Files/Content.IE5/0P2NOXY3/ tabcontent[1].js,

EAI Endorsed Transactions on

MM -MM YYYY | Volume __ | Issue __ | e_

N. C. Rowe

 6

deleted file Documents and Settings/user/Local
Settings/Temporary Internet Files/Content.IE5/
KLM7E1U9/tabcontent[1].js, deleted file
tabcontent[1].js with lost directory information, and
deleted file E5/322B0d01. It did not occur in
NSRL. It represents tab information in a Web
browser. The threshold must be on number of
drives, not the number of files, since installation
and backup copies of files on the same drive are
common.

• PA, frequent paths: Files with the same full path
(file name plus directories) on many different
drives. Frequently occurring paths are likely
default locations for software. Such paths include
different versions of the same file, such as
configuration files for different users or successive
versions of an updated executable. An example
from our corpus was
restore/WINDOWS/inf/fltmgr.PNF which occurred
on six drives, and none of its hash values were in
NSRL.

• BD, frequent bottom-level (“immediate”)
directory-filename pairs: Files whose pair of the
file name and the immediate directories above it
occurred especially frequently. This will catch
versions of software in different directories under
different versions of an operating system.
Examples from our corpus were
WINDOWS/$NtUninstallWIC$ with 60
occurrences in our corpus and
Config.Msi/4a621.rbf with 20 occurrences; neither
of them had any hash values in NSRL. This will
also catch many hidden files in common
directories.

• TM, files with clustered creation times: Files
created within a short period of time on the same
drive. Such clusters suggest automated copying
from an external source, particularly if the rate of
creation exceeded human limits. An example from
our corpus were seven files created on one drive
within one second under the directory Program
Files/Adobe/Adobe Flash CS3/adobe_epic/
personalization: pl_PL, pl_PL/., pl_PL/.., pt_BR,
pt_BR/., pt_BR/.., and pt_PT. All were 56 bytes,
and two hash values were not in NSRL. Creation
times are more useful than access and modification
times because they are often installation times.

• WK, files created in busy weeks: Files created
unusually frequently in particular weeks across all
drives, which suggest software updates. A period
of a week is appropriate since it takes several days
for most users to download an update. Figure 2
shows some example sharp peaks in a typical
distribution of creation times by week in our
corpus. We first find "busy" weeks, then "busy"
directories (full path minus the file name) in the
busy weeks, those whose frequency of creation was
a threshold number of times greater than their
average creation time per week. The hash values

Table 3. Methods for identifying uninteresting files.

Method Scope Primary
data

Secondary
data

Considers
deleted
files?

HA Corpus-
wide

Hash
values

None Yes

PA Corpus-
wide

Full paths None Yes

BD Corpus-
wide

File name
and
containing
directory

None No

TM Single-
drive

Creation
times
within the
minute

None No

WK Corpus-
wide

Creation
times
within the
week

Paths
minus file
name

No

SZ Corpus-
wide

File sizes Full paths No

CD Single-
drive

Full paths
in a
directory

File
extensions

No

TD Single-
drive

Front and
inside of
paths

None Yes

EX Single-
drive

File
extension

None No

Figure 2. Portion of histogram of creation times per
week in our corpus.

for files in those busy directories on those busy days
are then the proposed as uninteresting.

Identifying Forensically Uninteresting Files Using a Large Corpus

7

• SZ, files with frequent sizes: Files with unusually
common pairs of size and extension. This recognizes
fixed-size formats with different contents like
screensaver images. To reduce false matches it is
important to apply the additional criterion that the
extension must occur unusually often in all files of that
size. Examples from our corpus were all 31 files of
size 512 in directory System/Mail/00100000_S, and 8
files of size 2585 in directory Program Files/
Sun/JavaDB/docs/html/tools/ctoolsijcomref with
extension html, none of which had hash values in
NSRL. Files less than a minimum size are also very
unlikely to contain forensically useful information. For
example, there were 4,223,667 files of zero length in
the corpus. We set a minimum of 6 bytes from
experiments with samples of the corpus.

• CD, contextually uninteresting files. Directories in
which more than a certain fraction of files were already
identified as uninteresting by other methods suggest
that the rest are also uninteresting by “contagion”. An
example was directory Program Files/Yahoo!/
Messenger/skins/Purple/images and the previously
unclassified files bg_hover.png, _GLH0307.TMP, and
bg_selected.png. This method can be used to bootstrap
better performance on each run of a corpus.

• TD, files in known uninteresting top-level or mid-level
directories. We manually compiled lists from study of
the files remaining after filtering on the other criteria
mentioned here, and obtained 5752 top-level and 750
mid-level directories. Example uninteresting top-level
directories were APPS/Symantec AntiVirus, GTA Vice
City, FOUND.029, Program Files (x86)/AutoCAD
2008, and sys/uninstall; example mid-level directories
were /Help/ and /Java Update/. It is important not to
exclude all applications and operating-system
directories (WINNT, etc.) because some software keeps
user information such as logs and configuration files
there, and in some cases, user data.

