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Abstract

In an earlier article an ordinal multiple criteria model was presented in which each member of a set of alternatives was
given an evaluation on each member of a set K of criteria. In this paper we extend this concept to the situation where each
alternative i can be assessed in terms of only a subset Ki of K Various models are presented for dealing with this partial
criteria case and the pros and cons of these models are discussed. © 1997 Elsevier Science BA.V
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1. Introduction

Multiple criteria decision modelling has attracted
significant attention in the literature over the past sev-
eral decades. One particular area of MCDM has dealt
specifically with those situations where ordinal data
is present. In a recent paper by Cook and Kress [2]
(CK) a model was presented in which each of a set of
N alternatives is given an ordinal rank on each of K
criteria. Furthermore, it is assumed that these K crite-
ria can be ordinally ranked in order of importance, and
can be further ranked in order of the clearness with
which one can discriminate among the alternatives.
Using this ordinal information, CK present a model
for assigning a rating to each alternative. The under-
lying principle behind this model is the data envelop-
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ment analysis (DEA) approach of Charnes, Cooper
and Rhodes [ I ], wherein each alternative is evaluated
relative to all the other competing alternatives.

A key assumption in the CK model is that each al-
ternative to be ranked is evaluated (given an ordinal
rank) in terms of each and every criterion. In many
situations, however, as will be discussed later, an al-
ternative i may have the opportunity of being evalu-
ated in terms of only a subset of criteria. The problem
then arises as to how to rate, in a fair manner, the rel-
ative importance of such an alternative vis-a-vis other
alternatives whose ratings are to be based on different
sets of criteria. A number of possible model structures
are developed and the pros and cons of these alterna-
tive formulations are discussed. Two of these models,
the aggressive and average evaluation models, can be
viewed as direct extensions to the CK model. The third
model is based on ideal or best performance, wherein
each alternative is compared to the best possible rating
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achievable within its set of criteria. While this model,
like the others, has its shortcomings, its structure is
well suited to the partial criteria setting.

In Section 2 we review the basic structure of the CK
model in which all criteria apply to each and every
alternative. Section 3 examines the partial criteria set-
ting, and proposes three alternative model structures.
Section 4 discusses some pros and cons of these mod-
els.

2. The CK model

The Cook and Kress [ 2] model is designed to derive
a rating for each of a set of alternatives where multiple
criteria and ordinal data are present. Specifically, it is
assumed that each alternative i E I, . . N} can be
evaluated in terms of a set of criteria K = { ,. . . , K}.
This evaluation amounts to assigning to i a rank po-
sition or category I E { 1, . . ., L} where L S N. Typ-
ical values for L might be 5, 7 or 9. Furthermore,
it is assumed that, at a minimum, the criteria can be
rank ordered (ordinally) in terms of importance, and
additionally that they can be ranked relative to the
clearness with which one would be able to distinguish
among alternatives.

CK propose two reasonable models for obtaining an
overall rating Ri for each alternative i that make use
of this ordinal preference information.

Model 1: A DEA model
For purposes of completeness we summarize the

basic principles on which the Cook and Kress model
is built. The model addresses three important issues
pertaining to multiple criteria settings:
(1) The importance or weight associated with each

criterion.
(2) The importance of the various rank levels or po-

sitions at which an alternative can be placed.
(3) The clearness or exactness with which one can

discriminate among alternatives on any given cri-
terion.

To address these three issues, CK first define the
decision variables wkt, the weight or importance ac-
corded an alternative that is ranked in Ith place on
the kth criterion. The idea behind the CK model is to
find the most appropriate set of weights Wki so that
each alternative i is given the fairest rating Ri in terms

of these. Assume, with no loss of generality, that the
criteria k are already ranked in order of importance;
i.e., criterion I is more important than criterion 2, and
so on. By definition, the rank positions I are already
ranked in order of importance on each criterion. In
deriving a set of weights Wkl, it is clear that two sets
of conditions must be met, namely, Wkl > Wk+lt and
Wkl > Wkl+l for all k, 1. That is, the worth of being
ranked in Ith place on the criterion k is greater than
being ranked at that place on a lower ranked criterion.

