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Abstract

This paper is motivated by the diverse array of border threats, ranging from terrorists to
arms dealers and human traffickers. We consider a moving sensor that patrols a certain
section of a border with the objective to detect infiltrators who attempt to penetrate that
section. Infiltrators arrive according to a Poisson process along the border with a specified
distribution of arrival location, and disappear a random amount of time after their arrival.
The measures of effectiveness are the target (infiltrator) detection rate and the time elapsed
from target arrival to target detection. We study two types of sensor trajectories that have
constant endpoints, are periodic, and maintain constant speed: (1) a sensor that jumps
instantaneously from the endpoint back to the starting-point, and (2) a sensor that moves
continuously back and forth. The controlled parameters (decision variables) are the starting
and end points of the patrolled sector and the velocity of the sensor. General properties of
these trajectories are investigated.

1 Introduction

The problem of illegal cross-border activity, in particular along the U.S.-Mexico border, has
drawn much attention in recent years [13], [7]. In addition to people who seek jobs and better
life in the U.S., illegal border crossing has also been associated with criminal activities such
as smuggling and drug trafficking. During the year 2000, over 1 million pounds of marijuana,
30,000 pounds of cocaine and 200 pounds of heroin were seized along the U.S.-Mexico border
[6]. Thus, illegal border-crossing has been a cause for much concern to local, state and federal
law enforcement authorities. Moreover, while so far there has not been any definite evidence
of terrorists involvement associated with this illegal activity, the concern is that terrorists
with weapons of mass destruction could possibly penetrate the porous border in much the
same way that illegal migrants and smugglers do. This scenario poses a serious national
security threat that must be handled by the authorities. While several stakeholders at all
levels of government take part in securing the U.S. against such possible events, the most
important stakeholder in border security is the U.S. Border Patrol, whose current primary
mission is to prevent terrorists and terrorist weapons from entering the country [2]. This
paper is motivated by that mission.
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Concerning border security, an increasingly common approach to border surveillance is
to use a combination of long range and short range sensors [1]. Generally, there is a tradeoff
between the range of the sensor and its resolution; long range sensors provide less resolution
than short range sensors [1]. Although the models developed in this paper can be applied
to a variety of surveillance systems, we focus on two systems: a mounted scanning camera
that scans a certain sector of the border and then leaps back to the starting point, and a
UAV-mounted sensor that flies back and forth between the two endpoints of the sector.

There are two different types of UAVs: drones and remotely piloted vehicles (RPVs).
Both are pilot-less, but drones are programmed for autonomous flight, whereas RPVs are
actively flown, remotely, by a ground control operator. UAVs have played key roles in recent
conflicts [1], providing reconnaissance, surveillance, target acquisition, search and rescue,
battle damage assessments and attack capabilities. An example of such a system that is
increasingly present in U.S. border surveillance activities is the Predator B UAV system,
which can provide long-endurance surveillance and communications relay [5]. While UAVs
are used to extend the surveillance range, especially in the absence of ground infrastructure,
ground-based electro-optical sensors achieve greater resolution. A variety of electro-optical
imaging sensors are employed in border surveillance. A few examples of the technologies
in use are high-resolution imaging, motion detection, temperature-differentiation and night-
vision devices. In addition there is wide use of commercially available cameras adapted for
daytime surveillance, infrared video (IR) detection systems and laser illumination systems
that enable high-resolution imaging. Other optical components include computer-operated
pan/tilt/zoom cameras, visible or near-infrared illuminators for night vision with conven-
tional cameras and image-intensifiers for long-range night vision [5]. The combination of
different sensors mitigates the shortcomings of each single sensor. For example, IR provides
detection in atmospheric conditions where video imaging is ineffective, even though the reso-
lution it provides is relatively low. Laser illumination sensors provide a combination of long
range and high resolution images [5].

Previous work on linear patrols mainly concerns anti-submarine warfare. The classic
WWII book by Koopman [9] lays the foundations for analyzing the performance of barrier
patrols. Washburn, [18] and [19], extends the basic barrier patrol model. Models of barrier
patrol have focused specifically on anti-submarine warfare, in which the acoustic degradation
of the sonar sensor, caused by increasing the patroller’s speed, is incorporated into the
model, and the optimal patrol speed is found. A game-theoretic analysis of choice of speeds
by infiltrator and patroller originated in [8] and [12], and was developed analytically for a
continuum of speed choices in [10]. While these are important references, we are not aware
of any past or current research that is applicable to our problem of perimeter protection.
Although no queueing occurs in our models, some of the techniques we use resemble those
employed in models based on spatial queues; see, for example, [3].

This paper sets forth models for a moving sensor that patrols a certain sector of a border.
The goal is to find a patrol policy that minimizes the infiltration rate across that sector
(maximize detections) when the sensor follows a periodic trajectory at constant speed. The
controlled parameters (decision variables) of the trajectory are the beginning and end points
of the patrolled sector and the sensor’s velocity. We view the main contributions of this
paper as follows. First, we develop models of border surveillance that capture the situation
where infiltrators may disappear before sensor detection, and therefore traverse the border
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undetected. Second, we analyze and prove several properties of the optimal trajectories that
are operationally significant. Finally, we provide a simulation analysis for the case where
identifying the infiltrators is not instantaneous.

The type of surveillance systems described in this paper have recently been brought to
public attention (see, for example, [17]) by the Department of Homeland Security, which
signed a contract with the Boeing Corp. to secure the U.S. southern border. As part of this
contract, tower-mounted and UAV-mounted sensors will be installed on the U.S.-Mexico
border along parts of the state of Arizona.

