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Abstract: Consider a situation where a single shooter engages, sequentially, a cluster of
targets that may vary in terms of vulnerability and value or worth. Following the shooting
of a round of fire at a certain target, the latter may either be killed or remain alive. We
assume neither partial nor cumulative damage. If the target is killed, there is a possibility
that the shooter is not aware of that fact and may keep on engaging that target. If the shooter
recognizes a killed target as such, then this target is considered to be evidently killed. If the
objective is to maximize the weighted expected number of killed targets, where the weight
reflects the value of a target, then it is shown that a certain type of a shooting strategy,
called a Greedy Strategy, is optimal under the general assumption that the more a target is
engaged, but still not evidently killed, the less is the probability that the next round will be
effective. If all weights are equal, then the greedy shooting strategy calls to engage, at each
round, the least previously engaged target that is not evidently killed. q 1997 John Wiley &
Sons, Inc. Naval Research Logistics 44: 613–622, 1997
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1. INTRODUCTION

In the past few decades there has been a significant and clear trend towards tactical
weapon systems with longer range that deliver more accurate and very expensive munitions.
Precision Guided Missiles (PGMs) are typical examples. Consequently, the role of damage
assessment has become an important factor in the engagement process. On the one hand,
the shooter wishes to utilize his expensive munitions in a most efficient way and to minimize
the number of ‘‘repeat kills’’ or multikills. On the other hand, in the absence of supporting
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surveillance systems, the capability to determine the damage that is inflicted to the target
is reduced due to the long range of the weapon system and the lack of line-to-site. This
handicap is prevalent in Precision Guided Missiles (PGMs) such as FOG-M.

FOG-M (Fiber Optics Guided Missile) is a weapon system that links an electrooptical
sensor that is mounted on the missile, with an operator on the ground, via an optical fiber.
This fiber-optics technology allows the shooter to engage the target from non-line-to-site
positions, and to continuously watch it through the electrooptical sensor of the approaching
missile. The special combination of homing device, control system, and type of warhead
enables the shooter to concentrate his attention and to engage only one intended target at
the time (hence, Precision Guided Missiles) with no effect on other targets. When the
missile hits an object, the transmitted image disappears upon impact. Thus, while the shooter
can see the area of the point of impact, prior to the time of impact, he cannot determine
with certainty if the target was actually hit and killed. There are several sources (such as
remote sensors) according which the hit result can be assessed in real time, but due to their
limited reliability, it is only under rigid conditions and with the presence of very strong
evidence that a target will be declared by the shooter as killed. This embedded ‘‘risk
aversion’’ leads to situations where a killed target may not be detected as such, and therefore
it will still be considered as a live target for future engagements (type-I error) . On the
other hand, it is safe to assume that no type-II error (declaring a target as killed while it
is still alive) can occur.

Consider a single shooter whose objective is to engage a cluster of static targets using
limited amount of ammunition. By the term static we simply mean that no new target
appears and no target that was initially in the cluster disappears throughout the engagement.
The shooter, who, we assume, can identify the targets (say, by their relative location in the
cluster) , selects for each round of fire (say, missile) a target to shoot. A round of fire may
either hit and kill the target or cause no damage. In other words, neither partial damage
nor cumulative damage is assumed, and a hit always results in a kill. The targets are not
necessarily homogeneous, and each one of the targets may have different value or worth
for the shooter (e.g., a command post may have a larger value to the shooter than, say, a
truck). The tactical engagement that is discussed here is of a relatively short duration such
that it can be assumed that the values of the targets remain unchanged during the entire
engagement.

At each time step in the engagement process, the shooter selects a target, shoots a round
upon it, and then observes, through the committed surveillance systems or other sensors,
the result of this shooting on the certain target that was shot upon. Hence, a target is
observed, at a certain time step, only if it was shot upon in that time step. If a target is
killed by the round that was shot upon, then the shooter is either aware of that fact—in
which case the target is said to be evidently killed (EK) —or the shooter is oblivious of
that fact—in which case he may keep on engaging it (not necessarily continuously) until
the target is EK or until he is out of ammunition. Thus, it is possible that ‘‘repeat kills’’
or multikills of a certain target will occur prior to declaring it evidently killed. As mentioned
above, no type-II error is assumed.