To cover a somewhat broader range of situations
where the decision maker may wish to specify various
patterns that the Wkl might follow, Cook and Kress de-
fine three discrimination intensityfunctions Gkl, Hk, F
The Hk are supplied scaling factors used to repre-
sent the minimum relative amounts of difference or
discrimination between consecutive criteria weights
desired by the decision maker. If, for example, one
wished to impose the condition that the minimum gaps
Wkl - Wk+11 between consecutive criteria should be a
decreasing set of values, one might choose Hk = I/k.
To translate these relative minimum gaps into absolute
gaps, the Hk are augmented (multiplied) by a deci-
sion variable v, and the above simple restrictions are
replaced by i

Wkl - Wk+, > VHk.

This same reasoning is applied to the rank position
1. Here, the CK model represents the discrimination
intensity function Gkl as Gk, = gltk where g, sets the
relative positioning of the rank levels I versus I + 1,
and tk = jk Hj/ Ej'=, Hj represents the contrac-
tion in rank position gaps relating to the criterion k in
question. Thus, tk decreases as k increases, meaning
that the minimum relative gaps get smaller as we go
to lesser important criteria. Analogous to the variable
v introduced above, define for each criterion k a vari-
able uk and replace the simple restrictions on the rank
position I by

Wkl - Wkl+1 ) gltkUk-

The variable Uk can further be used to capture the
fuzziness or degree to which we can clearly discrim-
inate between rank positions I when that criterion k
is involved. Arguably, if alternatives can be distin-
guished more clearly on the basis of criterion k, then
k2 , the minimum gap between I and I + 1 when k1 is
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involved should be greater than when k2 is involved.
This can be accomplished by requiring that the restric-
tion Uk, - uk2 ) F or more correctly

U(j) - U(jl) >Ž F.

where u(j) = Uk if criterion k is ranked jth in terms of
clearness.

The basic problem then is to derive a set of weights
or multipliers Wit that measure the worth of being
ranked Ith on the kth criterion. To represent in no-
tational form the rank positions occupied by a given
alternative i, define

1, if i is ranked in Ith place
dkI(i) = on criterion k,

0, otherwise.

If it is now assumed that the final rating, that is the
overall worth accorded any alternative, is the (linear)
sum of the credits wkt received from the K criteria,
then whatever Wkl are chosen, this composite rating Ri
is given by

K L

Ri = E E dkI ( i) WkI

k=l 1=1

CK propose choosing a set of WkI which render the
most favourable (largest) value for Ri. This concept,
in the spirit of the data envelopment analysis (DEA)
methodology of Charnes, Cooper and Rhodes [ 1],
amounts to solving N linear programming problems.
Specifically, for each alternative i, solve the problem:

(P) R* (z ) = max Ri,, (z )
K L

= Z dkt(io Wit
k=1 1=1

s.t.

i= I_._N;
K L

E E: dkI ( i WkI < I s

k--l 1=1

Wkt - Wkt+i - gltIkUk > 0,

k= 1,2_ .. ,K, 1= 1,2_..,L-l;

WkL-gLtkUkŽ>O, k=l,2,...,K;

WkI - WkL -tk(W1 I-WIL) 0, k = I, 2,..., K;

(2.3b)

WkI - Wk+lI - vHk > 0,

k=l,2,...,K-l, 1=1,2, ... ,L;

WKI -VHK > 0, 1 = 1, 2,...,L;

U(j)-U(J+I)-F Ž O, j = 1,2_ . .,K-1; (2.5)

U ) Z;

F Ž z;

Wkl,Uk,uF > O. Vkl.

