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Abstract 
 
For digital forensics, eliminating the uninteresting is often more critical than finding the interesting since there is so much 
more of it.  Published software-file hash values like those of the National Software Reference Library (NSRL) have 
limited scope.  We discuss methods based on analysis of file context using the metadata of a large corpus.  Tests were done 
with an international corpus of 262.7 million files obtained from 4018 drives.  For malware investigations, we identify 
clues to malware in context, and show that using a Bayesian ranking formula on metadata can increase recall by 5.1 while 
increasing precision by 1.7 times over inspecting executables alone.  For more general investigations, we show that using 
together two of nine criteria for uninteresting files, with exceptions for some special interesting files, can exclude 77.4% of 
our corpus instead of the 23.8% that were excluded by NSRL.  For a test set of 19,784 randomly selected files from our 
corpus that were manually inspected, false positives after file exclusion (interesting files identified as uninteresting) were 
0.18% and false negatives (uninteresting files identified as interesting) were 29.31% using our methods.  The generality of 
the methods was confirmed by separately testing two halves of our corpus.  Few of our excluded files were matched in two 
commercial hash sets.  This work provides both new uninteresting hash values and programs for finding more.  
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1. Introduction 

As digital forensics has grown, larger and larger corpora of 
drive data are available.  To speed subsequent processing, it 
is essential that the drive triage process first eliminate from 
consideration those files that are clearly unrelated to an 
investigation [13].  This can be done either by directly 
eliminating files from drive images or by removing their 
indexing.  We define as “uninteresting” those files whose 
contents do not provide forensically useful information 
about usage of a drive in the form of either user-created or 
user-discriminating information.  Mostly these are 
operating-system and applications-software files plus 
common Internet downloads.  (Metadata on uninteresting 
files may still be interesting as in indicating time usage 

patterns.)  This definition applies to most criminal 
investigations and data mining tasks.  It can be further 
refined for malware investigations where the "user" of 
interest is the malware.  

We can confirm that files are uninteresting by opening 
them and inspecting them.  Additional files may also be 
uninteresting depending on the type of investigation, such as 
medical records in an investigation of accounting fraud.  
Uninteresting files usually comprise most of a drive, so 
eliminating them significantly reduces the size of the 
investigation.  Unfortunately, uninteresting files occur in 
many places on a drive, so finding the uninteresting is not 
always straightforward. 

 Most decisions about interestingness can be made from 
file-directory metadata without examining file contents.  
That is important because directory metadata requires 
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roughly 0.1% of the storage of file contents.  Directory 
metadata can provide the name of a file, its path, its times, 
and its size, and this can give us a good idea of the nature of 
a file [1].  We also include in this the hash value computed 
on the contents of the file, which enables recognition of file 
copies.  Forensic tools like SleuthKit routinely extract 
directory metadata and hash values from drive images. 

We can generally eliminate files whose hash values 
match those in published "whitelisting" sets [8].  However, 
published hash values miss many kinds of files.  This paper 
will discuss methods for improving this performance by 
additional filtering based on analysis of a large corpus of 
drives, in particular by correlating files across it.  This 
provides both a new set of hash values and new methods for 
finding them. 

2. Previous work 

The standard forensic approach today is to eliminate from 
consideration those files whose hash values match those in 
the Reference Data Set of the National Software Reference 
Library (NSRL-RDS) from the U.S. National Institute of 
Standards and Technology (NIST).  The quality of the data 
provided in the NSRL is high [10].  However, tests found 
that it did not provide much coverage [16].  Less than one 
file of four in our international corpus appeared in the 
NSRL, and there were surprising gaps in the coverage of 
well-known software.  In part this is due to NIST's usual 
approach of purchasing software, installing it, and finding 
hash values for the files left on a drive.  This will not find 
files created only during software execution, most Internet 
downloads, and user-specific configuration files.  
Furthermore, the fraction of files recognized by NSRL on a 
typical drive is decreasing as storage capacity increases.  To 
fill the gap, commercial vendors like bit9.com and 
hashsets.com sell additional hash values beyond NSRL. 

The work [4] investigates the problem of recognizing 
uninteresting files and suggests that pieces of files need to 
be hashed separately, a technique that considerably increases 
the workload.  The work [19] details efficient methods for 
indexing and matching hash values found on files.  Many of 
the issues are similar to the important problems of file 
deduplication [12] and file-existence checking [20] for 
which file hashes are useful.  Analogous work has examined 
elimination of uninteresting network packets from analysis 
[6]. 

The work [19] investigated methods for improving a hash 
set of uninteresting files by using locality and time of origin 
to rule out portions of the hash values in the NSRL, and 
their experiments showed they could reduce the size of the 
hash set by 51.8% without significantly impacting 
performance.  They also identified as uninteresting those 
files occurring on multiple drives, similarly to [16].  Their 
experiments were based on less than one million files, a 
weakness since files in cyberspace are highly varied.   A 
more serious weakness is that they used human expertise to 
provide guidance in indicating uninteresting files, and then 
trained a model.  This seems risky because it may miss 

forensic evidence that is atypical or unanticipated.  Legal 
requirements also often dictate that forensic evidence be 
complete, in which case elimination of forensic evidence 
must be done by better-justified methods than heuristic ones. 

3. Experimental setup 

The experiments reported here, except for some in section 
5.6, were done with a corpus assembled in January 2015.  It 
consisted of 4018 drives with 262.7 million files having 
35.80 million distinct hash values.  It included the January 
2015 version of the Real Drive Corpus [5] (3397 drives and 
104 million files purchased as used equipment) 
supplemented with files from classroom and general 
laboratory computers at our school (157 drives and 126 
million files) and miscellaneous sources including our 
laboratory (464 drives and 33 million files).  The school 
computers were centrally managed and had much software 
in common, thus providing data representative of large 
organizations.  The miscellaneous sources included files 
extracted from compressed archives in the Real Drive 
Corpus including ZIP, GZIP, RAR, and CAB formats. 

We extracted directory metadata with SleuthKit and the 
Fiwalk tool for the non-school drives and with our own 
extraction programs calling upon the operating system for 
the school drives.  All these drives had normal users, and we 
saw little concealment or camouflage on them.  Thus hash 
values on their contents should not show any manipulation, 
an issue important in some forensic applications [7].  We 
still checked, however (see Table 7).   

We also obtained the April 2015 version of the NSRL-
RDS from www.nsrl.nist.gov.  Our malware work used 
SHA-1hash values and our general-file work used MD5 
hash values.  Both are widely used and are catalogued for 
the NSRL. 

The programs reported here were implemented in Python 
3 with only default packages. 