The rest of the paper is organized as follows. Section 2 presents the basic framework of
our models. Section 3 discusses properties of the leap-to-origin trajectory, and section 4 deals
with the back-and-forth trajectory (see Figure 1). Section 5 extends the baseline scenario
by considering the effect of sensor velocity and the case where it takes time to investigate
each detected target.

2 Model Preliminaries

The two main components of the problem are a sensor and targets (infiltrators). We initially
assume that the sensor is perfect and the detection and identification process is instantaneous.
In particular, the detection probability is independent of the sensor velocity. We set the
velocity, without loss of generality, to be 1. These assumptions are relaxed later on. The
sensor scans a certain sector of the border continuously and repetitively and our objective
is to determine the endpoints of that sector—its origin and destination points. We assume
that these points do not change during the surveillance mission. Two consecutive visits to
the origin determine a cycle in the surveillance process. Targets arrive to the perimeter
according to a homogeneous Poisson process with rate α. More specifically, let (Ti : i ≥ 1)
be the collection of arrival epochs, then the number of arrivals by the time t, t ≥ 0 is given
by

Na(t) =
∞∑
i=1

I(Ti ≤ t),

where I(·) is the indicator function.
The arrival locations of the targets are described by a collection of independent and iden-

tically distributed (i.i.d.) continuous random variables (Xi : i ≥ 1) with common probability
distribution FX . After spending a certain time at the border area, a target may successfully
infiltrate the border and therefore will no longer be available for detection. The period of
time elapsed from target arrival until infiltration is the reneging time and is described by
a collection (Ri : i ≥ 1) of i.i.d. non-negative continuous random variables with common
distribution function FR. Because targets may renege, the problem is to find the endpoints
of the surveillance sector that represent the best tradeoff between two types of undetected
(lost) targets: those who are outside the surveillance sector and those who renege within it.

The following assumption is satisfied in all practical situations of interest, and greatly
simplifies the mathematical treatment.

Assumption 1 Throughout the paper we assume that random variables (Xi : i ≥ 1) posses
a density fX that is unimodal and continuously differentiable on its support. We also assume
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Figure 1: The LO trajectory (left) and the BF trajectory (right): Straight lines represent
sensor’s trajectories; the signs “×”, “•” and “¦” represent arrival, detection and reneging of
a target, respectively. Cycle length is u in the left figure, and 2u in the right figure.

that FR is continuously differentiable on its support.

We consider two types of generic sensors: A human-controlled remote video camera and
a UAV-mounted sensor. A human-controlled remote camera scans the sector of the border
[5] and is typically installed at the top of a tall tower. The camera starts the surveillance
process at one end of the sector, moves at constant speed to a certain destination point,
and then leaps back to the origin instantaneously. This is referred to as a leap-to-origin
(LO) trajectory. A UAV-mounted sensor travels along the border sector back and forth in a
constant speed, in a back-and-forth trajectory (BF). Figure 1 illustrates the LO scenario on
the left-hand side and the BF scenario on the right-hand side.

The main component in our formulation is the process (Nd(t) : t ≥ 0), which counts the
number of detections by time t. Our construction guarantees that Nd is a Poisson process
for any cycle length u, with rate that depends on FX and FR, on the sensor trajectory policy
(LO or BF), and on the cycle length u. The measure of effectiveness (MOE) used to evaluate
the LO and BF policies is the long term target detection rate, Nd(t)/t as t →∞.

3 The Leap-to-Origin Trajectory

In this section we study the leap-to-origin (LO) trajectory, where the sensor instantaneously
leaps from the destination to the origin after completing a cycle. Our goal is to find the two
endpoints for the sensor to maximize the long-run detection rate. Recall that we assume
that Na, Xi, and Ri are independent, that the Xi’s have support on <, and that the Ri’s
have support on <+. Without loss of generality (by changing the time scale if necessary)
we assume that target arrival rate equals 1. We also assume that the sensor speed equals 1;
this assumption is relaxed later on in Section 5.

The problem of finding the best endpoints is approached as follows:

(i) Identify the best origin point as a function of cycle length.

(ii) Find the optimal cycle length.

With regard to (i), define

H(u) := max
a
{FX(u + a)− FX(a)}, (1)



September 11, 2007 5

and let a∗ be a maximizer in (1). Observe that for u arbitrary and finite, FX(u+a)−FX(a) →
0 as |a| → ∞, so that −∞ < a∗ < ∞. For a cycle length u, a∗ is the optimal origin of the
sensor, a∗ + u is the optimal destination, and H(u) is the probability that a target crosses
the perimeter on the sector (a∗, a∗ + u); notice that H(u) is a distribution function when
viewed as a function of u. Moreover, the first part of Assumption 1 guarantees that H(u) is
sufficiently smooth for our models to be well posed.

Lemma 1 Under Assumption 1, H(u) is continuously differentiable and concave on its sup-
port.

Lemma 1 follows almost immediately from the next result.

Lemma 2 Suppose Assumption 1 holds. Then if fX has infinite support, the function a :
< → < defined as the solution of

fX(a(u)) = fX(a(u) + u)

is differentiable and a(u) maximizes FX(u + a)− FX(a).