The objective of the shooter is to maximize the expected weighted number of killed
targets where the weights represent the values of the various targets. According to that
objective, the shooter has to decide, for each round, which target to engage. His decision
depends on the information available to him at that moment which includes the list of EK
targets, the number of rounds delivered upon each target so far and the amount of ammuni-
tion that is left.
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The problem of shoot-look-shoot strategies in the presence of incomplete damage informa-
tion was first introduced by Aviv and Kress [2] where several shooting strategies were
defined, analyzed, and compared with regard to typical engagement scenarios. This problem
is a special case of general fire-allocation problems which were treated and analyzed in the
past in the context of strategic defence [3] , one-on-many fire allocation [4, 6] , and air
interdiction [1] .

In the engagement sequence of a target, a certain round is defined to be effective if it
killed a live target. In other words, a round is said to be ineffective with respect to a given
target if it either caused no damage to the target or if the target had already been killed.
Clearly, for each target, its engagement sequence may contain at most one effective round.

In this note we prove that a certain type of a shooting strategy—a Greedy Shooting
Strategy (GSS) —is optimal with respect to the above-mentioned objective, under the as-
sumption of fixed kill and damage assessment probabilities. It is shown that the result is true
in general in the case where the conditional kill probabilities form a monotone nonincreasing
sequence. That is, the more a target is engaged (and not EK), the less is the probability
that the next round is effective. This assumption is applicable in real combat situations such
as when the damage assessment capability of the shooter is low (in which case he may
keep on engaging a killed target) or if the target can take protective measures and reduce
its vulnerability by, say, digging in.

The proof of the optimality of GSS follows the ideas that are presented by Mandelbaum
[7] in the analysis of the Multiarm Bandit problem. It is shown that the original shoot-
look-shoot problem is equivalent, in terms of the expected number of kills, to a finite
horizon deteriorating bandit problem.

If all weights are equal, then GSS amounts to engaging, at each round, the least previously
engaged non-EK target.

In Section 2 we present some definitions and notation, and we state formally the assump-
tions that are made. In Section 3 we prove the optimality of GSS, and in Section 4 an
extension of the result is presented, along with two examples.

2. DEFINITIONS, NOTATION, AND ASSUMPTIONS

Let M denote the number of targets in the cluster, and let N denote the number of rounds
the shooter can use while engaging that cluster. Throughout the engagement process, each
target may be in three possible states: NK (Not Killed) , K (Killed but not evidently killed) ,
and EK (Evidently Killed) . We may assume, without loss of generality, that no shots
towards EK targets are made, so that the effect of a shot on the state of the target may be
characterized by one of the three following outcomes:

R0—No hit. In this case the target remains in its previous state.

R1—A hit (Å kill ) with no kill indication. If the target is already in the K state, it remains
in that state. If it is in the NK state, then it changes it to K.

R2—A hit with a kill indication. The target changes its state to EK.

Note that the shooter cannot discriminate between the outcomes R0 and R1 .

For each target i define a series of random variables Xi (1) , Xi (2) , . . . , Xi (N) , where
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Xi (n) Å j if the n th round that was shot upon target i resulted in outcome Rj , j Å 0,
1, 2.

Let pi denote the single shot hit probability for target i , i Å 1, . . . , M . Given a hit, let
qi denote the corresponding conditional probability of detecting a hit (Å kill ) by the shooter.
Evidently, we assume here that these probabilities are constant along the shooting process
on a certain target i . This assumption is relaxed later on. Formally,

pi Å Pr[Xi (n) x 0], (2.1)

qi Å Pr[Xi (n) Å 2/Xi (n) x 0]. (2.2)

We assume that the shooting process comprises of statistically independent random vari-
ables, as stated in the following assumption.