• EX, files with known uninteresting extensions. Some
extensions are exclusively associated with operating
systems and software, such as exe, mui, and chm. We
used a classification of file extensions that we are
developing [16] that maps 14,396 extensions to 45
categories. The categories we labelled as nonuser and
thus uninteresting were operating-system, graphics,
database, help, executable, disk image, XML,
geography, copies, dictionary, query, integer, index,
configuration, installs and updates, security, known
malicious, games, engineering, science, signals, and
virtual machines. Some investigations may want to
shorten this list, and exceptions can also be made with
the methods described in the next section. Files with
no extensions and extensions with more than one
category were not considered ruled out by this
criterion.

13.6% of the files in the corpus were identified as
deleted. We excluded these as sources of new hash values
with three exceptions because [16] found that deleted files

can have corrupted metadata. Directories were often
missing for deleted files, and we even saw inconsistencies in
the sizes of reported by SleuthKit for deleted files.
However, the same hash value or the same path appearing
repeatedly is unlikely to be a coincidence even if they were
all deleted, and long directory paths are likely correct, so we
ignored deletion status in methods HA, PA, and TD.

Files for which drive acquisition could not find hash
values can also be eliminated on some criteria; missing hash
values can occur for deleted files with incomplete metadata.
For those we applied the BD, TD, and EX criteria to
individual file records, and eliminated files matching at least
two criteria. HA will not work with missing hash values;
PA will not work with the frequent missing fronts of deleted
files; TM and WK will not work with unreliable timestamps;
SZ will not work with unreliable file sizes; and CD will not
work when whole directories are deleted. We also
eliminated default directory files in this final filtering.

5.2. Identifying explicitly interesting files

Since reducing false positives with uninteresting files
(interesting files that were incorrectly identified as
uninteresting) can be very important in a forensic
investigation, despite our low observed rates, we
investigated six methods to explicitly identify potentially
interesting files, some of which were studied in [18]. The
first five look for clues of deliberate concealment [2], a
definite possibility in many criminal investigations. Several
software packages also claim to find anomalous files (e.g.
Redwood, try.lab41.org), and related work has addressed the
finding of traces of intrusions in storage [14].

(i) Files with hash values that occurred only once in our
corpus where their same path occurs many times with a
predominant different hash value. These could be
deliberate camouflaged.

(ii) Hashes that occurred just once in our corpus under a
different file name than the predominant one for that
hash. These could be deliberate renaming.

(iii) Files created in atypical weeks for the predominant
week of their directory. These could be deliberately
hidden files.

(iv) Files whose extension is inconsistent with the type
assigned by “magic-number” header-tail analysis of the
file contents such as by the Linux “file” utility. We
used our extension taxonomy to classify extensions,
and built a mapping from magic-number descriptions to
the extension taxonomy classes (2,820 mappings were
necessary) for comparison. These could be attempts at
camouflage.

(v) Files whose hashes had inconsistent sizes. These were
always associated with faulty information about deleted
files for our corpus, but could also indicate deliberate
attempts to conceal in other corpori.

(vi) Files with directories or extensions (when not in
software directories) that are flagged explicitly as
interesting. Directory examples are directories for

EAI Endorsed Transactions on

MM -MM YYYY | Volume __ | Issue __ | e_

N. C. Rowe

 8

encryption, disk wiping, and hacking tools. Extension
examples are JPG and HTM when not in software
directories.

5.3. Coverage and redundancy of the hash
sets

We inspected the hash values in our corpus that matched the
NSRL RDS and concluded they were highly reliable since,
in random samples we saw no interesting files incorrectly
included. This makes sense because the collection
technique of the NSRL (buying the software, installing it,
and inspecting its files) is a highly reliable at identifying
forensically uninteresting files. So we eliminated files

whose hash values matched NSRL entries as a first step.
This reduced the number of distinct hashes from 35.80
million to 33.42 million.

At this point any further sets of uninteresting hash values
can be applied, including the hashes of eliminated files from
previous runs of our software. But in the experiments here,
the methods described in sections 5.1 and 5.2 were applied
to the full remaining data. To analyse the coverage and
redundancy of the hash sets identified as uninteresting, we
computed the sizes of their intersections (Table 4). The code
labels are defined in section 5.1. It can be seen that there is
some overlap but not a large amount, which argues for the
use of all the methods together.

Table 4. Intersection sizes of uninteresting hash sets in our corpus, in millions.