4. Finding uninteresting files in malware 
investigations 

For malware investigations, uninteresting files are those not 
containing malware nor affected by malware.  A sufficient 
condition for most files is if their hash values are 
unmodified from their initial values on installing the file.  
But this can entail looking up a large number of hash values, 
and there are many nonmalicious reasons to change a file’s 
contents.  Thus it is valuable to have more specific criteria 
for when a file is worth checking.  Although there has been 
much work on malware detection [3, 9, 11], it is almost 
entirely focused on analysis of file and packet contents, and 
methods that examine the smaller amount of metadata and 
hashes could be a useful first step.  
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4.1. Testing malware clues 

The following methods were used to identify malware in 
our corpus [17]: 

• Files in our corpus whose SHA-1 hash values were 
tagged as “threats” in the database of the Bit9 Forensic 
Service (www.bit9.com). 

• Files in our corpus whose computed hash values matched 
those of malicious software in the Open Malware corpus 
(oc.gtisc.gatech.edu:8080) of about 3 million files. 

• Files in our corpus whose computed hash values matched 
those of malicious software in the VirusShare database 
(virusshare.com) of about 18 million files, after mapping 
its MD5 hash values to SHA-1. 

• Files identified as threats by Symantec antivirus software 
(www.symantec.com/endpoint-protection) in a sample of 
files extracted from the corpus.  The sample was 
downloaded to a home computer with the antivirus 
software installed, and every file that Symantec 
complained about was recorded.  Only a sample could be 
tested because the corpus is too big to store online and 
extraction of files is time-consuming. The sample 
included about 300,000 random files plus 30,000 
embedded files of type zip, gzip, cab, 7z, and bz2 because 
of their higher fraction of malware.  Also included were 
7,331 files from the Open Malware corpus whose 
hashcodes matched those of our corpus files, of which 
only 721 were flagged as malicious by Symantec.   

• Files identified as threats by ClamAV open-source 
antivirus software (www.clamav.net) in the same sample 
of files tested by Symantec. 

398,949 distinct hash values of malware were found in 
the 31 million distinct hash values in our 2015 corpus.  Bit9 
identified 238,704, Open Malware matched 4,786, 
VirusShare matched 145,449, Symantec identified 1,401, 
and ClamAV identified 877.  Surprisingly, there was little 
overlap between the malware identified by the five methods.     

For testing, we created a control set from a random 
sample of 303,322 distinct hash codes from files from our 
2015 corpus minus those that appeared in any of the 
malware sets.  While this did not exclude unrecognized 
malware, the low frequency of recognized malware suggests 
that the unrecognized malware was unlikely to have much 
statistical effect on the comparison results.  A taxonomy of 
extensions, top-level directories, and immediate directories 
was used that we have been developing [16]. 

Table 1 shows the results of testing of a variety of 
possible metadata clues to malware.  Only clues with some 
observed promise are shown.  The quantity listed is the 
number of standard deviations for the occurrence of 
malware greater than the expected value, 0.0013 (the 
fraction of malware in the corpus) times the size of the 

sample.  The count used was the number of distinct malware 
hash values associated with the clue, since we saw drives 
where the same malware hash value occurred in hundreds of 
files it had infected.  The five malware identification 
methods clearly seem to be addressing different kinds of 
files, consistent with the results of [11] on a larger number 
of malware detection methods but fewer files.  Taking as 
valid those clues occurring more than two standard 
deviations in the same direction on at least three of the five 
methods, the positive clues were files whose size had a 
natural logarithm of more than 15, files at the top level of 
the directory hierarchy, deleted files (not helpful because 
many were deleted by anti-malware software), files where 
the file extension category was incompatible with its type 
based on its header and other “magic numbers”, files created 
at odd creation times for their directory, files with single-
occurrence hash values, files with unusual characters in their 
paths, executables, files related to hardware, temporary files, 
and files not in major categories.  Negative clues were files 
at level 10 or more in the file hierarchy, double extensions, 
files with no extension, video extensions, engineering-
related extensions, game top-level directories, operating-
system immediate directories, backup immediate directories, 
and data-related immediate directories.  

One surprising result was that the number of drives on 
which malware occurred could be considerable (Figure 1).  
One malware occurred on 296 drives in our corpus, and 
many other kinds of malware that occurred on 10 or more 
drives.  This result challenges the notion of using 
“reputation” as a factor in discovering possible new 
malware, since usually reputation is estimated as the number 
of places in which something occurs. 
 
 

 

Figure 1.  Observed fraction of malware versus 
number of drives on which a hash value appears.  

Highest peak is 0.08 at 16 drives. 
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Table 1.  Strengths of various malware clues, measured as number of standard deviations plus or minus of the 
expected random frequency, counting by hash values. 

Malware set Bit9 Open Malware VirusShare Symantec ClamAV 
Total count in corpus identified as malicious 1,201 7,331 151,621 626 1,662 
Total count in corpus identified as 
nonmalicious 

303,332 303,332 303,332 303,332 303,332 

File size 0 or 1 -0.3 -0.7 -0.9 -0.2 -0.3 
Rounded log file size = 5 -5.5 -19.5 +112 -5.2 -7.1 
Rounded log file size = 10 +9.3 +22.5 -9.0 -6.5 -3.1 
Rounded log file size = 15 +2.5 +23.4 +16.8 +4.6 +16.9 
Level = 1 +26.2 +9.7 -47.1 -2.4 +14.7 
Level = 5 +2.5 +7.4 -85.2 -5.3 +5.5 
Level = 10 -6.6 -15.8 -8.2 -1.2 -8.0 
Level = 15 -2.3 -5.3 -24.5 -1.6 -2.7 
Deleted file +4.2 +3.1 +1159 -1.4 +10.6 
Extension/ libmagic 
incompatible 

+6.4 -4.1 -60.0 +9.1 +6.6 

Odd creation time +17.7 +9.1 -46.1 -2.0 +13.2 
Rare hash value -0.3 +2.1 -1.6 -0.2 -0.3 
Rare extension +2151 +583 -24.4 +2874 +3287 
Double extension -1.6 -6.2 -17.0 +12.8 +5.3 
Long extension -0.9 -1.5 +8.0 -0.7 -0.2 
Encryption extension -1.9 -4.2 -17.6 -0.6 -2.2 
Odd characters in path +6.4 +7.2 +29.0 -3.6 -0.6 
Repeated pattern in path -0.4 +0.8 +16.4 -0.3 +75.5 
Misspelling in path -1.2 -1.2 -11.9 -0.8 +0.1 
Extension type: None -10.5 -27.5 -17.9 -8.2 -12.8 
Extension type: Photograph -5.3 -14.8 +110 -3.1 -4.6 
Extension type: Link +4.8 -1.8 -15.9 -1.0 -1.1 
Extension type: Video -2.2 -5.0 -12.6 -1.6 -2.5 
Extension type: Executable +54.5 +162 -166 +18.2 +25.3 
Extension type: Drive image -1.1 -2.3 -8.1 -0.8 -1.3 
Extension type: Query -0.9 -2.3 +20.8 -0.7 -1.1 
Extension type: Installation +6.4 -5.0 -43.8 -2.2 -0.4 
Extension type: Networking -0.8 -0.9 -8.5 -0.6 -0.9 
Extension type: Hardware -0.4 +1.8 -14.0 -0.9 -1.5 
Extension type: Engineering -2.5 -6.2 -27.0 -1.8 -3.0 
Extension type: Miscellaneous -1.5 -1.1 +19.0 -1.1 +2.1 
Top-level directory type: Hardware -2.3 +3.0 +47.9 +11.3 +42.4 
Top-level directory type: Temporaries +2.6 +8.1 -121 +14.4 -2.3 
Top-level directory type: Games -2.5 +3.5 -46.1 -2.7 -3.2 
Top-level directory type: Miscellaneous +24.7 +20.2 -42.1 -1.8 +33.8 
Immediate directory type: Operating system +6.0 +9.5 -56.0 -8.8 -9.1 
Immediate directory type: Backup -5.7 -16.6 -80.0 -5.5 -5.7 
Immediate directory type: Audio -2.2 -3.8 +90.7 -2.6 +0.3 
Immediate directory type: Data +2.5 -6.4 +60.0 -2.0 -4.4 
Immediate directory type: Security +14.5 +20.8 +18.3 +20.1 +2.0 
Immediate directory type: Games +1.0 +10.8 +907 -0.2 -0.5 
Immediate directory type: Miscellaneous  +15.8 +28.4 -22.5 -1.5 +50.1 