Proof of Lemma 2. The implicit function theorem shows that a(u) is well defined and
differentiable. The first order necessary conditions for unconstrained optimization show that
F ′

X(a + u) − F ′
X(a) = 0 ⇐⇒ fX(a) = fX(a + u) and, since fX is unimodal, there is only

value of a that makes fX(a) equal to fX(a + u) for u given. ⊗

Proof of Lemma 1. If fX has infinite support, then

H ′(u) = fX(a(u) + u)(a′(u) + 1)− fX(a(u))a′(u) = fX(a(u) + u),

by Lemma 2. Therefore, H ′ is continuous and non-increasing, and the lemma is proven for
the infinite support situation. Suppose now that fX has finite support from the left; that is
` = sup{u : FX(u) = 0} is finite. Define u` as the cycle length where the optimal trajectory
origin first hits `. Therefore, for 0 < u ≤ u` we have already shown that H(u) is continuously
differentiable and concave; whereas for u > u` we have H(u) = FX(` + u) − FX(`), which
is easily seen to be concave and continuously differentiable. The cases where fX has finite
support from the right, and from the left and the right, are similarly treated. ⊗

A target is detected on the k + 1’th cycle, for k ≥ 1, when all of the following three
conditions are met: First, the target arrives to the patrolled sector (a∗ ≤ Xi ≤ a∗ + u);
second, its arrival time is at least Xi− a∗ + (k− 1)u (since we assume that sensor velocity is
1) and no more than Xi − a∗ + ku; last, its reneging time is at least Xi − a∗ + ku− Ti. This
situation is illustrated in Figure 2, for k = 2: The first two conditions determine the dotted
region where detection is possible; the last condition ensures that a target that falls in the
dotted area has a reneging time sufficiently large to be detected.

Let X∗
i := Xi− a∗ be the target arrival location translated to a∗, for i = 1, 2, . . .. Hence,

for an LO trajectory with origin a∗ and destination a∗ + u, the expression

Nd((k+1)u) = Nd(ku)+
∞∑
i=1

I(0 ≤ X∗
i ≤ u; X∗

i +(k−1)u ≤ Ti ≤ X∗
i +ku; Ri > X∗

i +ku−Ti)
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Figure 2: Detection region for the third cycle of an LO trajectory, for cycle length u, and
optimal origin of the sensor a∗.

represents the number of detections at the end of the k +1’th cycle, for k ≥ 1. Observe that
since the first cycle is irregular, we have that

Nd(u) =
∞∑
i=1

I(0 ≤ X∗
i ≤ u; Ti ≤ X∗

i ; Ri > X∗
i − Ti)

is the number of detections at the end of the first cycle.
We wish to choose a cycle length and an origin that maximize the detection rate Nd(t)/t,

as t → ∞. The following result, Proposition 4.4.1 in [14], provides theoretical support for
the computation of this rate.

Proposition 1 Suppose that (Yi : i ≥ 1) are random elements of an Euclidean space E1

such that N(·) =
∑

i I(Yi ∈ ·) is a Poisson process with Poisson measure µ(·) = EN(·).
Suppose (Ji : i ≥ 1) are random elements of a second Euclidean space E2 with common
probability distribution F , and suppose N and the Ji’s are defined on the same probability
space and are independent. Then the point process

∑
i I((Yi, Ji) ∈ ·) is Poisson with Poisson

measure µ× F .

Proposition 1 guarantees that the process Nd is Poisson. The property of the Poisson process
that disjoint intervals are independent implies that the random variables that describe the
number of detections in a regular cycle are independent and identically distributed, with
mean given by

ENd((k + 1)u)− ENd(ku)

=

∫

<

∫

<+

∫

<+

I(0 ≤ x∗ ≤ u; x∗ + (k − 1)u ≤ t ≤ x∗ + ku; r > x∗ + ku− t)dFR(r) dt dFX∗(x∗)

=

∫ u

0

∫ x∗+ku

x∗+(k−1)u

F̄R(x∗ + ku− t)dt dFX∗(x∗)

= H(u)

∫ u

0

F̄R(t)dt,

for k ≥ 1, where F̄R(·) = 1− FR(·), and FX∗(x∗) = P (X∗ ≤ x∗). Observe that although Nd

does not necessarily have a constant rate within a cycle, the rate is periodic for all cycles
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k ≥ 2, and hence we end up with the above result. For the first irregular cycle we have

ENd(u) =

∫

<

∫

<+

∫

<+

I(0 ≤ x∗ ≤ u; 0 ≤ t ≤ x∗; r > x∗ − t)dFR(r) dt dFX∗(x∗) < ∞. (2)

Equation (2) and the monotone convergence Theorem imply that Nd(u)/t → 0 almost
surely as t →∞. Also, the Law of Large Numbers for Renewal Reward processes, Proposition
3.4.1 in [14], implies that

Nd(t)−Nd(u)

t− u

t− u

t
→ ENd((k + 1)u)− ENd(ku)

u

almost surely as t →∞. Putting this all together,

Nd(t)

t
=

Nd(u)

t
+

Nd(t)−Nd(u)

t− u

t− u

t

→ ENd((k + 1)u)− ENd(ku)

u
,

almost surely as t →∞, for any k ≥ 1. Therefore, the detection rate is

gLO(u) := H(u)

∫ u

0
F̄R(t)dt

u
. (3)

Accordingly, our goal in the LO setting is to find a cycle length that maximizes gLO. Just
like in (1) when selecting the best origin a(u), there may exist more than one maximizer of
gLO in (3), in which case we choose the one with the smallest cycle length. That is, optimal
cycle length is

u∗ := min{u ≥ 0 : gLO(u) ≥ gLO(w),∀w ≥ 0}.
The term

∫ u

0
F̄R(t)dt in (3) is the expected number of detections in any inspected location

in a cycle of length u, which is then inflated by H(u) to account for all surveyed locations;
the u term in the denominator is the expected number of arrivals along a cycle of length u.