(2.6)

(2.7)

(2.8)

The constraints in this model are essentially of three
types. Constraints (2.2) impose an upper limit on the
size that R. can achieve. The limit of I is arbitrary,
however, the overall Ri in relative terms are invari-
ant to this choice. Constraints (2.3a), (2.4) impose
limits on the gaps between the importance weights
(wkI, Wkt+1) attached to consecutive rank positions
and (Wkl, Wk+ II) to consecutive criteria, as discussed
above. Constraints (2.3b) are intended to render the
overall maximum range Wki - WkN for criterion k pro-
portionally smaller than that for criterion 1, by utiliz-
ing the tk contraction parameters. Constraints (2.5)
provide a mechanism for distinguishing between those
criteria that are clear and those that are less so as per
the earlier discussion. Finally, constraints (2.6) and
(2.7) restrict the discrimination factors v and F to be
strictly non zero by at least z.

The reader is referred to Cook and Kress [2] for a
detailed development and rationale behind this model.

Model 2: A common weight set model
(2.1) In Model I the parameter z is generally taken to

be a small positive value. In the DEA setting z is
represented by e and is assumed to be an infinitesimal.
Clearly, since the N problems (P) will yield a different

(2.2) set of Wkl for each alternative i, the choice of a value for
z can affect what those Wkt turn out to be. Moreover,
the numerical values for the Ri are also affected by
the choice of z.

Arguably, this issue of an appropriate value for z
(2.3a) and the controversy that often surrounds the use of dif-

ferent weights to evaluate different alternatives point
to the desirability of a single or common set of weights.
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In that regard, CK suggest solving a single optimiza-
tion problem and thereby arrive at the desired single
set of wkl. Specifically, it is suggested to solve the
problem:

(PC) z =max z (2.9)

s.t. (2.2)-(2.8).

In determining the maximum value for the discrim-
ination parameter z we are, in a sense, distinguishing
between consecutive rank positions and between con-
secutive criteria to the greatest extent possible. At the
same time one set of multipliers Wkt materializes, and
the left hand sides of constraints (2.2) are the corre-
sponding ratings R, for the alternatives.

In the CK model(s) the principal assumption is that
each alternative i receives a rank position 1 on each
criterion k in the set K. In the general, and often preva-
lent case where only criteria in some proper subset
K, C K are pertinent to the evaluation of alternative i,
these models may no longer apply. We now examine
a number of possible approaches to this more general
case. We do not advocate the use of any particular
one of these models over the others since the choice
depends upon one's definition of fair evaluation. We
do, however, discuss the pros and cons of the various
approaches.

3. Evaluation relative to partial criteria

In the previous sections it was assumed that any
given alternative i could be evaluated (assigned a rank
position) in terms of each member k of the full set
of criteria K. In many decision environments, how-
ever, this requirement is not pertinent. Consider, for
example, the case where in ranking projects in an
electric utility company, one may be considering al-
ternatives such as construction of power lines, addi-
tions and modifications to nuclear reactors, upgrades
to buildings, maintenance of office facilities, and so
on. In such a varied set of alternatives, criteria such
as "impact on environment", or "contribution to tech-
nological advancement" may apply to some options
(e.g., reactor construction), but may be entirely inap-
plicable to others such as building maintenance. In a
completely different setting, consider one of the prin-
cipal application areas of data envelopment analysis,

namely the evaluation of productivity of a set of bank
branches. See, for example, Sherman and Gold [4]
and Oral and Yolalan [ 3 ]. The traditional settings ex-
amined to date and cited in the literature, view banks
at a given point in time and assume each branch can
be evaluated in terms of the same criteria (inputs and
outputs). If we want to compare, however, the new
full service type of banking environment to the tradi-
tional branches, problems arise. The new style banks
now offer services such as life and property insurance
policies, mutual fund investment options, and so on,
that are not available in the current (conventional)
branches. The comparison of old and new as a single
set will then need to consider the partial criteria issue.