 

4.2. Building a better quick scan 

These results can reduce the time to find malware on a 
system.  Malware could hide anywhere, but our conditional 
probabilities enable us to rank its likelihood from context so 
we can try the most likely places first.  This is useful in 
designing “quick scans” for malware in which we only 
check part of a drive. 

To compute odds of each clue, the set of hash values in 
our corpus was split randomly.  Files were found 
corresponding to the two half-sets of hash values, about 124 
million files each.  Conditional probabilities for the clues 
discussed above were calculated and converted into odds for 
one half of the corpus.  Additional clues that were tested 
were the actual file extension, top-level directory, bottom-
level directory, and file name.  Clues relating to the times of 
the file were excluded, however, because prediction is the 
goal and there is no guarantee that current time patterns will 
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reoccur.  Clues were only included if they occurred at least 
R times and were significant at a level greater than 2.0 
standard deviations above or below the expected value.  
Clues were then tested for each file in the other half of the 
corpus.  Assessment was by a normalization of the Naïve 
Bayes odds formula:  

1 2
1 (1/N)

1 2

(M | (C ... ))

[ (M | C ) (M | C )... (M | C ) / (o(M)) ]
M

N
M

o C C
o o o −

∧ ∧ ∧ =
 

Here o mans odds, M means “file was malicious”, and C 
means clue.  Odds were calculated with Laplace-smoothing 
constant K:  

(M | C) [( (M& C) ( * n(M) / n(O)) / n(M)] /
[(n(O& C) ) / n(O)]
o n K

K
= +
+

Here n means count and O means “file is nonmalicious”.  
Normalization was necessary because files varied in the 
number of significant clues they presented. 

Two constants R and K need to be optimized.  R is the 
threshold for reliable counts on clues, and K represents the 
“background noise” of the clue.  We did experiments on a 
different random sample of 30% of our corpus to vary R and 
K and measure the F-score (Table 2).  There was not much 
variation in effect, but the best values appeared to be R=15 
and K=30 and these were used in subsequent experiments. 

Table 2.  Effects of varying R (minimum count) and K 
(damping constant) on malware F-score. 

 R=10 R=20 R=40 R=100  
K=1 .1558 .1558 .1549 .1511 
K=10 .1560 .1560 .1551 .1505 
K=30 .1566 .1566 .1548 .1505 
K=100 .1554 .1555 .1546 .1482 

 
To test ability to rank malware, 100 evenly spaced 

threshold values on the combined odds were chosen and 
recall (fraction of malware over the threshold) and precision 
(fraction of files over the threshold that were malware) were 
calculated.  Recall is important because a high value reduces 
the need and rate of doing full scans for malware, but 
precision is important too since a low value requires more 
files to be scanned unnecessarily.  F-score is the classic way 
to trade them off.  Malware was defined by our consensus 
list of malicious hashcodes, the union of the results of the 
five malware-identification methods. 

We conducted this experiment three times on three 
random partitions of our corpus (with a total of 612,818 
instances of malware and 128,776,919 instances of non-
malware for training), using one half for training and one 
half for testing.  The recall values were 0.343, 0.305 and 
0.333; the precision values were 0.213, 0.211, and 0.211; 
and the resulting F-scores were 0.263, 0.249, and 0.259.  So 
there was not much variation in the results, and this supports 
the generality of our corpus for training purposes.  But if 
one is willing to accept a much lower precision of 0.010 
with our methods, we can obtain a better recall in finding 

malware of 0.650.  By comparison, selecting only the 
executable files gave 0.005 precision (for 22,940,397 
executables total) and 0.190 recall (for 116,235 malicious 
executables) for an F-score of 0.0097.  Hence our methods 
give 5.1 times better precision with 1.7 times better recall 
over inspecting executables alone.  Similarly, selecting only 
the files in operating-system top-level directories gave 0.003 
precision and 0.189 recall, and selecting only the files in 
applications top-level directories gave 0.00031 precision and 
0.056 recall, so searching for malware in particular 
directories is an even poorer strategy.  A possible objection 
is that malware in executables, the operating system, and 
applications directories is more serious than in other places, 
but this is questionable since malware loads from many 
kinds of files today. 

Our clues are straightforward to compute, and can be 
done on a drive once upon setup, then recalculated every 
time a file changes.  Note they will be significantly faster to 
obtain than signatures of files because most involve 
metadata, with only a few clues requiring computation of a 
hash value on a file, something often computed routinely in 
investigations.   

5. Finding uninteresting files in standard 
investigations 

In standard criminal investigations, files can be judged 
interesting or uninteresting by a much wider range of 
criteria.  However, the criteria can be considerably stronger 
than with malware; for instance, a file that occurs on 100 
different drives is unlikely to provide the evidential 
specificity to help in a criminal investigation.  Again we use 
the definition that uninteresting files do not contain user-
created nor user-discriminating data. 

5.1. Proposed uninteresting-file identification 
methods 

Nine methods to identify uninteresting files and then their 
hash values were investigated as summarized in Table 3.  
Parameters of these methods were set by the experiments 
reported in section 5.4. The methods were: 

• HA, frequent hashes: Files on many different drives 
with the same hash value on their contents.  Hash 
values that occur on only two drives in a corpus 
could suggest sharing of information between 
investigative targets.  But hash values occurring 
more often are likely to be distributions from a 
central source and are unlikely to be forensically 
interesting.  An example in our corpus was 
C161336552062A51C5130ECAB3F59BF3 which 
occurred on five drives as Documents and 
Settings/Administrator/ Local Settings/Temporary 
Internet Files/ Content.IE5/ ZBX73TSW/tabs[1].js, 
Documents and Settings/ Friend/Local 
Settings/Temporary Internet 
Files/Content.IE5/0P2NOXY3/ tabcontent[1].js, 
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deleted file Documents and Settings/user/Local 
Settings/Temporary Internet Files/Content.IE5/ 
KLM7E1U9/tabcontent[1].js, deleted file 
tabcontent[1].js with lost directory information, and 
deleted file E5/322B0d01.  It did not occur in 
NSRL.  It represents tab information in a Web 
browser.  The threshold must be on number of 
drives, not the number of files, since installation 
and backup copies of files on the same drive are 
common. 