Remark 1 Changing the arrival rate of Na from 1 to α > 0 changes gLO by a factor α, but
does not change a∗ nor u∗.

We define gLO(0) = 0, so that gLO is continuous at 0. Observe that Assumption 1 implies
gLO is continuously differentiable in <+. To complete the notation, let r̄ := inf{ν : FR(ν) =
1}, and ū := inf{ν : H(ν) = 1} (both r̄ and ū can possibly be infinite); and write µR = ER
and µX = EX. Given a differentiable real function `(u) we write `′(u) as short for d`(u)/du.

We study properties of the detection rate and the optimal cycle length in various scenarios
of the LO trajectory. First we study several instances of reneging behavior: R bounded with
probability one, R deterministic, and R uniformly distributed. Second, we analyze the case
of X bounded, and X uniform. Last, we deal with the general case where both X and R
have densities with infinite support. We start by analyzing the case where the reneging times
are bounded with probability 1.
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Example 1 Suppose 0 < r̄ < ∞. Then

gLO(u) =

{
H(u)

∫ u
0 F̄R(t)dt

u
, for 0 ≤ u ≤ r̄

H(u)µR

u
, for u > r̄.

(4)

Evidently, if gLO is non-increasing on [r̄,∞), we must have u∗ ≤ r̄.

Lemma 3 Suppose that 0 < r̄ < ∞. Then, u∗ ≤ r̄.

Proof: Lemma 1 implies uH ′(u) ≤ H(u) for u ≥ r̄, so that (H(u)/u)′ ≤ 0, and g′LO(u) ≤ 0.
⊗
Clearly, H strictly concave implies uH ′(u) < H(u). The borderline case is uH ′(u) = H(u) for
u ≥ r̄, that is, H ′ constant on u ≥ r̄; see Example 4 below. What happens if uH ′(u) > H(u)
for some u ≥ r̄? Then it could happen that u∗ > r̄. In any case, because H(u)/u → 0 as
u →∞, we know that u∗ < ∞.

Under the conditions of Lemma 3 it is never beneficial to scan a sector longer than r̄
because the detections gained by covering more area would not outweight the extra missed
detections due to reneging. Two special cases of Example 1 are presented next.

Example 2 Deterministic reneging times: Suppose P (R = r̄) = 1, 0 < r̄ < ∞. Then
Equation (4) becomes

gLO(u) =

{
H(u), for 0 ≤ u ≤ r̄
H(u) r̄

u
, for u > r̄.

Since gLO is non-decreasing on 0 ≤ u ≤ r̄, in view of Lemma 3 we have u∗ = r̄.

Example 3 If Ri ∼ U(0, r̄), Equation (4) becomes

gLO(u) =

{
H(u)

(
1− u

2r̄

)
, for 0 ≤ u ≤ r̄

H(u) r̄
2u

, for u > r̄.
(5)

Therefore, u∗ ≤ r̄, where u∗ is the smallest maximizer of the top branch in the RHS of (5).

Our next lemma considers the case of ū finite.

Lemma 4 Suppose that 0 < ū < ∞. Then u∗ ≤ ū.

Proof: The fact that
∫ u

0
F̄R(t)dt/u is non-increasing in u, and that H(u) = 1 for all u ≥ ū,

implies that u∗ ≤ ū. ⊗
Lemma 4 describes the scenario corresponding to Xi having its mass concentrated in

some finite interval. It says that it is not beneficial to patrol further than ū, where no
targets arrive. Our next example illustrates Lemma 4, and shows that the hypothesis of
Lemma 3 cannot be weakened.

Example 4 Suppose Xi ∼ U(0, ū). Then Equation (3) becomes

gLO(u) =

{ ∫ u
0 F̄R(t)dt

ū
, for 0 ≤ u ≤ ū∫ u

0 F̄R(t)dt

u
, for u > ū.

Clearly, u∗ = ū. In particular, if r̄ < ū, then any cycle length in [r̄, ū] maximizes gLO.
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We now discuss properties of gLO(u) and u∗ when both X and R have densities with
infinite support. First, it is immediate from the definition of gLO that gLO(u)u → µR as
u → ∞, so that gLO(u) decreases towards 0 at rate 1/u; see the right part of Figure 5.
Concerning the behavior of gLO locally around 0 we observe that gLO is sub-additive on
some interval (0, γ], γ > 0:

gLO(α + β) ≤ gLO(α) + gLO(β), (6)

for α, β > 0 and α + β ≤ γ. Sub-additivity follows because

(i) H(α + β) ≤ H(α) + H(β). This follows since

H(α + β) = max
a
{FX(α + β + a)− FX(a)}

= max
a
{FX(α + β + a)− FX(α + a) + FX(α + a)− FX(a)}

≤ max
a
{FX(α + β + a)− FX(α + a)}+ max

a
{FX(α + a)− FX(a)}

= max
a
{FX(β + a)− FX(a)}+ max

a
{FX(α + a)− FX(a)}

= H(β) + H(α).