ASSUMPTION 2.1: The set of variables {Xi (n) : i Å 1, . . . , M , n Å 1, 2, . . . , N} is
a set of independent random variables.

For each target i two sets of indicator variables are defined: The Zi (n) , n Å 1, 2, . . . ,
indicate the first hit on target i , and the Ui (n) indicate the (first) EK declaration of target
i . Formally,

DEFINITION 2.1: Let Zi (0) Å Ui (0) Å 0. For n Å 1, 2, rrr

Zi (n) Å H1 if Xi (k) Å 0 for each k Å 0, . . . , n 0 1 and Xi (n) x 0,

0 otherwise,
(2.3)

Ui (n) Å H1 if Xi (k) x 2 for each k Å 0, . . . , n 0 1 and Xi (n) Å 2,

0 otherwise.
(2.4)

Zi (n) represents the effectiveness of the n th round shot at target i , and the vector Ui (n)
Å [Ui (0) , . . . , Ui (n)] represents the information that the shooter has about the state of
target i after the n th shot upon it.

We define now a strategy as an M-dimensional stochastic process (a vector of M stochastic
processes) , which prescribes the decisions to be made in a cumulative manner. It states,
for each time step t , the cumulative number of rounds to be shot at each of the M targets
within the first t time steps.

DEFINITION 2.2: A strategy is a stochastic process T( t) Å {(T1( t) , . . . , TM( t)) , t Å
0, 1, . . . , N} such that

(1) T(0) Å 0 with probability 1.
(2) T( t / 1) is obtained from T( t) such that Ti ( t / 1) Å Ti ( t) / 1 for some i

Å 1, . . . , M , and Tj( t / 1) Å Tj( t) for all other j x i .
(3) Ti ( t / 1) 0 Ti ( t) is determined by {(Ui (Ti ( t))) , i Å 1, . . . , M}.
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From Definition 2.2 (3) , it is seen that the target to be shot upon is selected depending on
the shooting pattern and the shooting results so far. Evidently, the strategy is a function of
the past history.

Let Wi denote the reward for killing target i ( i Å 1, . . . , M) . For a given strategy T ,
let Rt(T ) be the reward for the decision made by the strategy at time t , which will be
carried out at the ( t / 1)th step. If the strategy chooses target i , then the next shot is the
(Ti ( t) / 1)th shot towards this target. This shot is effective (actually kills the target) if
and only if the indicator Zi (Ti ( t) / 1) equals 1 (see Definition 2.1) . The reward for this
shot is therefore WiZi (Ti ( t) / 1).

Since the chosen target can be identified as the only target i for which Ti ( t / 1) 0 Ti ( t)
Å 1, one can easily verify that

Rt(T ) Å ∑
M

iÅ1

WiZi (Ti ( t) / 1)[Ti ( t / 1) 0 Ti ( t)] . (2.5)

The total reward R(T ) for strategy T is defined as the sum of the rewards Rt(T ) over the
engagement process. That is,

R(T ) Å ∑
N01

tÅ0

∑
M

iÅ1

WiZi (Ti ( t) / 1)[Ti ( t / 1) 0 Ti ( t)] . (2.6)

The objective of the shooter is to find a strategy that maximizes E[R(T )] .

3. OPTIMAL STRATEGIES

The above representation of the problem enables us to consider it as a finite-horizon
multiarmed bandit problem. The multiarmed bandit problem (e.g., [5] , [7] , and [8]) is
concerned with dynamic allocation of a single resource among a fixed number of projects
(arms). The multiarmed bandit consists of a fixed set of M independent stochastic Markovian
processes, which are called arms. At each instance on a discrete time scale, one armed is
pulled and a random reward (depending on the Markovian state of the arm only) is obtained.
The chosen arm changes its state according to a Markov transition rule, while the states of
the other arms remain unchanged. The problem is how to choose the arms so as to maximize
the expected total reward.