 HA PA BD TM WK SZ CD TD EX
HA, frequent hashes 2.37 1.25 0.90 1.12 1.04 5.6 0.61 2.26 0.66
PA, frequent paths 1.25 5.86 3.17 1.50 1.14 1.73 2.15 3.77 0.72
BD, frequent immediate
directories

0.90 3.17 4.69 1.03 0.87 1.74 1.77 4.15 0.75

TM, creation time clusters 1.12 1.50 1.03 7.29 0.63 1.65 2.00 4.56 2.46
WK, busy weeks 1.04 1.14 0.87 0.63 1.73 0.73 0.77 1.66 0.31
SZ, frequent sizes 5.6 1.73 1.74 1.65 0.73 7.08 1.34 4.04 0.71
CD, directory context 0.61 2.15 1.77 2.00 0.77 1.34 7.18 4.48 1.18
TD, uninteresting directories 2.26 3.77 4.15 4.56 1.66 4.04 4.48 15.31 2.83
EX, uninteresting extensions 0.66 0.72 0.75 2.46 0.31 0.71 1.18 2.83 3.43

5.4. Accuracy of our methods for finding
uninteresting and interesting hash values.

To investigate the accuracy of our methods, we
constructed a test set of 19,784 files by randomly sampling
our corpus after elimination of all files in the NSRL. We
laboriously inspected the metadata of the test set, and
identified 18,223 of these as definitely uninteresting for all
but special kinds of forensic investigation. We manually
inspected the contents of as many as we could of the
remaining 1,562 (some drive images were faulty), using
associated software where possible such as image viewers
for pictures, document viewers for documents, and a
hexadecimal editor for the remainder. This process
identified 270 more uninteresting files, for a final total of
1,292 interesting or possibly interesting files in the test set
(6.53%) and 18,492 definitely uninteresting files. Some
files were encoded and unclear in function, so the 1,292
could well have included more uninteresting files.

Our software described herein eliminated all but 5,658 of
the test set as uninteresting using what we determined to be
optimal parameter settings. After all filtering and adding
back in of interesting hash values, 23 of the 14,126
eliminated files were actually or possibly interesting (false
positives) according to our manual inspection, for a

precision of 0.9982 for eliminated files. 5,396 of the 6,751
uneliminated files were actually uninteresting (false
negatives), for a recall of 0.7069 for eliminated files.
Precision here is considerably more important than recall
since mistaken elimination of files removes them from an
investigation whereas mistaken failure to eliminate files just
increases the workload of the investigator a little, so the high
observed precision is very encouraging. The 23 false
positives included a frequently-seen government-retirement
guide (whose presence could indicate a desire to retire), a
cache file for an accounting system (but it could be a
default), a geographical-information cache (also possibly a
default), a document that was part of a large library
downloaded at one time, and 11 unidentifiable deleted files
that were missing directory information. The 5,396 false
negatives included software installed in atpyical places
rather than “Program Files” and “Applications”, as well as
documents and Web pages associated with software.

Table 5 shows the results of tests on the precision and
recall for each of our methods for identifying uninteresting
files (Table 5), varying the key parameters to see their
effects. Measurements were made with the list of hash
values delivered by the method. Here “mindrives” is the
minimum number of drives on which the data occurs,
“segcount” is the number of segments on the right end of the
path that define the immediate directory, “weekmult” is how
many times busier a week must be than the average week,

Identifying Forensically Uninteresting Files Using a Large Corpus

9

“pathmult” is the minimum number of times of occurrence
more than the typical path, “mindev” is the minimum
number of standard deviations more than the mean number
of occurrences that are required, “mindircount” is the
minimum-size directory examined, and “fracmin” is the
minimum fraction of the files in the directory that are
already known to be uninteresting. Note that the
“mindrives” parameter should be proportional to the number
of drives in a corpus. Our corpus had 4018 drives, so
mindrives should be multiplied by the number of drives in a
new corpus divided by 4018. The other parameters do not
need such adjustment.

It can be seen that false positives and false negatives
trade off consistently as parameters vary, so the best set of
parameters reflects the relative weight of precision to recall.
It is impossible to eliminate false negatives completely for
most corpori because there are several legitimate reasons for
them:

• For HA, PA, and BD, some files that appear frequently
may still be interesting, as for instance documents
explaining how to make a bomb on drives obtained
from criminals.

• For WK and SZ, interesting files may be loaded by
coincidence during busy weeks or coincidentally have
the same size as standard formats.

• For TM and CD, interesting files may occur in the
midst of mostly uninteresting files by software design.

• For TD and EX, users may try to deceive investigators
by camouflaging files. However, deception can be
detected by other methods.

Table 6 shows the effects of varying the required number
of clues to identify a file as uninteresting before we removed
the explicitly interesting files from the hash sets. Requiring
two clues appears to be best since recall decreases
significantly for larger numbers with little effect on the near-
perfect precision. Higher false positives could be acceptable
in preliminary investigation of a corpus, but might be
unacceptable in criminal investigation because of the
possibility of excluding potential key evidence in a case.