(ii)
∫ α+β

0
F̄R(t)dt/(α+β) ≤ min{∫ α

0
F̄R(t)dt/α,

∫ β

0
F̄R(t)dt/β}. This follows because

∫ u

0
F̄R(t)dt/u

is non-increasing in u, as can be immediately seen by evaluating its first derivative.

Applying properties (i) and (ii) leads immediately to (6):

gLO(α + β) =
H(α + β)

∫ α+β

0
F̄R(t)dt

α + β

≤ (H(α) + H(β)) min

{∫ α

0
F̄R(t)dt

α
,

∫ β

0
F̄R(t)dt

β

}

≤ H(α)

∫ α

0
F̄R(t)dt

α
+ H(β)

∫ β

0
F̄R(t)dt

β

= gLO(α) + gLO(β).

In addition, gLO is continuous at 0. Therefore, Lemma 3.6.4 of [4] applies, and we have

gLO(u)

u
→ λ,

as u → 0, for some λ > 0. That is, gLO is locally linear around 0; see the left part of Figure
5. Thus, the behavior of gLO(u) for u around 0 and for all u sufficiently large implies that
the optimal cycle length must be a stationary point, i.e.: u∗ is the root of the equation
g′LO(u) = 0 for which gLO is largest. The root problem can be re-written as

uH ′(u)

∫ u

0

F̄R(t)dt = H(u)

∫ u

0

F̄R(t)dt− uH(u)F̄R(u). (7)
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The last equation says that we increase cycle length until the marginal increase in target
detections equals the marginal decrease in lost target detections due to reneging. In general,
however, it is not possible to analytically solve Equation (7), so standard numerical methods
must be utilized; the computational cost grows with the number of roots that need to be
found in (7).

Example 5 Suppose Xi ∼ N(0, 1) and Ri ∼ exp(1). Then a∗ = −1.025, u∗ = 2.05 is the
root of g′LO(u) = 0, and gLO(u∗) = .295; see Figure 5.

Remark 2 Concerning Example 5, an exponential reneging distribution leads to the same
solution that arises in the following setting: Upon arrival, each target emits a signal of
constant amplitude that decays exponentially in time with rate θ; this is known as a shot
noise process [14]. This would be the case, for example, if the footprint and marks left by
the infiltrators disappear at an exponential rate in time. In particular, the signal strength of
arrivals detected in the (k + 1)’th cycle is given by

∞∑
i=1

e−θ(Xi+ku−Ti)I(a∗ ≤ Xi ≤ a∗ + u,Xi + (k − 1)u ≤ Ti ≤ Xi + ku).

Following the approach taken in [14], p. 326, we find the expected average signal strength
of targets detected in an arbitrary cycle is H(u)

∫ u

0
exp(−θt)dt/u, which is gLO(u) when

Ri ∼ exp(θ). In other words, a system where targets that arrive according to a shot noise
process, has the same solution as the system where targets renege according to an exponential
distribution.

Next, we study the effect of variability in the targets’ arrival location. The question we
have in mind is: Does an increase in σ2

X := var(X) cause gLO to decrease? The answer is
not necessarily, as can be seen in the following example.

Example 6 Suppose that X has a density that is a mixture of a uniform and a Pareto
density,

fX(x) =

{
1, for 0 ≤ x ≤ θ

(1− θ) θ
x2 , for x > θ,

and that P (R ≤ θ) = 1, for 0 < θ < 1. It is easy to see that H(u) = 1+(θ2−θ)/u for u ≥ θ,
and that θ > 1/2 implies (H(u)/u)′ < 0 for u > θ. Therefore, according to Lemma 3 and
Example 4 we have u∗ = θ, and gLO(u∗) = µR. Compare this with the case Xi ∼ U(0, ū),
where ū > θ. In this case we have, according to Example 4, u∗ = θ and gLO(u∗) = µR/ū.
Therefore, if ū > 1, the optimal detection rate for the mixture density case is larger than that
of the non-uniform case. However, σ2

X in the mixture case is infinite (due the heavy-tails
of the Pareto density), while σ2

X in the second case is finite. This example lets us conclude
that larger arrival location variability does not necessarily lead to lower detection rate for the
optimal cycle length.

However, for re-scaled versions of X it is true that lower variance leads to greater detection
rate. To show this it suffices to compare the respective H(·) terms.
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Lemma 5 Let X̃ = X/σX , ã∗ a maximizer of P (a < X̃ ≤ a + u), and H̃(u) = P (ã∗ < X̃ ≤
ã∗ + u). Suppose 0 < σX < ∞. Then H̃(u) ≤ H(u) if and only if σX ≤ 1.

Proof: For σX > 1 we have H̃(u) = P (σX ã∗ < X ≤ σX ã∗ + σXu) ≥ P (a∗ < X ≤
a∗ + σXu) ≥ P (a∗ < X ≤ a∗ + u) = H(u). On the other hand, for σX < 1 we have
H̃(u) ≤ P (σX ã∗ < X ≤ σX ã∗ + u) ≤ P (a∗ < X ≤ a∗ + u) = H(u). ⊗

Example 7 Suppose Xi ∼ N(0, σ2), and Ri ∼ exp(1). The top of Figure 3 illustrates the
optimal detection rate as a function of σ; as expected from Lemma 5, gLO(u∗) decreases as
σ increases. The bottom of Figure 3 shows the optimal cycle length increasing with σ. Not
shown is the optimal origin a∗ = −u∗/2.
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Figure 3: Detection rate and cycle length as a function of σ.

