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Abstract—Improvised explosive devices (IEDs) are an in-
creasingly serious military threat as is witnessed in Iraq and
Afghanistan. To combat the IED emplacement, it is important
to have persistent surveillance over time. Due to the low cost
and capabilities of sensors, wireless sensor networks (WSNs)
have tremendous potential for military and civilian surveillance.
In this paper, we explore methods to improve an important
aspect of surveillance: localization accuracy. Though there are
many localization algorithms in the literature, all of them try
to improve the accuracy from the side of sensor networks. In
this paper, we tackle this problem from a new angle, that is,
we look at the spatio-temporal relationships of objects we track,
which, as far as we know, unprecedented in this attempt. We first
develop algorithms that use spatial and temporal relationships
of objects separately and then design ones that combine them.
Experimental results show that all our proposed algorithms can
improve localization accuracy, especially those combined ones.
Moreover, since our methods use features related to objects
themselves and not the underlying localization mechanism, they
can be built on any localization algorithm to improve accuracy.

I. INTRODUCTION

Improvised explosive devices (IEDs) are an increasingly
serious military threat. Detection of emplaced IEDs is very
difficult as is witnessed recently in Iraq and Afghanistan. To
combat the IED emplacement, it is important to have persistent
surveillance over time [14]. Due to the low cost of sensors
and their capabilities that can avoid occlusion and confusion
in depth, can violate privacy less of those tracked, can be
easier to conceal from adversary countermeasures, and can
be distributed over large areas to provide uniform coverage,
wireless sensor networks (WSNs) have tremendous potential
in pervasive surveillance in military and civilian contexts. To
realize such a system, in our previous work [13], we have
explored the capabilities and limitations of sensor networks
to track objects’ locations, which is an important aspect of
surveillance. In this paper, we plan to investigate methods to
improve localization accuracy by taking the spatio-temporal
relationships of objects into account.

To tackle the localization problem, in the literature, there
are range-based methods [1], [3], [10]–[12], [16] and range-
free methods [5], [7], [8]. And more recently to save energy of
WSNs, sensors to monitor objects are activated dynamically.
There are collaborative approaches [15] and prediction-based
techniques [2], [6].

Although these methods can improve localization accuracy
by using better algorithms on the side of sensor networks,
none of the previous work has thought about using the spatio-
temporal relationships of objects themselves. As we know, to
attain their goals, malicious people rarely act in individuals.
They usually have a team and collaborate with each other
in actions such as IED emplacement. Besides, acting in a
group can be more likely to confuse the surveillance system,
especially if they dress and behave similarly. In nature, fish
swim in schools to avoid sharks and birds fly in flocks to avoid
hawks, because in this way it is very difficult for predators to
track each individual for sufficient amount of time to catch
it. On the other hand, from the point of localization, if they
act in a group, their spatial relationship gives us an extra
condition to locate them better. Similarly, if we know how
an object moves over a period of time, that is, the temporal
relationship in its footsteps, we can also locate it better. In
this paper, we are interested in exploring methods to improve
localization accuracy using spatio-temporal relationships of
objects. Networking issues are not considered because they
are not our main focus here.

The main contributions of this paper are: (1) we put for-
ward methods to improve localization accuracy using spatio-
temporal relationships among objects themselves, which, to
our knowledge, unprecedented in this endeavor. (2) we con-
duct simulations to validate the effectiveness of our methods.
Experimental results show that all our proposed algorithms can
improve localization accuracy, especially those combing both
spatial and temporal information. (3) because our methods
use the features related to objects themselves, and not the
underlying mechanism to locate them, they can be built on
any localization algorithm to improve localization accuracy.

The remainder of this paper is organized as follows: Section
II mentions the related work. Section III formulates the prob-
lem of using spatio-temporal relationships among objects to
improve localization accuracy. Section IV-A, IV-B, IV-C, and
IV-D put forward methods to achieve that. Section V shows
the simulation results of the proposed approaches. And finally,
Section VI draws the conclusion.