• PA, frequent paths: Files with the same full path 
(file name plus directories) on many different 
drives.  Frequently occurring paths are likely 
default locations for software.  Such paths include 
different versions of the same file, such as 
configuration files for different users or successive 
versions of an updated executable.  An example 
from our corpus was 
restore/WINDOWS/inf/fltmgr.PNF which occurred 
on six drives, and none of its hash values were in 
NSRL. 

• BD, frequent bottom-level (“immediate”) 
directory-filename pairs: Files whose pair of the 
file name and the immediate directories above it 
occurred especially frequently.  This will catch 
versions of software in different directories under 
different versions of an operating system.  
Examples from our corpus were 
WINDOWS/$NtUninstallWIC$ with 60 
occurrences in our corpus and 
Config.Msi/4a621.rbf with 20 occurrences; neither 
of them had any hash values in NSRL.  This will 
also catch many hidden files in common 
directories. 

• TM, files with clustered creation times: Files 
created within a short period of time on the same 
drive.  Such clusters suggest automated copying 
from an external source, particularly if the rate of 
creation exceeded human limits.  An example from 
our corpus were seven files created on one drive 
within one second under the directory Program 
Files/Adobe/Adobe Flash CS3/adobe_epic/ 
personalization: pl_PL, pl_PL/., pl_PL/.., pt_BR, 
pt_BR/., pt_BR/.., and pt_PT.  All were 56 bytes, 
and two hash values were not in NSRL.  Creation 
times are more useful than access and modification 
times because they are often installation times. 

• WK, files created in busy weeks: Files created 
unusually frequently in particular weeks across all 
drives, which suggest software updates.  A period 
of a week is appropriate since it takes several days 
for most users to download an update.  Figure 2 
shows some example sharp peaks in a typical 
distribution of creation times by week in our 
corpus.  We first find "busy" weeks, then "busy" 
directories (full path minus the file name) in the 
busy weeks, those whose frequency of creation was 
a threshold number of times greater than their 
average creation time per week.  The hash values 

 

Table 3.  Methods for identifying uninteresting files. 

Method  Scope Primary 
data 

Secondary 
data 

Considers 
deleted 
files? 

HA Corpus-
wide 

Hash 
values 

None Yes 

PA Corpus-
wide 

Full paths None Yes 

BD Corpus-
wide 

File name 
and 
containing 
directory 

None No 

TM Single-
drive 

Creation 
times 
within the 
minute 

None No 

WK Corpus-
wide 

Creation 
times 
within the 
week 

Paths 
minus file 
name 

No 

SZ Corpus-
wide 

File sizes Full paths No 

CD Single-
drive 

Full paths 
in a 
directory 

File 
extensions 

No 

TD Single-
drive 

Front and 
inside of 
paths 

None Yes 

EX Single-
drive 

File 
extension 

None No 

 

 

Figure 2.  Portion of histogram of creation times per 
week in our corpus. 

for files in those busy directories on those busy days 
are then the proposed as uninteresting. 
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• SZ, files with frequent sizes: Files with unusually 
common pairs of size and extension.  This recognizes 
fixed-size formats with different contents like 
screensaver images.  To reduce false matches it is 
important to apply the additional criterion that the 
extension must occur unusually often in all files of that 
size.  Examples from our corpus were all 31 files of 
size 512 in directory System/Mail/00100000_S, and 8 
files of size 2585 in directory Program Files/ 
Sun/JavaDB/docs/html/tools/ctoolsijcomref with 
extension html, none of which had hash values in 
NSRL.  Files less than a minimum size are also very 
unlikely to contain forensically useful information.  For 
example, there were 4,223,667 files of zero length in 
the corpus.  We set a minimum of 6 bytes from 
experiments with samples of the corpus. 

• CD, contextually uninteresting files. Directories in 
which more than a certain fraction of files were already 
identified as uninteresting by other methods suggest 
that the rest are also uninteresting by “contagion”.  An 
example was directory Program Files/Yahoo!/ 
Messenger/skins/Purple/images and the previously 
unclassified files bg_hover.png, _GLH0307.TMP, and 
bg_selected.png.  This method can be used to bootstrap 
better performance on each run of a corpus. 

• TD, files in known uninteresting top-level or mid-level 
directories.  We manually compiled lists from study of 
the files remaining after filtering on the other criteria 
mentioned here, and obtained 5752 top-level and 750 
mid-level directories.  Example uninteresting top-level 
directories were APPS/Symantec AntiVirus, GTA Vice 
City, FOUND.029, Program Files (x86)/AutoCAD 
2008, and sys/uninstall; example mid-level directories 
were /Help/ and /Java Update/.  It is important not to 
exclude all applications and operating-system 
directories (WINNT, etc.) because some software keeps 
user information such as logs and configuration files 
there, and in some cases, user data. 

• EX, files with known uninteresting extensions.  Some 
extensions are exclusively associated with operating 
systems and software, such as exe, mui, and chm.  We 
used a classification of file extensions that we are 
developing [16] that maps 14,396 extensions to 45 
categories.  The categories we labelled as nonuser and 
thus uninteresting were operating-system, graphics, 
database, help, executable, disk image, XML, 
geography, copies, dictionary, query, integer, index, 
configuration, installs and updates, security, known 
malicious, games, engineering, science, signals, and 
virtual machines.  Some investigations may want to 
shorten this list, and exceptions can also be made with 
the methods described in the next section.  Files with 
no extensions and extensions with more than one 
category were not considered ruled out by this 
criterion.  

13.6% of the files in the corpus were identified as 
deleted.  We excluded these as sources of new hash values 
with three exceptions because [16] found that deleted files 

can have corrupted metadata.   Directories were often 
missing for deleted files, and we even saw inconsistencies in 
the sizes of reported by SleuthKit for deleted files.  
However, the same hash value or the same path appearing 
repeatedly is unlikely to be a coincidence even if they were 
all deleted, and long directory paths are likely correct, so we 
ignored deletion status in methods HA, PA, and TD. 

Files for which drive acquisition could not find hash 
values can also be eliminated on some criteria; missing hash 
values can occur for deleted files with incomplete metadata.  
For those we applied the BD, TD, and EX criteria to 
individual file records, and eliminated files matching at least 
two criteria.  HA will not work with missing hash values; 
PA will not work with the frequent missing fronts of deleted 
files; TM and WK will not work with unreliable timestamps; 
SZ will not work with unreliable file sizes; and CD will not 
work when whole directories are deleted.  We also 
eliminated default directory files in this final filtering.   