Table 6 also shows the effect of choosing all low values
for the parameters, all intermediate (“medium”) values for
the parameters, and all high values for the parameters. This
tested the synergistic effect of having multiple clues. We
further tested the effects of requiring 2 out of 8 of the clues,
excluding each clue in turn, but it made little difference to
the precision while decreasing the recall significantly. The
last row gives statistics for the final result, after adding the
uninteresting hashless files and default-directory files such
as “..”, and then subtracting the interesting files as discussed
in the next section.

EAI Endorsed Transactions on

MM -MM YYYY | Volume __ | Issue __ | e_

N. C. Rowe

 10

Table 5. Effects of parameter variation on performance of different methods of identifying uninteresting files.

Method Parameter values True
positives

False
positives

False
negatives

Precision Recall

HA, frequent hashes mindrives = 2 11601 121 6770 .9897 .6315
HA, frequent hashes mindrives = 5 10816 25 7555 .9977 .5888
HA, frequent hashes mindrives = 12 9891 14 8480 .9986 .5384
PA, frequent paths mindrives = 10 11922 67 6449 .9944 .6490
PA, frequent paths mindrives = 20 11430 26 7941 .9975 .5677
PA, frequent paths mindrives = 40 9970 21 8401 .9979 .5427
BD, frequent botdirs mindrives = 25, segcount = 1 10885 76 7486 .9931 .5925
BD, frequent botdirs mindrives = 25, segcount = 2 10338 23 8033 .9978 .5627
BD, frequent botdirs mindrives = 25, segcount = 3 9827 17 8544 .9983 .5349
BD, frequent botdirs mindrives = 50, segcount = 1 9109 66 9262 .9928 .4958
BD, frequent botdirs mindrives = 50, segcount = 2 7824 22 10547 .9972 .4259
BD, frequent botdirs mindrives = 50, segcount = 3 7320 17 11051 .9977 .3985
BD, frequent botdirs mindrives = 100, segcount = 1 7336 51 11035 .9931 .3993
BD, frequent botdirs mindrives = 100, segcount = 2 6021 17 12350 .9972 .3277
BD, frequent botdirs mindrives = 100, segcount = 3 5574 13 12797 .9977 .3034
TM, time context minimum count within minute = 25 7613 65 10758 .9915 .4144
TM, time context minimum count within minute = 50 7408 55 10963 .9926 .4032
TM, time context minimum count within minute = 100 7160 48 11211 .9933 .3897
WK, frequent weeks weekmult = 2, pathmult = 50 7175 16 11196 .9978 .3906
WK, frequent weeks weekmult = 2, pathmult = 100 7053 14 11318 .9980 .3839
WK, frequent weeks weekmult = 2, pathmult = 200 6864 13 11507 .9981 .3736
WK, frequent weeks weekmult = 5, pathmult = 50 6680 14 11691 .9979 .3636
WK, frequent weeks weekmult = 5, pathmult = 100 6500 13 11871 .9980 .3538
WK, frequent weeks weekmult = 5, pathmult = 200 6376 12 11995 .9981 .3470
WK, frequent weeks weekmult = 12, pathmult = 50 5820 4 12551 .9993 .3168
WK, frequent weeks weekmult = 12, pathmult = 100 5800 4 12571 .9993 .3157
WK, frequent weeks weekmult = 12, pathmult = 200 5767 4 12604 .9993 .3139
SZ, frequent sizes mincount = 5, mindev = 5 4818 138 13453 .9727 .2677
SZ, frequent sizes mincount = 5, mindev = 10 4642 108 13729 .9773 .2527
SZ, frequent sizes mincount = 5, mindev = 20 4101 87 14270 .9792 .2232
SZ, frequent sizes mincount = 10, mindev = 5 4901 135 13470 .9732 .2669
SZ, frequent sizes mincount = 10, mindev = 10 4633 106 13738 .9776 .2522
SZ, frequent sizes mincount = 10, mindev = 20 4093 85 14278 .9797 .2228
SZ, frequent sizes mincount = 20, mindev = 5 4862 132 13509 .9736 .2647
SZ, frequent sizes mincount = 20, mindev = 10 4604 105 13767 .9777 .2506
SZ, frequent sizes mincount = 20, mindev = 20 4079 84 14292 .9798 .2506
CD, directory context mindircount=16, fracmin=0.5 7781 193 10590 .9758 .4236
CD, directory context mindircount=16, fracmin=0.8 7464 139 10907 .9817 .4063
CD, directory context mindircount=16, fracmin=0.95 7345 122 11026 .9837 .3998
CD, directory context mindircount=40, fracmin=0.5 7229 185 11142 .9751 .3935
CD, directory context mindircount=40, fracmin=0.8 8137 534 9999 .9813 .3791
CD, directory context mindircount=40, fracmin=0.95 6858 114 11513 .9837 .3733
CD, directory context mindircount=100, fracmin=0.5 6525 165 11846 .9753 .3352
CD, directory context mindircount=100, fracmin=0.8 6263 114 12108 .9821 .3409
CD, directory context mindircount=100, fracmin=0.95 6149 97 12222 .9845 .3347
TD, unint. topdirs none 14274 60 4133 .9958 .7755
EX, unint. extensions none 3762 9 14609 .9976 .2048