The problems associated with comparing a set of al-
ternatives (projects, bank branches, etc.) when some
criteria are relevant to certain members of the set
but not to others, revolve around the interpretation of
missing data and how to account for it. One ad hoc
approach to this has been to generate synthetic data
by using, for example, an average value for a crite-
rion, where the average is over those alternatives for
which that criterion is relevant. In the case of the bank
branches, for instance, this would mean looking at the
average of insurance sales for the new style branches,
and then crediting each of the old style branches with
that average value. In assessing projects, one option
clearly is to fully penalize an alternative for "failing to
perform" on a given dimension. Being fully penalized
may mean being credited with the worst possible rank
position on the given criterion, or being assigned no
rank at all. This latter is the basis for the aggressive
model to follow. On the other hand, if one argues that
an alternative should not be penalized for not being
eligible to be ranked on a given criterion, then a more
benevolent action should be taken.

We now consider the general case in which an al-
ternative i can be evaluated in terms of only a subset
K, C K of the criteria. The manner in which the set of
N alternatives is to be evaluated in this partial criteria
case depends upon the assumptions one makes regard-
ing fair comparison. We present three approaches to
the evaluation:

3.1. Aggressive evaluation

One point of view regarding evaluation of the
N alternatives is to adopt the original full crite-
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ria model ((2.1)-(2.8)), and replace the term
EL I dkl(i) wk by EkEKi ZLI dkl(i) WkI- In this

case when a criterion ko is not part of the pertinent
set Ki. for alternative i,, a credit of 0 is given. That is
dkl (it,) = 0 for all 1. This approach subscribes to the
concept that part of any alternative's worth (e.g., the
worth of a project to an organization) is the benefit
Wkl derived from each criterion. Hence, the fact that
the project cannot compete in terms of a particular
criterion k only serves to put that project at a dis-
advantage vis-a-vis other projects which do obtain
a rank position on k. Thus, projects must compete
aggressively (or at least are evaluated aggressively)
with no compensation for failure to achieve a standing
relative to certain criteria.

Clearly, this approach rewards those alternatives for
which the cardinality IKil of Ki is large, and penalizes
those for which the cardinality is small.

While the approach has the advantage of treating
all alternatives on an equal footing, it could be judged
as being unfairly harsh in situations where criteria are
simply inapplicable. In a situation, for example, where
environmental impact is one of the factors used for
evaluation, the 1 -- L scale may, in some circum-
stances, be interpreted as "good" to "bad". Thus, a
rating of I = 1 means that an alternative has a very
positive effect vis-a-vis environmental benefits, while
I = L may imply a very negative impact. An alter-
native (e.g., building maintenance) which is neutral
should, if given a rank at all, be rated somewhere in
the middle of the scale. Hence, the manner in which
scales are defined can influence the applicability of
the standard model in the partial criteria case.

3.2. Average performance evaluation

To avoid the potential problems created by car-
dinality differences among the sets K1, as cited in
the previous model, an approach which utilizes an
average performance per pertinent criterion can be
adopted. Specifically, we replace Ek=1 E== dkl (i)Wk

in (2.1) and (2.2) by EkEK, E1=1 dk(i)wkl/IKI

In a certain sense, this model is a natural exten-
sion of (P). That is, if in the full criteria case (i.e.,
SKI| = N for all i) we replace Ek~- I LI dkl(i)Wkl

by EK= I LI dk!(i)wkl/N, we get a formulation

equivalent to (P). This formulation avoids the size

differences in the Ki, but does penalize the alternative
i whose criteria set Ki contains low ranked criteria
versus an alternative that may be evaluated in terms
of a similar number, but of higher ranked criteria. As
with the previous model, there may be circumstances
where this is a desirable property, and others where it
is not.