5.2. Identifying explicitly interesting files 

Since reducing false positives with uninteresting files 
(interesting files that were incorrectly identified as 
uninteresting) can be very important in a forensic 
investigation, despite our low observed rates, we 
investigated six methods to explicitly identify potentially 
interesting files, some of which were studied in [18].  The 
first five look for clues of deliberate concealment [2], a 
definite possibility in many criminal investigations.  Several 
software packages also claim to find anomalous files (e.g. 
Redwood, try.lab41.org), and related work has addressed the 
finding of traces of intrusions in storage [14]. 

(i) Files with hash values that occurred only once in our 
corpus where their same path occurs many times with a 
predominant different hash value.  These could be 
deliberate camouflaged. 

(ii) Hashes that occurred just once in our corpus under a 
different file name than the predominant one for that 
hash.  These could be deliberate renaming. 

(iii) Files created in atypical weeks for the predominant 
week of their directory.  These could be deliberately 
hidden files. 

(iv) Files whose extension is inconsistent with the type 
assigned by “magic-number” header-tail analysis of the 
file contents such as by the Linux “file” utility.  We 
used our extension taxonomy to classify extensions, 
and built a mapping from magic-number descriptions to 
the extension taxonomy classes (2,820 mappings were 
necessary) for comparison.  These could be attempts at 
camouflage. 

(v) Files whose hashes had inconsistent sizes.  These were 
always associated with faulty information about deleted 
files for our corpus, but could also indicate deliberate 
attempts to conceal in other corpori. 

(vi) Files with directories or extensions (when not in 
software directories) that are flagged explicitly as 
interesting.  Directory examples are directories for 
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encryption, disk wiping, and hacking tools.  Extension 
examples are JPG and HTM when not in software 
directories. 

5.3. Coverage and redundancy of the hash 
sets 

We inspected the hash values in our corpus that matched the 
NSRL RDS and concluded they were highly reliable since, 
in random samples we saw no interesting files incorrectly 
included.  This makes sense because the collection 
technique of the NSRL (buying the software, installing it, 
and inspecting its files) is a highly reliable at identifying 
forensically uninteresting files.  So we eliminated files 

whose hash values matched NSRL entries as a first step.  
This reduced the number of distinct hashes from 35.80 
million to 33.42 million. 

At this point any further sets of uninteresting hash values 
can be applied, including the hashes of eliminated files from 
previous runs of our software.  But in the experiments here, 
the methods described in sections 5.1 and 5.2 were applied 
to the full remaining data.  To analyse the coverage and 
redundancy of the hash sets identified as uninteresting, we 
computed the sizes of their intersections (Table 4). The code 
labels are defined in section 5.1.  It can be seen that there is 
some overlap but not a large amount, which argues for the 
use of all the methods together. 

Table 4.  Intersection sizes of uninteresting hash sets in our corpus, in millions. 

 HA PA BD TM WK SZ CD TD EX 
HA, frequent hashes 2.37 1.25 0.90 1.12 1.04 5.6 0.61 2.26 0.66 
PA, frequent paths 1.25 5.86 3.17 1.50 1.14 1.73 2.15 3.77 0.72 
BD, frequent immediate 
directories 

0.90 3.17 4.69 1.03 0.87 1.74 1.77 4.15 0.75 

TM, creation time clusters 1.12 1.50 1.03 7.29 0.63 1.65 2.00 4.56 2.46 
WK, busy weeks 1.04 1.14 0.87 0.63 1.73 0.73 0.77 1.66 0.31 
SZ, frequent sizes 5.6 1.73 1.74 1.65 0.73 7.08 1.34 4.04 0.71 
CD, directory context 0.61 2.15 1.77 2.00 0.77 1.34 7.18 4.48 1.18 
TD, uninteresting directories 2.26 3.77 4.15 4.56 1.66 4.04 4.48 15.31 2.83 
EX, uninteresting extensions 0.66 0.72 0.75 2.46 0.31 0.71 1.18 2.83 3.43 

 
 

5.4. Accuracy of our methods for finding 
uninteresting and interesting hash values. 

To investigate the accuracy of our methods, we 
constructed a test set of 19,784 files by randomly sampling 
our corpus after elimination of all files in the NSRL.  We 
laboriously inspected the metadata of the test set, and 
identified 18,223 of these as definitely uninteresting for all 
but special kinds of forensic investigation.  We manually 
inspected the contents of as many as we could of the 
remaining 1,562 (some drive images were faulty), using 
associated software where possible such as image viewers 
for pictures, document viewers for documents, and a 
hexadecimal editor for the remainder.  This process 
identified 270 more uninteresting files, for a final total of 
1,292 interesting or possibly interesting files in the test set 
(6.53%) and 18,492 definitely uninteresting files.  Some 
files were encoded and unclear in function, so the 1,292 
could well have included more uninteresting files. 

Our software described herein eliminated all but 5,658 of 
the test set as uninteresting using what we determined to be 
optimal parameter settings.  After all filtering and adding 
back in of interesting hash values, 23 of the 14,126 
eliminated files were actually or possibly interesting (false 
positives) according to our manual inspection, for a 

precision of 0.9982 for eliminated files.  5,396 of the 6,751 
uneliminated files were actually uninteresting (false 
negatives), for a recall of 0.7069 for eliminated files.  
Precision here is considerably more important than recall 
since mistaken elimination of files removes them from an 
investigation whereas mistaken failure to eliminate files just 
increases the workload of the investigator a little, so the high 
observed precision is very encouraging.  The 23 false 
positives included a frequently-seen government-retirement 
guide (whose presence could indicate a desire to retire), a 
cache file for an accounting system (but it could be a 
default), a geographical-information cache (also possibly a 
default), a document that was part of a large library 
downloaded at one time, and 11 unidentifiable deleted files 
that were missing directory information.  The 5,396 false 
negatives included software installed in atpyical places 
rather than “Program Files” and “Applications”, as well as 
documents and Web pages associated with software. 

Table 5 shows the results of tests on the precision and 
recall for each of our methods for identifying uninteresting 
files (Table 5), varying the key parameters to see their 
effects.  Measurements were made with the list of hash 
values delivered by the method.  Here “mindrives” is the 
minimum number of drives on which the data occurs, 
“segcount” is the number of segments on the right end of the 
path that define the immediate directory, “weekmult” is how 
many times busier a week must be than the average week, 
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“pathmult” is the minimum number of times of occurrence 
more than the typical path, “mindev” is the minimum 
number of standard deviations more than the mean number 
of occurrences that are required, “mindircount” is the 
minimum-size directory examined, and “fracmin” is the 
minimum fraction of the files in the directory that are 
already known to be uninteresting.  Note that the 
“mindrives” parameter should be proportional to the number 
of drives in a corpus.  Our corpus had 4018 drives, so 
mindrives should be multiplied by the number of drives in a 
new corpus divided by 4018.  The other parameters do not 
need such adjustment. 