4 The Back-and-Forth Trajectory

In this section we study the back-and-forth (BF) trajectory—a scenario that arises when
sensors are mounted on platforms, such as ground patrol units or UAVs. Our goal is to
analyze cycle trajectories and find an optimal cycle length in order to maximize the long-run
detection rate for targets before they renege.

The setting is the same as that in the LO scenario: Xi, Ri, and Na(·) are mutually
independent; the Xi’s and Ri’s are continuous random variables whose distributions satisfy
Assumption 1; and the Ri’s take values on <+. The speed of the sensor is 1, and the targets
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Figure 4: Detection region for the first regular cycle of a BF trajectory, for cycle length 2u,
and origin of the sensor a.

arrive according to a Poisson process with rate 1. As shown in Figure 1, because the re-visit
time to the center of the trajectory is shorter than that of the endpoints, targets renege more
often in an area closer to the trajectory endpoints.

In order to obtain an expression for the long-run detection rate, we take a similar approach
to the one taken to determine gLO. Consider Figure 4: We filled with “−” marks the region
where targets get detected (if no reneging occurs) when the sensor moves from a + u to u,
and we filled with “·” marks the region where targets get detected (if no reneging occurs)
when the sensor moves from u back to a + u. The cycle length is 2u, and a is the cycle
origin. For a target i to fall in the “−” marked region and get detected it must satisfy three
conditions: a ≤ Xi ≤ a + u, Xi − a ≤ Ti ≤ 2u − (Xi − a), and Ri > 2u − Ti − (Xi − a).
On the other hand, for a target to fall in the “·” marked region and get detected, it must
satisfy: a ≤ Xi ≤ a + u, 2u− (Xi − a) ≤ Ti ≤ 2u + (Xi − a), and Ri > 2u− Ti + (Xi − a).
A similar analysis can be carried out for all the regular cycles, by introducing a cycle-index
k, just like we did in the LO case. Hence, Proposition 1 ensures that the detection process
for the BF trajectory is Poisson, so that the number of detections in each regular cycle is
a sequence of independent and identically distributed random variables, with the mean for
each cycle given by

∫ a+u

a

∫ 2u−(x−a)

x−a

F̄R(2u−(x−a)−t)dt dFX(x)+

∫ a+u

a

∫ 2u+(x−a)

2u−(x−a)

F̄R(2u−t+(x−a))dt dFX(x)

=

∫ a+u

a

∫ 2(u−(x−a))

0

F̄R(t)dt dFX(x) +

∫ a+u

a

∫ 2(x−a)

0

F̄R(t)dt dFX(x)

=

∫ u

0

fX(x + a)c(x, u)dx,

where fX is the density of the Xi’s and

c(x, u) :=

∫ 2(u−x)

0

F̄R(t)dt +

∫ 2x

0

F̄R(t)dt, (8)

for 0 ≤ x ≤ u.
Since the mean number of detections in the first irregular cycle is finite, the Law of Large

Numbers for Renewal Reward processes ensures that the long-run detection rate for targets
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is given by

gBF (u) :=
maxa{

∫ u

0
fX(x + a)c(x, u)dx}

2u
. (9)

The constant a∗BF = a(u) maximizes
∫ u

0
fX(x + a)c(x, u)dx, and is the best trajectory origin

for cycle length u. Since f(x+a) → 0 as |a| → ∞ and c(x, u) ≤ 2µR for 0 ≤ x ≤ u, we must
have |a∗| < ∞. From Equation (8), it can be seen that the function c(·, u) is symmetric for
each u > 0 about x = u/2. In addition, differentiation with respect to x shows that c(·, u) is
increasing and concave in x for fixed u. Define gBF (0) = 0 so that gBF is continuous in <+,
and observe that Assumption 1 implies that gBF is continuously differentiable in <+ (the
proof of this fact mimics that of Lemma 1). The optimal cycle length is the smallest cycle
length that maximizes gBF :

u∗BF := min{u ≥ 0 : gBF (u) ≥ gBF (w),∀w ≥ 0},
The analysis in this section is similar to that of the LO trajectory, and we draw compar-

isons between LO and BF whenever appropriate. In this regard, the next lemma shows that
the BF trajectory can do no better than the LO trajectory, for any cycle length u.

Lemma 6 For all u ≥ 0, gBF (u) ≤ gLO(u).

Proof: Observe that F̄R non-increasing implies that c(x, u) ≤ 2
∫ u

0
F̄R(t)dt, for all 0 ≤ x ≤

u. Hence

gBF (u) =
maxa{

∫ u

0
fX(x + a)c(x, u)dx}

2u
≤ maxa{

∫ u

0
fX(x + a)dx} ∫ u

0
F̄R(t)dt

u
= gLO(u).

⊗
In addition,

Corollary 1 Lemma 6 implies

gBF (u∗BF ) ≤ gLO(u∗BF ) ≤ gLO(u∗LO),

that is, the optimal detection rate for the LO trajectory cannot be smaller than the optimal
detection rate for the BF trajectory.