In the classic version of the problem, the rewards are discounted in time by a constant
factor, and the time horizon is infinite. The classic version was solved by Gittins and Jones
[5] , who proved that the optimal strategy coincides with an index strategy. In an index
strategy, a dynamic function called index is computed on the states of the arms, and the
optimal ( index) strategy is always to pull an arm with the highest index.

Our problem is a special case of the finite-horizon multiarmed bandit with no discount
factor. Each target is represented by an arm and the n th shot at target i corresponds to the
n th pull of arm i . The possible (Markovian) states of target i are {Sij , j Å 0, . . . , N , EKi },
where Sij means ‘‘ j rounds have been shot upon target i which is still not EK’’ and EKi

means ‘‘target i is EK.’’ The random reward for pulling an arm i (shooting at target i) in
state Sij is Wi with probability aij and zero with probability (1 0 aij) , where aij is the
probability that the ( j / 1)th pull of arm i is successful, given state Sij . The reward for
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pulling an arm in state EK is zero with probability 1. The independence of the arms is a
direct conclusion from Assumption 2.1.

Unlike the infinite-horizon problem, the finite-horizon bandit problem cannot be solved
using an index strategy, and therefore other methods, such as dynamic programming, may
be used. Fortunately, however, our problem can be modified and be presented as a special
case of the finite-horizon multiarm bandit known as the deteriorating case (see, e.g. [8]) .
The simplest version of this special case is prescribed by the two additional properties:

PROPERTY 3.1: The reward series for each arm, that is, the reward that is associated
with each pull of the arm, is nonincreasing with probability 1.

PROPERTY 3.2: The reward for the n th pull of arm i is known to the player after the
preceding pull [ the (n 0 1)th pull] of the same arm.

Property 3.2 is similar to assumption 2.1B in [7]. Notice that both properties do not hold
in our representation of the problem as stated above.

DEFINITION 3.1: A multiarmed bandit problem is said to be deteriorating bandit if the
above two properties hold.

In the case of the deteriorating bandit, it is trivial and well known that strategies choosing
at each step of the game the arm with the highest reward are optimal. Note that such a
strategy will always (with probability 1) choose the N highest-reward pulls in decreasing
order. Therefore, its optimality continues to hold even when relinquishing the independence
of the bandit’s arms.

Our solution to this problem is based on a reduction of it to the deteriorating case. We
define a new multiarmed bandit problem by replacing the rewards WiZi (n) with new rewards
Wi Li (n) , such that the new bandit problem is a deteriorating bandit but with the same
expected total reward, as the original problem, for each strategy.

Li (n) is defined as the conditional expected effectiveness of the n th shot upon target i ,
given the information that was acquired during the n 0 1 preceding shots upon that target.
Formally,

DEFINITION 3.2:

Li (0) Å 0,

Li (n) Å E[Zi (n) /Ui (n 0 1)] . (3.1)

Clearly Li (n) is a random variable.

The new total reward L(T ) is defined similarly to R(T ) :

L(T ) Å ∑
N01

tÅ0

∑
M

i01

Wi Li (Ti ( t) / 1)[Ti ( t / 1) 0 Ti ( t)] . (3.2)

Next we show that the newly defined bandit problem is a deteriorating bandit.
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DEFINITION 3.3: Let gi (n) denote the conditional effectiveness of the n th round upon
target i , given that the first n 0 1 rounds resulted in no kill indication. That is,

gi (n) Å E[Zi (n) /Ui (n 0 1) Å (0, 0, . . . , 0)] . (3.3)

LEMMA 3.1: gi (n) is a monotone nonincreasing function of n , for all i Å 1, . . . , M .

PROOF: From (2.3) , (2.4) , and (3.3) it follows that

gi (n) Å P(Zi (n) Å 1/Xi (1) x 2, . . . , Xi (n 0 1) x 2)

or

gi (n) Å Pr[Xi (1) Å 0, . . . , Xi (n 0 1) Å 0, Xi (n) x 0]
Pr[X1(1) x 2, . . . , Xi (n 0 1) x 2]

.