It can be seen that false positives and false negatives 
trade off consistently as parameters vary, so the best set of 
parameters reflects the relative weight of precision to recall.  
It is impossible to eliminate false negatives completely for 
most corpori because there are several legitimate reasons for 
them: 

• For HA, PA, and BD, some files that appear frequently 
may still be interesting, as for instance documents 
explaining how to make a bomb on drives obtained 
from criminals. 

• For WK and SZ, interesting files may be loaded by 
coincidence during busy weeks or coincidentally have 
the same size as standard formats. 

• For TM and CD, interesting files may occur in the 
midst of mostly uninteresting files by software design. 

• For TD and EX, users may try to deceive investigators 
by camouflaging files.  However, deception can be 
detected by other methods. 

Table 6 shows the effects of varying the required number 
of clues to identify a file as uninteresting before we removed 
the explicitly interesting files from the hash sets.  Requiring 
two clues appears to be best since recall decreases 
significantly for larger numbers with little effect on the near-
perfect precision.  Higher false positives could be acceptable 
in preliminary investigation of a corpus, but might be 
unacceptable in criminal investigation because of the 
possibility of excluding potential key evidence in a case. 

Table 6 also shows the effect of choosing all low values 
for the parameters, all intermediate (“medium”) values for 
the parameters, and all high values for the parameters.  This 
tested the synergistic effect of having multiple clues.  We 
further tested the effects of requiring 2 out of 8 of the clues, 
excluding each clue in turn, but it made little difference to 
the precision while decreasing the recall significantly.  The 
last row gives statistics for the final result, after adding the 
uninteresting hashless files and default-directory files such 
as “..”, and then subtracting the interesting files as discussed 
in the next section. 
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Table 5.  Effects of parameter variation on performance of different methods of identifying uninteresting files. 

Method Parameter values True 
positives 

False 
positives 

False 
negatives 

Precision Recall 

HA, frequent hashes mindrives = 2 11601 121 6770 .9897 .6315 
HA, frequent hashes mindrives = 5 10816 25 7555 .9977 .5888 
HA, frequent hashes mindrives = 12 9891 14 8480 .9986 .5384 
PA, frequent paths mindrives = 10 11922 67 6449 .9944 .6490 
PA, frequent paths mindrives = 20 11430 26 7941 .9975 .5677 
PA, frequent paths mindrives = 40 9970 21 8401 .9979 .5427 
BD, frequent botdirs mindrives = 25, segcount = 1 10885 76 7486 .9931 .5925 
BD, frequent botdirs mindrives = 25, segcount = 2 10338 23 8033 .9978 .5627 
BD, frequent botdirs mindrives = 25, segcount = 3 9827 17 8544 .9983 .5349 
BD, frequent botdirs mindrives = 50, segcount = 1 9109 66 9262 .9928 .4958 
BD, frequent botdirs mindrives = 50, segcount = 2 7824 22 10547 .9972 .4259 
BD, frequent botdirs mindrives = 50, segcount = 3 7320 17 11051 .9977 .3985 
BD, frequent botdirs mindrives = 100, segcount = 1 7336 51 11035 .9931 .3993 
BD, frequent botdirs mindrives = 100, segcount = 2 6021 17 12350 .9972 .3277 
BD, frequent botdirs mindrives = 100, segcount = 3 5574 13 12797 .9977 .3034 
TM, time context minimum count within minute = 25 7613 65 10758 .9915 .4144 
TM, time context minimum count within minute = 50 7408 55 10963 .9926 .4032 
TM, time context minimum count within minute = 100 7160 48 11211 .9933 .3897 
WK, frequent weeks weekmult = 2, pathmult = 50 7175 16 11196 .9978 .3906 
WK, frequent weeks weekmult = 2, pathmult = 100 7053 14 11318 .9980 .3839 
WK, frequent weeks weekmult = 2, pathmult = 200 6864 13 11507 .9981 .3736 
WK, frequent weeks weekmult = 5, pathmult = 50 6680 14 11691 .9979 .3636 
WK, frequent weeks weekmult = 5, pathmult = 100 6500 13 11871 .9980 .3538 
WK, frequent weeks weekmult = 5, pathmult = 200 6376 12 11995 .9981 .3470 
WK, frequent weeks weekmult = 12, pathmult = 50 5820 4 12551 .9993 .3168 
WK, frequent weeks weekmult = 12, pathmult = 100 5800 4 12571 .9993 .3157 
WK, frequent weeks weekmult = 12, pathmult = 200 5767 4 12604 .9993 .3139 
SZ, frequent sizes mincount = 5, mindev = 5 4818 138 13453 .9727 .2677 
SZ, frequent sizes mincount = 5, mindev = 10 4642 108 13729 .9773 .2527 
SZ, frequent sizes mincount = 5, mindev = 20 4101 87 14270 .9792 .2232 
SZ, frequent sizes mincount = 10, mindev = 5 4901 135 13470 .9732 .2669 
SZ, frequent sizes mincount = 10, mindev = 10 4633 106 13738 .9776 .2522 
SZ, frequent sizes mincount = 10, mindev = 20 4093 85 14278 .9797 .2228 
SZ, frequent sizes mincount = 20, mindev = 5 4862 132 13509 .9736 .2647 
SZ, frequent sizes mincount = 20, mindev = 10 4604 105 13767 .9777 .2506 
SZ, frequent sizes mincount = 20, mindev = 20 4079 84 14292 .9798 .2506 
CD, directory context mindircount=16, fracmin=0.5 7781 193 10590 .9758 .4236 
CD, directory context mindircount=16, fracmin=0.8 7464 139 10907 .9817 .4063 
CD, directory context mindircount=16, fracmin=0.95 7345 122 11026 .9837 .3998 
CD, directory context mindircount=40, fracmin=0.5 7229 185 11142 .9751 .3935 
CD, directory context mindircount=40, fracmin=0.8 8137 534 9999 .9813 .3791 
CD, directory context mindircount=40, fracmin=0.95 6858 114 11513 .9837 .3733 
CD, directory context mindircount=100, fracmin=0.5 6525 165 11846 .9753 .3352 
CD, directory context mindircount=100, fracmin=0.8 6263 114 12108 .9821 .3409 
CD, directory context mindircount=100, fracmin=0.95 6149 97 12222 .9845 .3347 
TD, unint. topdirs none 14274 60 4133 .9958 .7755 
EX, unint. extensions none 3762 9 14609 .9976 .2048 
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Table 6.  Additional effects of parameter variation on the accuracy of identifying uninteresting files. 