Identifying Forensically Uninteresting Files Using a Large Corpus

11

Table 6. Additional effects of parameter variation on the accuracy of identifying uninteresting files.

Method True
positives

False
positives

False
negatives

Precision Recall

Any 1 of the 9 clues, medium parameters 15825 356 2582 .9798 .8597
Any 2 of the 9 clues, medium parameters 14144 68 4263 .9952 .7684
Any 3 of the 9 clues, medium parameters 12251 18 6156 .9985 .6656
Any 4 of the 9 clues, medium parameters 10639 15 7768 .9986 .5780
Any 5 of the 9 clues, medium parameters 8553 8 9854 .9991 .4447
Any 6 of the 9 clues, medium parameters 6023 4 12384 .9993 .3272
Any 7 of the 9 clues, medium parameters 3706 1 14701 .9997 .2013
Any 8 of the 9 clues, medium parameters 1366 1 17041 .9993 .0742
All 9 of the 9 clues, medium parameters 113 0 18294 1.0000 .0061
All low values of the parameters, 2 out of 9 clues 14851 887 3285 .9436 .8188
All medium values of the parameters, 2 of the 9 clues 14144 68 4263 .9952 .7684
All high values of the parameters, 2 of 9 clues 11527 33 6609 .9972 .6356
Any 2 of 8 clues excluding HA 14144 68 4263 .9952 .7684
Any 2 of 8 clues excluding PA 13718 63 4689 .9954 .7453
Any 2 of 8 clues excluding BD 13874 64 4533 .9954 .7537
Any 2 of 8 clues excluding TM 14045 63 4362 .9955 .7630
Any 2 of 8 clues excluding WK 13653 55 4754 .9960 .7417
Any 2 of 8 clues excluding SZ 14112 62 4295 .9956 .7667
Any 2 of 8 clues excluding CD 13707 35 4700 .9975 .7447
Any 2 of 8 clues excluding TD 13657 52 4750 .9962 .7420
Any 2 of 8 clues excluding EX 12713 52 5694 .9959 .6907
Any 2 of 9 clues, medium parameters, minus potentially
interesting files, plus uninteresting hashless and default-
directory files

13011 23 5396 .9982 .7069

5.5. Accuracy of our methods of finding
interesting hash values

Table 7 shows results on the accuracy of the six methods

for detecting interesting hash values. Their performance was
poor with the exception of the last method. For these
experiments, true positives were defined as files identified
both as interesting in our test set and by our methods, false
positives were files identified as interesting only by our
methods, and false negatives were files identified as

interesting only in our test set. Here “mincount” is the
minimum size of the directory considered, and “minfrac” is
the minimum fraction of the most common hash or path.
Results are likely poor due to the minimal concealment in
our data. We used only the hash values from the last
method in the final results reported here. However, files
obtained during criminal and intelligence investigations are
more likely to show concealment, and such files could be
critical in an investigation. It is thus recommended that all
these interesting-file methods should be run whenever the
uninteresting-file methods are too.

EAI Endorsed Transactions on

MM -MM YYYY | Volume __ | Issue __ | e_

N. C. Rowe

 12

Table 7. Effects on parameter variation on performance of different methods for identifying interesting files.

Method Parameter values True
positives

False
positives

False
negatives

Precision Recall

Hashes occurring only once
for a given path

mincount=10, minfrac=0.5 4 565 1203 .0070 .0033

same mincount=10, minfrac=0.8 4 475 1203 .0094 .0033
same mincount=10, minfrac=0.95 1 439 1206 .0023 .0008
same mincount=30, minfrac=0.5 3 503 1204 .0059 .0025
same mincount=30, minfrac=0.8 3 451 1204 .0066 .0025
same mincount=30, minfrac=0.95 1 438 1206 .0023 .0008
same mincount=100, minfrac=0.5 2 422 1205 .0047 .0017
same mincount=100, minfrac=0.8 2 388 1205 .0051 .0017
same mincount=100,minfrac=0.95 0 384 1207 .0000 .0000
Path names occurring only
once for a given hash