II. RELATED WORK

In the literature, there are range-based and range-free lo-
calization methods. The range-based methods depend on the
assumption that the absolute distance between a sender and
a receiver can be estimated by one or more features of the
communication signal from the sender to the receiver. The
features of the communication signal that are frequently used
include angle of arrival [10], [11], signal strength [1], [12]
and time of arrival/time difference of arrival [3], [12], [16].
Range-free methods [5], [7], [8] depend on the content of the
received message and no special hardware and the above range
measurements are used.

More recently, in order to save more energy of WSNs,
sensors are activated dynamically and work collaboratively to
monitor objects. The examples are cluster-based scheme [15],
in which sensor nodes are dynamically clustered based on
received signal strength to collaboratively track single target;
and prediction-based techniques [2], [6], which predict the
future movement of mobile targets so as to turn on only those
sensors necessary to sense targets in order to save energy of
WSNs.

III. PROBLEM FORMULATION

Though the above methods can improve localization ac-
curacy by using better algorithms in WSNs, none of them
has considered improving the accuracy using the features of
objects being monitored.

In this paper, we assume that some sensor nodes are
deployed over an area to track moving objects that intrude
the monitored region. We also assume that there is a central
site that collects the sensor readings about the target, based
on which to estimate its location. How the sensors send the
data and the frequency to send the data to the central site are
important areas of research in sensor applications, but out of
scope of our study. Here, we just focus on methods to improve
localization accuracy. To locate objects, some localization
algorithm in the literature can be used. The accuracy of local-
ization depends on the quality of the localization algorithm.
Now we further assume that objects move coherently in a
group and they move in a certain direction with a certain
speed over time. When objects move in a group, their relative
locations create the spatial relationship among them. And
when an object moves along a certain direction with a certain
speed, its footsteps in the trajectory, which are the locations
of the object at different times, are temporally related. Now
the problem is formulated as: given the estimated locations of
objects by some regular localization algorithm, is it possible
to improve localization accuracy through the spatio-temporal
relationships of objects? This is the problem that we want to
explore in this paper.

IV. LOCALIZATION ACCURACY IMPROVEMENT
ALGORITHMS

In this section, we present our various localization accuracy
improvement algorithms.
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Fig. 1. An object’s location relative to the centroid of the group before and
after the movement

A. Improve Localization Accuracy by Space

In this subsection, we put forward an algorithm to improve
localization accuracy using the spatial relationship of objects.

Suppose there are n objects moving coherently in a group
and the estimated locations of these objects calculated by some
localization algorithm are: u∗

1, u
∗
2, · · · , u∗

n. Suppose initially
the relative location of an object ui(1 ≤ i ≤ n) to the group’s
centroid o is (xi, yi). When the group moves to a certain
location in the sensor field, the relative location of node ui

to the group’s centroid o∗ is (x′
i, y

′
i). If we overlap o with o∗

(see Figure 1), the relationship between (xi, yi) and (x′
i, y

′
i)

can be expressed as:[
x′
i

y′i

]
=

[
r 0
0 r

] [
cosα − sinα
sinα cosα

] [
xi

yi

]
(1)

Here, α is an angle turned after the group moves to a certain
location and r is an adjustment parameter. From the estimated
values: u∗

1, u
∗
2, · · · , u∗

n, we calculate the centroid o∗ of the
group and the relative position of each object (x∗

i , y
∗
i ) to their

centroid o∗ as follows:
o∗x =

∑n
i=1 u∗

ix

n , x∗
i = u∗

ix − o∗x,

o∗y =
∑n

i=1 u∗
iy

n , y∗i = u∗
iy − o∗y.

Now we want to minimize the error term between our
calculated relative locations of all objects (x′

i, y
′
i)(1 ≤ i ≤ n)

and the estimated relative locations by some localization
algorithm of all objects (x∗

i , y
∗
i )(1 ≤ i ≤ n). So it is to

minimize function:

f(α, r) =
n∑

i=1

[(x′
i − x∗

i )
2 + (y′i − y∗i )

2]

To do that, the partial derivatives should be equal to 0. After
solving equations, α and r are as follows:

α = arctan
∑n

i=1(xiy
∗
i −x∗

i yi)∑n
i=1(xix∗

i +yiy∗
i )
,

r =
∑n

i=1[(xix
∗
i +yiy

∗
i ) cosα+(xiy

∗
i −x∗

i yi) sinα]∑n
i=1(x

2
i+y2

i )
.