From (2.1) and (2.2) we have that

gi (n) Å (1 0 pi ) n01pi

(1 0 piqi ) n01

and the monotonicity follows since

(1 0 pi )
(1 0 piqi )

° 1. h

LEMMA 3.2: The newly defined multiarm bandit problem is a deteriorating bandit.

PROOF: We need to show first that

Li (n / 1) ° Li (n) with probability 1 for all i Å 1, . . . , M and n Å 1, 2, . . . .

Clearly, if Ui (n) Å (0, . . . , 0) , then Ui (n 0 1) Å (0, . . . , 0) too, and it follows that
Li (n / 1) Å gi (n / 1) and Li (n) Å gi (n) . According to Lemma 3.1, it follows that Li (n)
is monotone nonincreasing.

If Ui (n) x (0, . . . , 0) , then Li (n / 1) Å 0 ° Li (n) . Property 3.2 follows since Li (n)
is defined as a conditional expectation, given the results of the first n 0 1 rounds upon
target i , as given in Definition 3.2. h

We define now a greedy strategy as a strategy that always chooses the target with the
highest weighted (i.e., multiplied by Wi ) conditional expected effectiveness.

DEFINITION 3.4: A strategy T( t) is called greedy if and only if for all t Å 0, . . . , N
0 1 and i Å 1, . . . , M , Ti ( t / 1) Å Ti ( t) / 1 implies that
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Wi Li (Ti ( t) / 1) Å Max
jÅ1,...,M

WjLj(Tj( t) / 1). (3.4)

LEMMA 3.3: Let Tg be a greedy strategy, and let T be any strategy; then

E[L(Tg)] ¢ E[L(T )] . (3.5)

PROOF: Since the new bandit is a deteriorating bandit, it is well known [5] that a
strategy which chooses at each stage the most valuable arm is optimal. By Definition 3.4,
Tg satisfies this condition and thus it is optimal, that is, its expected reward exceeds the
expected reward of any other strategy. h

To complete the proof of our result, we need to show now that the expected rewards of
the two reward functions—WiZi (n) and Wi Li (n) —are equal.

LEMMA 3.4: For any shooting strategy T , E{R(T )} Å E{L(T )}.

PROOF: From the linearity of the expectation operator, the expected value of (2.6) is

E[R(T )] Å ∑
N01

tÅ0

∑
M

iÅ1

Wi E[Zi (Ti ( t) / 1)[Ti ( t / 1) 0 Ti ( t)]] , (3.6)

which may be written as

E[R(T )] Å ∑
N01

tÅ0

∑
M

iÅ1

Wi E{E[Zi (Ti ( t) / 1)(Ti ( t / 1) 0 Ti ( t))ÉUi (Ti ( t)) ,

Uj( N) for all j x i]}.

It follows from Definition 2.2(3) that Ti ( t / 1) 0 Ti ( t) is determined by Ui (Ti ( t)) and
Uj(Tj( t)) for all j x i . In addition, Uj(Tj( t)) is included in Uj( N) for all j x i , and therefore
Ti ( t / 1) 0 Ti ( t) is determined by Ui (Ti ( t)) and Uj( N) for all j x i . Consequently, [Ti ( t
/ 1) 0 Ti ( t)] may be removed outside the conditional expectation sign. Hence

E[R(T )]

Å ∑
N01

tÅ0

∑
M

iÅ1

Wi E{E[Zi (Ti ( t) / 1)ÉUi (Ti ( t)) , Uj( N)) for j x i]

1 [Ti ( t / 1) 0 Ti ( t)]}. (3.7)

Due to the independence of the targets (arms), Eq. (3.7) may be written as

E[R(T )] Å ∑
N01

tÅ0

∑
M

iÅ1

Wi E{E[Zi (Ti ( t) / 1)ÉUi (Ti ( t))][Ti ( t / 1) 0 Ti ( t)]}. (3.8)

From Definition 3.2 and the linearity of the expectation operator, we obtain
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E[R(T )] Å EH ∑
N01

tÅ0

∑
M

iÅ1

Wi Li (Ti ( t) / 1)[Ti ( t / 1) 0 Ti ( t)]J Å E[L(T )] . (3.9)

h

THEOREM 1: Every greedy strategy is an optimal strategy with regards to the expected
reward of a shooting sequence with incomplete damage information.