mincount=10, minfrac=0.5 5 293 1202 .0168 .0041

same mincount=10, minfrac=0.8 3 247 1204 .0120 .0025
same mincount=10, minfrac=0.95 2 171 1205 .0116 .0017
same mincount=30, minfrac=0.5 4 226 1203 .0174 .0033
same mincount=30, minfrac=0.8 2 201 1205 .0099 .0017
same mincount=30, minfrac=0.95 1 165 1206 .0060 .0008
same mincount=100, minfrac=0.5 1 144 1206 .0069 .0008
same mincount=100, minfrac=0.8 1 134 1206 .0074 .0008
same mincount=100, minfrac=0.95 1 120 1206 .0083 .0008
Files created in atypical weeks
for their directories

mincount=10, minfrac=0.5 0 216 1207 .0000 .0000

same mincount=10,minfrac=0.8 0 212 1207 .0000 .0000
same mincount=10, minfrac=0.95 0 27 1207 .0000 .0000
same mincount=30, minfrac=0.5 0 23 1207 .0000 .0000
same mincount=30, minfrac=0.8 0 20 1207 .0000 .0000
same mincount=30, minfrac=0.95 0 0 1205 .0000 .0000
same mincount=100, minfrac=0.5 0 211 1207 .0000 .0000
same mincount=100, minfrac=0.8 0 203 1207 .0000 .0000
same mincount=100, minfrac=0.95 0 20 1207 .0000 .0000
Inconsistency between extension
and magic-number analysis

None 5 2602 1202 .0019 .0041

Inconsistency in file size for
the same hash value

None 0 67 1207 .0000 .0000

Explicitly identified interesting
extension or directory

None 552 1478 655 .2719 .4573

5.6. Additional analysis

Overall statistics on file and hash eliminations are
given in Table 8. The full run our corpus files with the
optimal parameters took 2748 minutes (just short of two
days) as a single process on a single Redhat Enterprise
Linux 7 system. This is a one-time cost that does not
affect the speed of online usage of the hash values. The
test machine had 515 gigabytes of main memory shared
with other researchers, and we found we had to limit main
memory usage to 200 gigabytes maximum by splitting
files as necessary. Input was DFXML-format metadata
(as defined at www.nsrl.nist.org). Much of the processing
could be partitioned to separate processors to decrease
completion time if desired.

Table 8. Overall statistics on file and hash
elimination and their data reduction percentages.

Set Number of
files
(millions)

Number of
distinct
hashes
(millions)

Full corpus 262.7 35.80
Full corpus minus
NSRL

200.1
(76.2%)

33.42
(93.4%)

Same minus those files
identified by 2 of 9
methods as
uninteresting

56.2
(21.4%)

19.27
(53.8%)

Same minus
uninteresting hashless
or default-hash files

46.0
(17.5%)

19.26
(53.8%)

Same plus potentially
interesting files

59.5
(22.6%)

20.32
(56.8%)

http://www.nsrl.nist.org/

Identifying Forensically Uninteresting Files Using a Large Corpus

13

We compared the types of files before and after
filtering out uninteresting files using our aforementioned
taxonomy on file extensions. Operating-system files went
from 6.1% to 1.0%, installation and update files went
from 1.5% to 0.4%, executables went from 10.9% to
3.3%, program source (including scripts) from 9.3% to
7.0%, XML from 3.0% to 2.2%, integer extensions from
0.8% to 0.4%, indices from 4.4% to 0.1%, and games
from 1.5% to 0.1%. Camera images increased from 3.6%
to 10.3%, Web files and links from 9.6% to 12.2%,
documents from 2.9% to 6.8%, audio from 1.4% to 2.8%,
video from 0.3% to 1.1%, email and messaging from
0.1% to 0.4%, temporaries from 0.9% to 1.6%, logs from
0.3% to 0.7%, database-related files from 0.4% to 0.7%,
geography-related files from 0.1% to 0.3%, and
extensionless files from 9.7% to 16.8%. All other file-
type percentages did not change significantly, including

notably graphics, configuration files, copies, security-
related files, and files with multiuse extensions. Note that
a hash value appearing with multiple paths was eliminated
if there were two clues for any of the paths, not
necessarily for all of the paths.

A criticism made of some hash-value collections is that
their values will rarely occur again. So an important test
for our proposed new "uninteresting" hash values is to
compare those acquired from different drives. For this we
split the corpus into two pieces C1 and C2 based on the
drives, roughly drives processed before 2012 and those
processed in 2012 and 2013. We did not include any
drives from our school in this experiment because they are
centrally managed and share much software. We
extracted uninteresting hash values using our methods for
both separately, and then compared them. Table 9 shows
the results.

Table 9. Statistical comparison of hashes derived from partition of our corpus into two halves, where HA=hashes,
PA=paths, TM=time, SZ=size, BD=bottom-level directory, CD=directory context, TD=top-level directory,

EX=extension.