We now focus on properties of the optimal cycle length u∗BF . We start with the analogue
of Lemma 3, dealing with the case of Ri having finite support, P (Ri ≤ r̄) = 1, for 0 < r̄ < ∞.
The key idea is that for u À r̄, gBF (u) ≈ gLO(u). Specifically, for u ≥ r̄ we have

gBF (u) = µR
FX(u + a∗BF )− FX(a∗BF )− ϕ(u)

u
, (10)

(cf. Equation (4)) where

ϕ(u) :=
∫ r̄/2

0
fX(x + a∗BF )

(
µR −

∫ 2x

0
F̄R(t)dt

)
dx +

∫ u

u−r̄/2
fX(x + a∗BF )

(
µR −

∫ 2(u−x)

0
F̄R(t)dt

)
dx

2µR

is the “error” term.
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Lemma 7 Suppose that 0 < r̄ < ∞, that gBF is differentiable in <+, and that the error
term ϕ(u) satisfies

u (fX(u + a∗BF )− ϕ′(u)) ≤ FX(u + a∗BF )− FX(a∗BF )− ϕ(u), (11)

for all u ≥ r̄. Then u∗BF ≤ r̄.

Proof: The hypothesis implies that g′BF (u) ≤ 0 for all u ≥ r̄. ⊗
Remark 3 Condition (11) is the same as that of Lemma 3, but for the error term ϕ. The
error term becomes insignificant as r̄ becomes large, but may be relevant for small values of
r̄—see Example (8) below.

Example 8 When P (R = r̄) = 1 for some constant r̄ > 0 we have

c(x, u) = min{2x, r̄}+ min{2(u− x), r̄}.

For u ≤ r̄/2 we have c(x, u) = 2u, and gBF (u) = FX(u + a∗BF ) − FX(a∗BF ) non-decreasing
implies r̄/2 ≤ u∗BF . If the conditions of Lemma 7 apply, we have r̄/2 ≤ u∗BF ≤ r̄.

The analogue of Lemma 4 to the BF setting is straightforward.

Lemma 8 Suppose P (u ≤ X ≤ ū) = 1, where u = sup{u : P (X ≥ u) = 1} and ū = inf{u :
P (X ≤ u) = 1}, and −∞ < u < ū < ∞. Then u∗BF ≤ ū− u.

Proof: For u+ ≥ ū and u− ≤ u, we have

∫ u+

u−
fX(x)c(x, u)dx

2(u+ − u−)
=

∫ ū

u
fX(x)c(x, u)dx

2(u+ − u−)
≤

∫ ū

u
fX(x)c(x, u)dx

2(ū− u)
.

The other possibilities,

• u+ − u− > ū− u, u− > u, and u+ > ū,

• u+ − u− > ū− u, u− < u, and u+ < ū,

are treated similarly. ⊗
Regarding the general case when both Xi and Ri have infinite support, the results in the

BF case match those of the LO case:

(i) From the definition of gBF we have gBF decreasing at rate O(u−1) as u → ∞. This
implies that gLO(u)− gBF (u) → 0 as u →∞; see the right part of Figure 5.

(ii) gBF is sub-additive; the proof of this fact is similar to the LO one. Hence, gBF is locally
linear (increasing) around 0. Moreover, it can be shown that the linear constants are
the same in both the LO and BF cases.

(iii) Items (i) and (ii) imply that the optimal cycle length satisfies g′BF (u) = 0, which can
be solved numerically at a cost that grows with the number of roots.
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(iv) Effects of arrival location variability: Here we also have that re-scalings of X, such as
cX, lead to lower detection rate if and only if the scaling constant c is greater than 1.

The next example illustrates many of the results of this section.

Example 9 Suppose Xi ∼ N(0, 1) and Ri ∼ exp(ρ), for ρ > 0. We have a∗BF = −u/2 and
completing squares in equations (9) and (8) results in

gBF (u) =
(Φ(u/2)− Φ(−u/2))− e2ρ2−ρu(Φ(2ρ + u/2)− Φ(2ρ− u/2))

uρ
.

Figure 5 shows the detection rates for the LO case on top and for the BF case on bottom
when ρ = 1. As expected from Lemma 6, we observe gBF (u) ≤ gLO(u) for all u ≥ 0. In
addition, gBF (u) ≈ gLO(u) locally around 0 because there are no reneges there, and gBF (u) ≈
gLO(u) for all u sufficiently large because the expected number of detections per cycle converges
to µR (i.e.: the numerator in Eqs. (3) and (9) converges to µR as u →∞), yet the increasing
cycle length causes the detection rate to decrease at speed O(u−1). The operational take-away
is that there is not a significant difference between the LO and BF trajectories when the cycle
length is small or large.

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

u

g(
u)

LO trajectory

BF trajectory

Figure 5: Detection rate for LO and BF trajectories.

Figure 6 presents u∗BF , gBF (u∗BF ), u∗LO, and gLO(u∗LO) as a function of the reneging rate
ρ. We observe in the top part that u∗BF ≥ u∗LO for all ρ; the reason for this is that the BF
trajectory compensates the reneges at the endpoints with the extra detections provided by a
larger trajectory length. (This argument can be made rigorous, but there is not much value in
comparing optimal cycle lengths). Regarding the bottom part of Figure 6 we have, as expected
from Corollary 1, that gBF (u∗BF ) ≤ gLO(u∗LO), with the difference gLO(u∗LO)−gBF (u∗BF ) being
largest for moderate values of ρ. In other words, when targets have an expected renege time
that is sufficiently small or large, the LO trajectory is not much better than the BF trajectory.
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Figure 6: Cycle length and detection rate as a function of reneging rate.