PROOF: It is sufficient to show that if Tg is a greedy strategy and T is some other
strategy, then

E(R(Tg)) ¢ E(R(T )) ,

but this follows directly from Lemma 3.3 and Lemma 3.4:

E(R(Tg)) Å E(L(Tg)) ¢ E(L(T )) Å E(R(T )) . h

Note that Theorem 1 does not imply that greedy strategies are the only optimal strategies.
For example, suppose that N Å 10, M Å 2, and the two targets are identical in terms of
their probability attributes (p , q) and their worth (W ) . Consider a strategy T2 in which the
shooter always shoots twice on the first target, then twice on the second and then proceeds
greedily. It is easy to show that E[R(T2)] Å E[R(Tg)] for some greedy strategy Tg .

4. RELAXATION OF ASSUMPTIONS

We assumed so far that the hit probabilities pi and the damage detection probabilities qi

remain constant throughout the engagement. We further assumed that the shooting outcomes
are independent. It can be easily verified that these assumptions can be relaxed in the
following manner:

ASSUMPTION 4.1: The probabilities pi (n) and qi (n) may change as a function of n so
long as the function gi (n) is a monotone nonincreasing function.

ASSUMPTION 4.2: The M sets {X1(n) ; n Å 0, 1, rrr}, . . . , {XM(n) ; n Å 0, 1, rrr}
are independent. The random variables within each one of the M sets may be dependent.

THEOREM 2: Any greedy strategy is an optimal shooting strategy for the case where
Assumptions 4.1 and 4.2 hold.

PROOF: Clearly, Assumption 4.2 is sufficient for the independence requirement of the
arms in the multiarm bandit setting. Assumption 4.1 is in fact Lemma 3.1, and therefore
Lemma 3.2 and Lemma 3.3 hold. The proof of Lemma 3.4 holds since it does not depend
directly on either of the relaxed assumptions. h

Example 1: As the engagement progresses, the shooter becomes more familiar with the
battle area and therefore gains knowledge and experience that may improve its capability
to detect a hit when such an event occurs. Thus, it is reasonable to assume that qi (n) are
monotone nondecreasing functions of n for all i Å 1, . . . , M . This gain in the shooter’s
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battlefield experience may be offset by the protective measures that the targets may apply.
Thus it is less obvious what the behavior of pi is, and therefore we leave the assumption
that it is constant. As before, we assume that the rounds are independent. In this case gi (n)
becomes

gi (n) Å (1 0 pi ) n01pi

∏ n01
jÅ1 (1 0 piqi ( j))

and

gi (n / 1)
gi (n)

Å (1 0 pi )pi

(1 0 piqi (n))pi

õ 1,

which means that gi (n) is monotone nonincreasing. Both Assumption 4.1 and Assumption
4.2 hold, and therefore the greedy shooting strategy applies to this situation too.

Example 2: Consider the situation where the (conditional) probability of a kill indication,
given a hit, is set to be either one of two different values qi 1 or qi 2—each with probability
0.5. These values are set to the various targets independently. The hit probability is pi in
both cases, and all shots are independent, given the values of qi for all the targets. It can
be shown that the random variables Xi (0) , Xi (1) , . . . , Xi (N) are now dependent but since
the values of the kill detection probabilities are set independently, Assumption 4.2 holds.
It can be verified that 1/gi (n) is a sum of two nondecreasing functions, and therefore
Assumption 4.1 holds too.
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