Method of
obtaining
new hash
values

Fraction of
values found
for C1 also
found for C2

Fraction of
values found
for C2 also
found for C1

Fraction of all
hash values for
C1 identified by
method using C1

Fraction of all
hash values for
C2 identified by
method using C2

Fraction of all
hash values for
C2 identified by
method using C1

Fraction of all
hash values for
C1 identified by
method using C2

HA .717 .597 .438 .355 .344 .389
PA .661 .458 .399 .291 .299 .312
TM .529 .365 .668 .493 .430 .477
WK .457 .234 .445 .303 .358 .323
SZ .339 .246 .196 .187 .157 .145
BD .583 .484 .474 .384 .350 .406
CD .640 .486 .558 .447 .411 .467
TD .553 .436 .627 .485 .419 .474
EX .603 .439 .497 .373 .338 .397

This table provides two kinds of indicators of the
generality of a hash-obtaining method. One is the average
of the second and third columns, which indicates the
overlap between the hash sets. On this SZ is the weakest
method and WK is second weakest, which makes sense
because these methods seek clustered downloads and
some clusters are forensically interesting. Another
indicator is the ratios of column 7 to column 4 and
column 6 to column 5, which indicate the degree to which
the hash values found generalize from a training set to a
test set. The average for the above data was 0.789 for the
average of column 7 to column 4, and 0.938 for the
average of column 6 to column 5, which indicates a good
degree of generality. No methods were unusually poor on
the second indicator.

We also compared the uninteresting hashes found for
the 2013 version of the corpus with those of two
commercial hashsets, the April 2013 download of the Bit9
Cyber Forensics Service (www.bit9.com) and the June
2012 download of the hash list of Hashsets.com. We
computed statistics on the file types represented in the two

sets and confirmed broad coverage of a variety of file
types in the sets, not just coverage of executables.
Nonetheless, hashsets.com matched hashes on 5,906 of
the remaining hashes, an unimpressive 0.06%. Bit9
recognized 607,693 hash values not in NSRL out of the
10,342,915 that it recognized, of which 93,436 (0.95% of
the remaining hashes) were not found by our methods. So
Bit9 is not much more help in eliminating uninteresting
files beyond our own methods which eliminated millions
of files, something important to know since it is expensive
to purchase.

Of the 13.28 million hash values of the NSRL RDS in
our corpus, only 1.45 million (10.9%) were also found by
our methods without help from NSRL. So there is still a
justification for building the NSRL even though it
requires more manual labour per hash than our methods.

EAI Endorsed Transactions on

MM -MM YYYY | Volume __ | Issue __ | e_

N. C. Rowe

 14

5.7. Proposed file-elimination protocol

We suggest then the following protocol for eliminating
uninteresting files from a corpus in a standard
investigation:

(i) Run methods PA, BD, TM, WK, and SZ to generate
hash sets of candidate uninteresting files on the full
corpus.

(ii) Eliminate all files in the corpus whose hash values
are in NSRL, our list at digitalcorpora.org, and any
other confirmed “uninteresting” lists available.

(iii) Run the methods HA, CD, TD, and EX on the
remaining files to generate additional hash values of
uninteresting files. These methods do not benefit
from seeing the entire corpus.

(iv) Find hash values that occur in at least two
uninteresting hash sets, and remove files from the
corpus with those hash values.

(v) Eliminate default-directory files and those without
hash values that match on two of the three criteria
BD, TD, and EX.

(vi) To the remaining files, add files matching the
“interesting-directory” and “interesting-extension”
criteria.

(vii) Save the final list of eliminated hash codes for
bootstrapping with future drives when doing step (ii).

6. Conclusions

Although uninterestingness of a file is a subjective
concept, most forensic investigators have a precise
definition for each investigation that is usually based
whether a file contains user-created or user-discriminating
information. It appears that relatively simple methods can
be used to automate this intuition, and can eliminate
considerable numbers of uninteresting files beyond using
the NSRL hash library alone. On our corpus, NSRL
eliminated 23.8% of the hashes while our methods
eliminated an additional 53.6%, while keeping false
positives (incorrectly eliminated files) to 0.18%. Our
methods do need a large corpus of file examples;
however, more and more file data is becoming available
to researchers. It also appears that commercial hash sets
are of limited additional value to most forensic
investigations if the methods proposed here are used.

Our methods can eliminate files unique to a drive, but
they also will provide hashes that should be useful for
other corpora. Investigators can choose which methods to
use based on their investigative targets, can set thresholds
based on their tolerance for error, and can choose to
eliminate further files based on time and locale as in [19].

We have published a list of our uninteresting hashes
for free download on digitalcorpora.org. Further methods
for identifying additional uninteresting files are definitely
possible given the low 6.53% “potentially interesting”
rate in our test set. Future directions are to extend the
ideas to hashes on portions of files [15] and to many-to-

one mappings recognizing similar but not identical files
such as pictures.