Method True 
positives 

False 
positives 

False 
negatives 

Precision Recall 

Any 1 of the 9 clues, medium parameters 15825 356 2582 .9798 .8597 
Any 2 of the 9 clues, medium parameters 14144 68 4263 .9952 .7684 
Any 3 of the 9 clues, medium parameters 12251 18 6156 .9985 .6656 
Any 4 of the 9 clues, medium parameters 10639 15 7768 .9986 .5780 
Any 5 of the 9 clues, medium parameters 8553 8 9854 .9991 .4447 
Any 6 of the 9 clues, medium parameters 6023 4 12384 .9993 .3272 
Any 7 of the 9 clues, medium parameters 3706 1 14701 .9997 .2013 
Any 8 of the 9 clues, medium parameters 1366 1 17041 .9993 .0742 
All 9 of the 9 clues, medium parameters 113 0 18294 1.0000 .0061 
All low values of the parameters, 2 out of 9 clues 14851 887 3285 .9436 .8188 
All medium values of the parameters, 2 of the 9 clues 14144 68 4263 .9952 .7684 
All high values of the parameters, 2 of 9 clues 11527 33 6609 .9972 .6356 
Any 2 of 8 clues excluding HA 14144 68 4263 .9952 .7684 
Any 2  of 8 clues excluding PA 13718 63 4689 .9954 .7453 
Any 2  of 8 clues excluding BD 13874 64 4533 .9954 .7537 
Any 2  of 8 clues excluding TM 14045 63 4362 .9955 .7630 
Any 2  of 8 clues excluding WK 13653 55 4754 .9960 .7417 
Any 2  of 8 clues excluding SZ 14112 62 4295 .9956 .7667 
Any 2  of 8 clues excluding CD 13707 35 4700 .9975 .7447 
Any 2  of 8 clues excluding TD 13657 52 4750 .9962 .7420 
Any 2  of 8 clues excluding EX 12713 52 5694 .9959 .6907 
Any 2 of 9 clues, medium parameters, minus potentially 
interesting files, plus uninteresting hashless and default-
directory files 

13011 23 5396 .9982 .7069 

 

 
5.5. Accuracy of our methods of finding 
interesting hash values 

 
Table 7 shows results on the accuracy of the six methods 

for detecting interesting hash values. Their performance was 
poor with the exception of the last method.  For these 
experiments, true positives were defined as files identified 
both as interesting in our test set and by our methods, false 
positives were files identified as interesting only by our 
methods, and false negatives were files identified as 

interesting only in our test set.  Here “mincount” is the 
minimum size of the directory considered, and “minfrac” is 
the minimum fraction of the most common hash or path.  
Results are likely poor due to the minimal concealment in 
our data.  We used only the hash values from the last 
method in the final results reported here.  However, files 
obtained during criminal and intelligence investigations are 
more likely to show concealment, and such files could be 
critical in an investigation.  It is thus recommended that all 
these interesting-file methods should be run whenever the 
uninteresting-file methods are too. 
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Table 7.  Effects on parameter variation on performance of different methods for identifying interesting files. 

Method Parameter values True 
positives 

False 
positives 

False 
negatives 

Precision Recall 

Hashes occurring only once 
for a given path 

mincount=10, minfrac=0.5 4 565 1203 .0070 .0033 

same mincount=10, minfrac=0.8 4 475 1203 .0094 .0033 
same mincount=10, minfrac=0.95 1 439 1206 .0023 .0008 
same mincount=30, minfrac=0.5 3 503 1204 .0059 .0025 
same mincount=30, minfrac=0.8 3 451 1204 .0066 .0025 
same mincount=30, minfrac=0.95 1 438 1206 .0023 .0008 
same mincount=100, minfrac=0.5 2 422 1205 .0047 .0017 
same mincount=100, minfrac=0.8 2 388 1205 .0051 .0017 
same mincount=100,minfrac=0.95 0 384 1207 .0000 .0000 
Path names occurring only 
once for a given hash 

mincount=10, minfrac=0.5 5 293 1202 .0168 .0041 

same mincount=10, minfrac=0.8 3 247 1204 .0120 .0025 
same mincount=10, minfrac=0.95 2 171 1205 .0116 .0017 
same mincount=30, minfrac=0.5 4 226 1203 .0174 .0033 
same mincount=30, minfrac=0.8 2 201 1205 .0099 .0017 
same mincount=30, minfrac=0.95 1 165 1206 .0060 .0008 
same mincount=100, minfrac=0.5 1 144 1206 .0069 .0008 
same mincount=100, minfrac=0.8 1 134 1206 .0074 .0008 
same mincount=100, minfrac=0.95 1 120 1206 .0083 .0008 
Files created in atypical weeks  
for their directories 

mincount=10, minfrac=0.5 0 216 1207 .0000 .0000 

same mincount=10,minfrac=0.8 0 212 1207 .0000 .0000 
same mincount=10, minfrac=0.95 0 27 1207 .0000 .0000 
same mincount=30, minfrac=0.5 0 23 1207 .0000 .0000 
same mincount=30, minfrac=0.8 0 20 1207 .0000 .0000 
same mincount=30, minfrac=0.95 0 0 1205 .0000 .0000 
same mincount=100, minfrac=0.5 0 211 1207 .0000 .0000 
same mincount=100, minfrac=0.8 0 203 1207 .0000 .0000 
same mincount=100, minfrac=0.95 0 20 1207 .0000 .0000 
Inconsistency between extension  
and magic-number analysis 

None 5 2602 1202 .0019 .0041 

Inconsistency in file size for 
the same hash value 

None 0 67 1207 .0000 .0000 

Explicitly identified interesting  
extension or directory 

None 552 1478 655 .2719 .4573 

5.6. Additional analysis 

Overall statistics on file and hash eliminations are 
given in Table 8.  The full run our corpus files with the 
optimal parameters took 2748 minutes (just short of two 
days) as a single process on a single Redhat Enterprise 
Linux 7 system.  This is a one-time cost that does not 
affect the speed of online usage of the hash values.  The 
test machine had 515 gigabytes of main memory shared 
with other researchers, and we found we had to limit main 
memory usage to 200 gigabytes maximum by splitting 
files as necessary.  Input was DFXML-format metadata 
(as defined at www.nsrl.nist.org).  Much of the processing 
could be partitioned to separate processors to decrease 
completion time if desired. 

 
 

Table 8.  Overall statistics on file and hash 
elimination and their data reduction percentages. 