Knowing α and r, the adjusted location of each object
(x′

i, y
′
i) relative to centroid o∗ can be calculated by Eq. (1).

Thus, the location u′
i in the network can be adjusted to:
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Fig. 2. An object’s trajectory over a sensor field

[
u′
ix

u′
iy

]
=

[
o∗x
o∗y

]
+

[
x′
i

y′i

]

=

[
o∗x
o∗y

]
+ r

[
xi cosα− yi sinα
xi sinα+ yi cosα

] (2)

B. Improve Localization Accuracy by Time

In this subsection, we improve localization accuracy by
looking at the footsteps of an object over time. Sup-
pose we know that an object travels along a line with
a certain speed and the estimated locations of this ob-
ject using some localization method from time 1 to t are:
(a∗1, b

∗
1), (a

∗
2, b

∗
2), · · · , (a∗t , b∗t ). Here, time 1 is not necessarily

the time when the object starts moving. It is the time during its
movement that we start to observe. The problem is to adjust
these estimated footsteps to make them closer to the actual
locations. We explore methods in two conditions: (1) the speed
and direction of the object are known and (2) the speed and
direction of the object are unknown.

1) Speed and direction are known: Suppose the speed of
the object is v and the direction angle is H (see Figure 2),
the starting point of this object, which is unknown, is (a0, b0),
then the location of this object at time i(1 ≤ i ≤ t) should
be: ai = a0 + iv sin(H), bi = b0 + iv cos(H).

Now our task is to reduce the error term between the
calculated locations and the estimated locations. So it is to
minimize function:

f(a0, b0) =
t∑

i=1

[(ai − a∗i )
2 + (bi − b∗i )

2]

=
t∑

i=1

[a0 + iv sin(H)− a∗i )
2 + (b0 + iv cos(H)− b∗i )

2]

To do that, the partial derivatives should be equal to zero.
Thus, a0 and b0 can be found as: a0 = 1

t

∑t
i=1 a

∗
i − t+1

2 v sin(H),

b0 = 1
t

∑t
i=1 b

∗
i − t+1

2 v cos(H).

Next, each estimated location (a∗i , b
∗
i ) can be adjusted to

(a′i, b
′
i) as follows:[

a′i
b′i

]
=

[
a0 + iv sin(H)
b0 + iv cos(H)

]
(3)

2) Speed and direction are unknown: Suppose the unknown
speed of the object is vx in x direction and vy in y direction
and the starting point of this object, which is also unknown, is
(a0, b0), then the location of this object at time i(1 ≤ i ≤ t)
should be: ai = a0 + ivx, bi = b0 + ivy .

Now our task is to reduce the error term between the
calculated locations and the estimated locations. So it is to
minimize function:
f(vx, vy, a0, b0) =

t∑
i=1

[(ai − a∗i )
2 + (bi − b∗i )

2]

=
t∑

i=1

[a0 + ivx − a∗i )
2 + (b0 + ivy − b∗i )

2]

To do that, the partial derivatives should be equal to zero.
Thus, vx, vy , a0 and b0 can be found as:

vx =
4
∑t

i=1 ia∗
i −2(n+1)

∑t
i=1 a∗

i

4
∑t

i=1 i2−n(n+1)2
, a0 = 1

n

∑t
i=1 a

∗
i − n+1

2 vx,

vy =
4
∑t

i=1 ib∗i −2(n+1)
∑t

i=1 b∗i
4
∑t

i=1 i2−n(n+1)2
, b0 = 1

n

∑t
i=1 b

∗
i − n+1

2 vy.