Acknowledgements
Riqui Schwamm, Jeromy Santos, Nicholas Moore, Jacob Beel,
and Christopher Herridge assisted with the experiments, and
Simson Garfinkel provided the Real Drive Corpus. The views
expressed are those of the author and do not represent those of
the U.S. Government. This paper is an extension and revision of
a paper in the 5th International Conference on Digital Forensics
and Computer Crime, Moscow, Russia, September 2013.

References
[1] AGRAWAL, N., BOLOSKY, W., DOUCEUR, J., AND LORCH, J.

(2007) A Five-year study of file-system metadata. ACM
Transactions on Storage, 3 (3): 9:1-9:32.

[2] BELL, J., AND WHALEY, B., Cheating. New York:
Transaction Publishing, 1991.

[3] CHANG, J., VENKATASUBRAMANIAN, K., WEST, A., AND
LEE, I. (2013) Analyzing and defending against Web-based
malware. ACM Computing Surveys, 45(4), August, 49:1-
35.

[4] CHAWATHE, S. (2012) Fast fingerprinting for file-system
forensics. In Proc. IEEE Conference on Technologies for
Homeland Security, Waltham, MA, November, 585-590.

[5] GARFINKEL, S., FARRELL, P., ROUSSEV, V., AND DINOLT, G.
(2009) Bringing science to digital forensics with
standardized forensic corpora. Digital Investigation, 6, S2-
S11.

[6] GUGELMANN, D., SCHATZMANN, D., AND LENDERS, V.
(2013) Horizon Extender: Long-term preservation of data
leakage evidence in Web traffic. Proc. ASIA CCS,
Hangzhou, China, 499-504.

[7] KE, H.-J., WANG, S.-J., LIU, J., AND GOYAL, D. (2011)
Hash-algorithms output for digital evidence in computer
forensics. In Proc. Intl. Conf. on Broadband and Wireless
Computing, Communication and Applications, Barcelona,
Spain, October, 399-404.

[8] KORNBLUM, J. (2008) Auditing hash sets: lessons learned
from Jurassic Park. Journal of Digital Forensic Practice,
2 (3), 108-112.

[9] MALIN, C., CASEY, A., AND AQUILINA, J. (2008) Malware
Forensics: Field Guide for Windows Systems (Syngress,
Waltham, MA, US).

[10] MEAD, S. (2006) Unique file identification in the National
Software Reference Library. Digital Investigation, 3 (3),
138-150.

[11] MOHAISEN, A., AND ALRAWI, O. (2014, July) An evaluation
of antivirus scans and labels. Proc. 11th Intl. Conf. on
Detection of Intrusions and Malware and vulnerability
Assessment, Egham UK, pp. 112-131.

[12] PANSE, F., VAN KEULEN, M., AND RITTER, N. (2013)
Indeterministic handling of uncertain decision in
deduplication. ACM Journal of Data and Information
Quality, 4 (2), 9.

[13] PEARSON, S. (2010) Digital Triage Forensics: Processing
the Digital Crime Scene (Syngress, Waltham, MA, US).

[14] PENNINGTON, A., LINWOOD, J., BUCY, J., STRUNK, J., AND
GANGER, G. (2010) Storage-based intrusion detection.
ACM Transactions on Information and System Security, 13
(4) 30.

Identifying Forensically Uninteresting Files Using a Large Corpus

15

[15] ROUSSEV, V. (2012) Managing terabyte-scale
investigations with similarity digests. In Proc. of
Advances in Digital Forensics VIII, IFIP Advances in
Information and Communication Technology Volume 383,
Pretoria SA, 19-34.

[16] ROWE, N. (2012) Testing the National Software Reference
Library. Digital Investigation, 9S, S131-S138.

[17] ROWE, N. (2015) Finding contextual clues to malware
using a large corpus. ISCC-SFCS Third International
Workshop on Security and Forensics in Communications
Systems, Larnaca, Cyprus, July 2015.

[18] ROWE, N., AND GARFINKEL, S. (2012) Finding suspicious
activity on computer systems. In Proc. 11th European
Conf. on Information Warfare and Security, Laval, France.

[19] RUBACK, M., HOELZ, B., AND RALHA, C. (2012) A new
approach to creating forensic hashsets. In Proc. of
Advances in Digital Forensics VIII, IFIP Advances in
Information and Communication Technology Volume 383,
Pretoria SA, 83-97.

[20] TOMAZIC, S., PAVLOVIC, V., MILOVANOVIC, J., SODNIK, J.,
KOS, A., STANCIN, S., AND MILUTINOVIC, V. (2011) Fast
file existence checking in archiving systems. ACM
Transactions on Storage, 7 (1), 2.