3.3. Benevolent evaluation: performance relative to
the ideal

In the case where we want to evaluate alternatives
in the fairest possible (i.e., most benevolent) way, it
can be argued that such an evaluation should not pe-
nalize an alternative for failing to be considered in
terms of a large portion of the criteria, nor for failing
to be evaluated relative to the most important crite-
ria. This approach would then advocate evaluating an
alternative in terms of only those criteria k on which
it receives a ranking 1. Only the importance of these
"pertinent" criteria relative to one another would then
come into play, and the standing of these criteria vis-
a-vis the complementary set (the set on which i is not
evaluated) would not enter the picture.

One means of accomplishing the aforementioned
benevolent approach is to compare each alternative
i to the best possible or ideal performance for that
alternative. In the notation of CK in Section 2, the
ideal alternative would receive a rating of

Rideal = EZWU-
kEK

Clearly, any alternative i which ranks lower than first
place (I > 1) on any criterion k will score worse than
this ideal, hence R, < Rideal. Thus, the measure

i = Ri/Rideal,

is a reasonable and convenient way of expressing the
performance level of i. ki is similar in some respects to
an industrial productivity measure where we compare
actual to standard performance, although it could be
argued that Rsatldard is probably something less than
Rideal- For our purposes, Rideal represents the only
tangible (and, in principle, achievable) measure that
can be used as a backdrop against which to evaluate
alternatives.
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With this concept as a basis, and proceeding in a
manner analogous to problem (P), consider the fol-
lowing N problems:

(PI) * =max EKE:,=, Z=1dki(io)wkl
i. EkEK,3 WkI

(3.1)

Wkl - Wk+II - PHk > 0,

k= I_._K-1; 1= I__ L;

OKI - VHK > 0, I = 1_. L; (3.6)

Ui)- u(j+l)-F O, j1=,...,K-I;
iJ ) Trz;

tEkEKi E=M dkliwk A Wk

EkEKj Wki

i =l,.N;

F > ro2 z;

(3.2)

(2.3a)-(2.8).

In this ratio formulation, the numerator in (3.2) rep-
resents the actual performance of alternative i, with
the denominator being the theoretical or best possible
performance. It is noted that in this formulation con-
straints (3.2) are redundant, and can, therefore, be re-
moved from the problem. Unlike the linear problem
(P), (PI), having a fractional objective function, is
nonlinear, and in general can be difficult to solve. By
way of a transformation, however, (PI) can be con-
verted to a linear format. Specifically, let

To= 1/ E Wki
keKi,

and define the variables Oki = ToWkI, Uik = Truk, i =

rv and F = 7tF Problem (PI) (in the absence of
constraints (3.2)) can then be written in the form:

L

(PIL) R, =max = E dkl ( io) Wki
kCK,0 1=1

(3.3)

sA.t

E Wki = 1; (3.4)kEK-g,
Wki - Oki+] 91 -tkiik > 0,

(3.9)

(3.10)

Lemma 1. There exists an optimal solution to (PI)
in which EkEK, Wkj < I-

Proof. For any feasible solution W = (Wkl) to (PI),
cW is also a feasible solution for any c > 1. Hence, we
may impose a bounding constraint EkEK,, Wkl • ein
(PI) for some e and still have a problem equivalent to
(PI). Furthermore, for z small enough we may, with
no loss of generality, arbitrarily choose e = 1. Hence,
the result. El

Lemma 2. There exists an optimal solution O*, ii,
i, F*, r* to (PIL) in which rT = 1.

Proof. Due to Lemma I and the definition of r,, we
have

1

To yield maximum flexibility in the problem, it is op-
timal to force ro to its lower limit (the problem is the
least restricted in this case). Hence To = 1. LI

Theorem 3. In the special case where all K, = K and
IKI = K, problem (PIL) is equivalent to problem (P)
if an (N + 1)st alternative, the ideal alternative, is
added to the latter.