Next, each estimated location (a∗i , b
∗
i ) can be adjusted to

(a′i, b
′
i) as follows:[

a′i
b′i

]
=

[
a0 + ivx
b0 + ivy

]
(4)

C. Improve Localization Accuracy by Space and Time

In this subsection, we combine the spatial and the temporal
information. First we use the spatial information and then use
the temporal information. If we know the estimated locations
of all group members over the past t time units, we first use Eq.
(2) to adjust their estimated locations using spatial information
in the group and then use Eq. (3) or Eq. (4) to adjust each
object according to its footsteps in the past t time units.

D. Improve Localization Accuracy by Time and Space

This subsection is the reverse of the previous subsection,
we first apply the temporal information and then the spatial
information. Suppose we know the estimated locations of all
group members over the past t time units, we first use Eq. (3)
or Eq. (4) to adjust each object according to its footsteps in the
past t time units and then apply Eq. (2) to adjust the locations
of all objects using the spatial information in the group.

V. SIMULATIONS

In this section, we conduct simulations to see how our
algorithms can improve the accuracy of localization. We build
a simulator in the Matlab language. We can start from any lo-
calization algorithm in the literature and apply spatio-temporal
relationships of objects to improve localization accuracy. In
this paper, we adopt the localization method by signal strength
in our previous work [13] as a foundation. We call this method
our original method (ORG), and from it, we apply LAS,
LAT1, LAT2, LAST and LATS listed below. Here when we
combine time and space, we use LAT1 as an example. Thus,
we compare the following six methods:
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Fig. 3. Snapshots using ORG and LAST localization algorithms

1) original localization algorithm (ORG)
2) localization using space (LAS)
3) localization using time with known speed and direction

(LAT1)
4) localization using time with unknown speed and direc-

tion (LAT2)
5) localization using space first then time (LAST)
6) localization using time first then space (LATS)
To make the paper self-inclusive, we introduce the main

idea of using signal strength to track objects in paper [13]
here. A grid of 100 × 100 sensors are deployed in the field
(see green dots in Figure 3). Random objects are created and
signals from these sources are received by the sensors in the
field. Following discussions of acoustic, seismic and magnetic
signals in the literature [9], the inverse-square law is a good
model to calculate signal strength, where each signal strength
is:

si = c+
a

(m+ d)2
, 1 ≤ i ≤ N

Here, si is the sensed signal strength in the ith sensor, c
is a random factor, a is the intensity of the source, d is the
distance from the source to the sensor, m is the minimum-
distance factor from the source which is a feature of each
sensor and N is the total number of sensors. Parameter c is
set to 0 and to avoid unstable behavior with very-near sources,
m is set to 5 based on experiments in [13]. The total signal
strength received by each sensor is assumed to be additive
from all these sources.

Paper [13] estimates the locations of objects in two steps.
First, estimate where objects are as the places of the nearest
sensors that receive the maximum signal strength in their
neighborhood (local maxima). The neighborhood of a sensor
includes all the sensors that are one grid space away from the
current one. For example, for an internal sensor on the grid,
it has four neighbors one grid space away in the east, south,
west, and north directions. Second, improve the localization
accuracy based on observed ratio of signal strengths, a vari-
ation of the approach in [9]. If initially the observed signal
strength is assumed only due to each sensor’s nearest source
based on the fact that the effects fall off fast with an inverse

square, then for two sensors 1 and 2 nearest the same signal,
the following holds true:

s1[(x−x1s)
2+(y−y1s)

2+m2] = s2[(x−x2s)
2+(y−y2s)

2+m2]

Here, s1 and s2 represent the signal strength received by
the two sensors, m represents the minimum-distance factor as
mentioned above, (x, y) is the position of the tracked object,
and (x1s, y1s) and (x2s, y2s) are the coordinates of the two
sensors. Rearranging this gives an equation of a circle for the
locus of points on which the sensor could lie. The center and
radius of this circle are:

xc =
s1x1 − s2x2

s1 − s2
, yc =

s1y1 − s2y2
s1 − s2

r =

√
s1s2[(x1s − x2s)2 + (y1s − y2s)2]