Set Number of 
files 
(millions) 

Number of 
distinct 
hashes 
(millions) 

Full corpus 262.7 35.80 
Full corpus minus 
NSRL 

200.1 
(76.2%) 

33.42 
(93.4%) 

Same minus those files 
identified by 2 of 9 
methods as 
uninteresting 

56.2  
(21.4%) 

19.27 
(53.8%) 

Same minus 
uninteresting hashless 
or default-hash files 

46.0 
(17.5%) 

19.26 
(53.8%) 

Same plus potentially 
interesting files 

59.5 
(22.6%) 

20.32 
(56.8%) 

http://www.nsrl.nist.org/
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We compared the types of files before and after 
filtering out uninteresting files using our aforementioned 
taxonomy on file extensions.  Operating-system files went 
from 6.1% to 1.0%, installation and update files went 
from 1.5% to 0.4%, executables went from 10.9% to 
3.3%, program source (including scripts) from 9.3% to 
7.0%, XML from 3.0% to 2.2%, integer extensions from 
0.8% to 0.4%, indices from 4.4% to 0.1%, and games 
from 1.5% to 0.1%.  Camera images increased from 3.6% 
to 10.3%, Web files and links from 9.6% to 12.2%, 
documents from 2.9% to 6.8%, audio from 1.4% to 2.8%, 
video from 0.3% to 1.1%, email and messaging from 
0.1% to 0.4%, temporaries from 0.9% to 1.6%, logs from 
0.3% to 0.7%, database-related files from 0.4% to 0.7%, 
geography-related files from 0.1% to 0.3%, and 
extensionless files from 9.7% to 16.8%.  All other file-
type percentages did not change significantly, including 

notably graphics, configuration files, copies, security-
related files, and files with multiuse extensions.  Note that 
a hash value appearing with multiple paths was eliminated 
if there were two clues for any of the paths, not 
necessarily for all of the paths. 

A criticism made of some hash-value collections is that 
their values will rarely occur again.  So an important test 
for our proposed new "uninteresting" hash values is to 
compare those acquired from different drives.  For this we 
split the corpus into two pieces C1 and C2 based on the 
drives, roughly drives processed before 2012 and those 
processed in 2012 and 2013.  We did not include any 
drives from our school in this experiment because they are 
centrally managed and share much software.  We 
extracted uninteresting hash values using our methods for 
both separately, and then compared them.   Table 9 shows 
the results. 

Table 9.  Statistical comparison of hashes derived from partition of our corpus into two halves, where HA=hashes, 
PA=paths, TM=time, SZ=size, BD=bottom-level directory, CD=directory context, TD=top-level directory, 

EX=extension. 

Method of 
obtaining 
new hash 
values 

Fraction of 
values found 
for C1 also 
found for C2  

Fraction of 
values found 
for C2 also 
found for C1 

Fraction of all 
hash values for 
C1 identified by  
method using C1 

Fraction of all 
hash values for 
C2 identified by 
method using C2 

Fraction of all 
hash values for 
C2 identified by 
method using C1 

Fraction of all 
hash values for 
C1 identified by 
method using C2 

HA .717 .597 .438 .355 .344 .389 
PA .661 .458 .399 .291 .299 .312 
TM .529 .365 .668 .493 .430 .477 
WK .457 .234 .445 .303 .358 .323 
SZ .339 .246 .196 .187 .157 .145 
BD .583 .484 .474 .384 .350 .406 
CD .640 .486 .558 .447 .411 .467 
TD .553 .436 .627 .485 .419 .474 
EX .603 .439 .497 .373 .338 .397 
 
 

This table provides two kinds of indicators of the 
generality of a hash-obtaining method.  One is the average 
of the second and third columns, which indicates the 
overlap between the hash sets.  On this SZ is the weakest 
method and WK is second weakest, which makes sense 
because these methods seek clustered downloads and 
some clusters are forensically interesting.  Another 
indicator is the ratios of column 7 to column 4 and 
column 6 to column 5, which indicate the degree to which 
the hash values found generalize from a training set to a 
test set.  The average for the above data was 0.789 for the 
average of column 7 to column 4, and 0.938 for the 
average of column 6 to column 5, which indicates a good 
degree of generality.  No methods were unusually poor on 
the second indicator. 

We also compared the uninteresting hashes found for 
the 2013 version of the corpus with those of two 
commercial hashsets, the April 2013 download of the Bit9 
Cyber Forensics Service (www.bit9.com) and the June 
2012 download of the hash list of Hashsets.com.  We 
computed statistics on the file types represented in the two 

sets and confirmed broad coverage of a variety of file 
types in the sets, not just coverage of executables.  
Nonetheless, hashsets.com matched hashes on 5,906 of 
the remaining hashes, an unimpressive 0.06%.  Bit9 
recognized 607,693 hash values not in NSRL out of the 
10,342,915 that it recognized, of which 93,436 (0.95% of 
the remaining hashes) were not found by our methods.  So 
Bit9 is not much more help in eliminating uninteresting 
files beyond our own methods which eliminated millions 
of files, something important to know since it is expensive 
to purchase.  

Of the 13.28 million hash values of the NSRL RDS in 
our corpus, only 1.45 million (10.9%) were also found by 
our methods without help from NSRL.  So there is still a 
justification for building the NSRL even though it 
requires more manual labour per hash than our methods. 
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5.7. Proposed file-elimination protocol 

We suggest then the following protocol for eliminating 
uninteresting files from a corpus in a standard 
investigation: 

(i) Run methods PA, BD, TM, WK, and SZ to generate 
hash sets of candidate uninteresting files on the full 
corpus. 

(ii) Eliminate all files in the corpus whose hash values 
are in NSRL, our list at digitalcorpora.org, and any 
other confirmed “uninteresting” lists available. 

(iii) Run the methods HA, CD, TD, and EX on the 
remaining files to generate additional hash values of 
uninteresting files.  These methods do not benefit 
from seeing the entire corpus. 

(iv) Find hash values that occur in at least two 
uninteresting hash sets, and remove files from the 
corpus with those hash values. 

(v) Eliminate default-directory files and those without 
hash values that match on two of the three criteria 
BD, TD, and EX. 

(vi) To the remaining files, add files matching the 
“interesting-directory” and “interesting-extension” 
criteria. 

(vii) Save the final list of eliminated hash codes for 
bootstrapping with future drives when doing step (ii). 

6. Conclusions 

Although uninterestingness of a file is a subjective 
concept, most forensic investigators have a precise 
definition for each investigation that is usually based 
whether a file contains user-created or user-discriminating 
information.  It appears that relatively simple methods can 
be used to automate this intuition, and can eliminate 
considerable numbers of uninteresting files beyond using 
the NSRL hash library alone.  On our corpus, NSRL 
eliminated 23.8% of the hashes while our methods 
eliminated an additional 53.6%, while keeping false 
positives (incorrectly eliminated files) to 0.18%. Our 
methods do need a large corpus of file examples; 
however, more and more file data is becoming available 
to researchers.  It also appears that commercial hash sets 
are of limited additional value to most forensic 
investigations if the methods proposed here are used.   

Our methods can eliminate files unique to a drive, but 
they also will provide hashes that should be useful for 
other corpora.  Investigators can choose which methods to 
use based on their investigative targets, can set thresholds 
based on their tolerance for error, and can choose to 
eliminate further files based on time and locale as in [19].   

We have published a list of our uninteresting hashes 
for free download on digitalcorpora.org.  Further methods 
for identifying additional uninteresting files are definitely 
possible given the low 6.53% “potentially interesting” 
rate in our test set.  Future directions are to extend the 
ideas to hashes on portions of files [15] and to many-to-

one mappings recognizing similar but not identical files 
such as pictures.  
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