(3.7)

(3.8)

k= 1.K; 1 = I_. L- I;

wkL -gLtkFik ) 0, k = I_. K;

Wkl - WkL - tk(WII - WIL) < 0,

k= I_._K;

Proof. From Lemma 2 rT = 1, hence wl = i, u* -
(3.5a) ak*, v = i, F* = F*. Furthermore, constraint (3.4)

may be replaced by Ek- wkl < 1, the upper limit on
the rating for the ideal alternative. Since constraints
(2.2) are redundant in the presence of this inequality,

(3.5b) the result follows. LI
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By virtue of Theorem 3, problem (PI) can be writ-
ten in the form:

L

(PIL') ki 0= max R=E E dk5(io) W
kEKjo 1=1

(3.11)

s.t. E wk1 < 1; (3.12)

kEKo

(2.3a)-(2.8).

Common set of weights
As with problem (P), (PIL') will generally yield a

different set of weights Wkl for each alternative io being
evaluated. Along the lines of the previous section, a
common set of weights can be derived by solving the
problem:

(PC') z* =maxz (3.13)

s.t. EwkU •1, i= 1,...,N; (3.14)
kE K

(2.3a)-(2.8).

This problem is clearly bounded since every crite-
rion k can be assumed to lie in at least one subset Ki,
hence Wkl < 1 for all k. Thus, z will achieve an opti-
mum. The final ratings to be assigned to any alterna-
tive i is given by

EkEK, 1=1 dkl(i)Wk 1

Z=Ekei w* I

where the w*1 are the optimal variables from problem
(PC') .

Model (PI) (hence model (PC')) has the advan-
tage that it provides a fair evaluation to an alternative
i, regardless of the status of those criteria Ki that per-
tain to that alternative. Specifically, an alternative is
not penalized for or given an unfair advantage because
of the nature of its particular criteria. This very prop-
erty may in certain circumstances, however, be seen
as a weakness of the approach. If in a project rating
situation, for example, the contribution of projects to
a specific management goal is a key element in decid-
ing on the set of choices to be funded, then the model
of this section may not be appropriate. On the other

hand, if projects from different departments are to be
fairly assessed so that all contenders have an opportu-
nity to compete, then it may be desirable not to have
criteria not pertinent to an alternative, affect how that
alternative is rated in a relative sense.

4. Discussion

In this paper we extend the full criteria model of
Cook and Kress [2] to the general case where only a
subset Ki of the full set K of criteria are applicable to a
given alternative i. Depending upon the situation, dif-
ferent models for this partial criteria environment can
be formulated. Three possible models are given herein.
The first two models, the aggressive and average per-
formance evaluation formulations, can be viewed as
direct extensions of the CK model. They apply to those
environments where criteria importance must be main-
tained and rewarded (or penalized) whether applica-
ble to an alternative or not. The aggressive model can
be criticized for harshly penalizing those alternatives
that only relate to a small number of the criteria. Thus,
an alternative that can be given a rating, even a very
low one, on a large proportion of the criteria will be
rated higher than an alternative that is able to com-
pete (and perhaps have top performance) on only a
few criteria. The average performance model corrects
for this shortcoming by utilizing the mean over those
criteria that are applicable.

In the case where it is desirable to view an alterna-
tive strictly in terms of those criteria that are applica-
ble, and where the importance of inapplicable criteria
is irrelevant, the ideal performance model is proposed.
Here, we take as a project's rating the ratio of the sum
of weights for the alternative to the sum of the weights
for an ideal alternative (evaluated in the same criteria).
Although not discussed here, other options to the ideal
performance model are possible. Clearly, the denom-
inator of model (PI) could, for example, be replaced
by the worst (i.e. EkeK* WkL) rather than the best per-
formance. With a suitable adjustment to the right hand
side of constraints (3.2), that is by replacing I by a
fixed constant e (chosen large enough), another def-
inition of relative performance arises. Here, the ratio
would be interpreted as the gain in performance over
the lowest achievable performance.
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