(s1 − s2)2
−m2

Next, use the idea of trilateration [4] to locate the sources.
From each nearest sensor inferred from step one, find its
neighboring sensors. If there are two neighbors, two circles
can be formed by the nearest sensor with each neighbor
respectively as above. The two circles can reduce the locus to
two points. If there are more than two neighbors, a consensus
center can be obtained by finding the set of all intersection
points and repeatedly removing the furthest point from the
centroid of the set until only two points remaining. The
centroid of these two points is the inferred source location
from Step two. Once all source locations are inferred like this,
the signal strength of the sensors can be computed, then the
source locations can be recomputed iteratively until accuracy
is sufficiently good. In [13], step two is repeated twice to reach
a good accuracy, so iteration is not really necessary.

Based on these previous results, in this paper, we generate
a group of n objects randomly in a 100× 100 grid. It travels
in some direction with some speed across the grid. As it
travels, the associated signal strengths received by sensors are
calculated at evenly spaced time points to provide test cases for
localization algorithms. The time starts from 1 and the interval
between time points is one second. The calculation stops if
one of the objects flies out of the grid boundary. Next we
infer object locations from the signal strength patterns using
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Fig. 4. Tracking error with different group sizes and variances

the ORG algorithm. After that, by considering spatio-temporal
relationships of objects, we apply LAS, LAT1, LAT2, LAST,
and LATS independently to obtain the adjusted locations of
objects at each second. For example, Figures 3(a) and 3(b)
show the snapshots of tracking simulator with a group of
4 objects at time 5 using ORG and LAST algorithms. The
snapshots of other algorithms are not shown here because of
space limit. In the figures, the blue dots are the actual locations
of the objects. The green dots represent the sensors. The size
of a green dot shows the signal strength received by the sensor.
The larger the size, the stronger the signal. The purple dots
represent the estimated locations by one of the six algorithms.
The closer the purple dots to the blue dots, the more accurate
the estimation. Once the locations of objects are estimated,
they can be used as inputs for the next round of calculation.
In other words, each algorithm can be called repeated until
accuracy is good enough. But we find that the first call does
the major adjustment, so we do not pursue accuracy further
by iteration.

We use metric tracking error to measure the tracking error
of these algorithms. Metric tracking error =

∑n
i=1(|u∗

i ui|2).
|u∗

i ui|2 is the distance square of a node’s estimated location u∗
i

to its actual location ui. Tracking error here is defined as the
summation of tracking errors of all the objects. So the more
the objects, the larger the tracking error. We try groups with 2,
3, · · · , and 8 objects and with signal variances 1 and 3. Signal
variance is the error in the signal strength perceived by the
sensor. For each entry, we run 100 times and the tracking error
is averaged over these runs. Figures 4(a) and 4(b) show the
results. All the algorithms put forward in this paper outperform
the ORG algorithm. The LAS algorithm is better than ORG,
LAT2 is better than LAS, LAT1 is better than LAT2, and
LAST and LATS are better than LAT2. LAT1 outperforms
LAT2 because if more parameters are known, the results can
be more accurate. The combination of space and time is better
than each individual one. But there is not much difference
between LAST and LATS as their curves are overlapped. In
other words, whether the locations are adjusted by space first
or by time first does not matter much. Also, the signal variance
has little effect on tracking error as the graphs look almost
the same. To conclude, adding spatio-temporal relationships
of objects can improve localization accuracy.

VI. CONCLUSION

In this paper, we designed algorithms to improve local-
ization accuracy by including spatio-temporal relationships
among objects we track. We first considered the spatial rela-
tionship among objects when they move coherently in a group,
then looked at the temporal relationship within an object’s
footsteps in its trajectory, and then tried the combination of
the two. Simulation results showed that all our algorithms
can improve localization accuracy, especially those combined
ones. In the future, we will apply these methods on actual
sensors such as acoustic, infrared, and seismic sensors in the
field to see how they can help to track suspicious objects to
combat the IED emplacement.
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