5 Effects of Velocity and Investigation Time

Although the baseline scenarios described in the previous sections are idealized, they can be
adjusted in ways that better approximate sensor operation in the field. In this section we
put forward two such extensions. In the first extension we study the effect of sensor velocity
on the long term detection rate. In particular, we consider the tradeoff between visiting a
point on the perimeter more frequently, which mitigates the effect of reneging, and missing
targets due to decreased detection capability when sensor’s velocity increases. In the second
extension we study the case where it takes time to investigate each detected target.

Remark 4 The effects of these extensions for both the LO and BF settings are qualitatively
similar. In this paper we only present the LO trajectory since it is more tractable.

5.1 Effects of velocity

If sensor velocity has no impact on its ability to detect infiltrators that cross its trajectory
then it is obvious that the optimal cycle length and detection rate increase with sensor
velocity, and maximum velocity is optimal. On the other hand, if high velocity leads to a
lower detection capability, low sensor velocity may be optimal. In this section we investigate
the effect of this dependency.

Given that the sensor looks at a target, we consider the case where the target is detected
with a probability that is non-increasing in the sensor velocity; this case captures the situa-
tion where the sensor operator tends to miss targets as the sensor velocity increases. Because
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the detection process in this setting is a thinned version of the detection process Nd(·) (see
[14], p. 317), in order to maximize detection rate, velocity v and cycle length u should be
selected in the LO context so as to maximize

gLO(u, v) :=
η(v)H(u)

∫ u/v

0
F̄R(t)dt

u/v
, (12)

where η(v) is the detection probability when the sensor moves at velocity v. The thinning of
the detection process shows as the η(v) term in Equation (12). Naturally, we seek an answer
to the following question: What is the (velocity, cycle length) pair that maximizes detection
rate? We assume that the detection probability η(v) is differentiable for all v > 0.

Example 10 Suppose η(v) = η ≤ 1 is positive and constant for all v > 0. This is the case
where sensor velocity has no impact on the sensor ability to detect targets. We have

gLO(u, v) :=
ηH(u)

∫ u/v

0
F̄R(t)dt

u/v
.

For u arbitrary, ∂gLO(u, v)/∂v > 0 shows that going at maximum speed (say v̄) is optimal.
Changing variables, ψ = u/v, shows that maximizing gLO(u, v̄) is the same as maximizing

ηH(v̄ψ)
∫ ψ

0
F̄R(t)dt

ψ
. (13)

Hence, we are in the framework of Section 3, with ψ in place of u. Let ψ∗ be the smallest
maximizer in (13), and u∗(v̄) = v̄ψ∗. A repeat of the arguments used in Section 3 shows
that u∗(v̄) ≥ u∗ and gLO(u∗(v̄), v̄) ≥ gLO(u∗) if and only if v̄ ≥ 1. In other words, increasing
velocity can only improve detection rate.

The analogue of Example 1 is

Example 11 Suppose 0 < r̄ < ∞. Then

gLO(u, v) =

{
η(v)H(u)

∫ u/v
0 F̄R(t)dt

u/v
, for 0 ≤ u/v ≤ r̄

η(v)H(u) µR

u/v
, for u/v > r̄.

In the above example, if H is strictly concave then H(u)/u is decreasing for all u > 0, and
so we must have u∗ ≤ v∗r̄ (cf. Lemma 3). The continuation of Example 2 is

Example 12 Suppose that P (R = r̄) = 1, 0 < r̄ < ∞. Then, if H is concave, we have
u∗(v) = r̄v and

gLO(u∗(v), v) = η(v)H(r̄).

Because η(v)H(r̄) → 0 if η(v) → 0 as v → ∞, we must have 0 < v∗ < ∞, so that the
optimal velocity satisfies (η(v)H(vr̄))′ = 0.

The following is an example of practical interest because it treats the case of a uniform
distribution of the targets’ arrival location along the perimeter.
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Example 13 Suppose Xi ∼ U(0, ū). For any v > 0, Example 4 implies that u∗(v) = ū, so
that

gLO(ū, v) =
η(v)v

∫ ū/v

0
F̄R(t)dt

ū
.

Observe that for all 0 < v ≤ ε, ε > 0, we have

gLO(ū, v) ≤ ε
η(0)µR

ū
,

which implies that gLO(ū, v) → 0 as v → 0. Similarly, for all v > ξ > 0,

gLO(ū, v) ≤ η(ξ)ξū/ξ

ū
= η(ξ),

shows that gLO(ū, v) → 0 as v →∞. Therefore, the optimal velocity is 0 < v∗ < ∞, and can
be found by solving ∂gLO(ū, v)/∂v = 0. In this regard, gLO(ū, v) strictly concave in v would
imply the existence of only one such root.

Looking now at the general case, we start by exploring some properties of the optimal
(velocity, cycle length) pair.

Lemma 9 Suppose that η(v) is non-increasing and goes to 0 as v →∞. Then 0 < u∗ < ∞
and 0 < v∗ < ∞.

Proof: Observe that for all u, v > 0 we have
∫ u/v

0
F̄R(t)dt

u/v
≤ 1. (14)

We study four complementary scenarios: For 0 < u < ε, ε > 0, Equation (14) implies
gLO(u, v) ≤ H(ε)η(0). Second, for 0 < v < ε, ε > 0, we have gLO(u, v) ≤ εη(0)µR/u.
Third, for u > ξ > 0: gLO(u, v) ≤ vη(0)µR/ξ. Last, for v > ξ > 0, Equation (14) implies
gLO(u, v) ≤ η(ξ). Sending ε → 0 and ξ →∞ in the above scenarios completes the proof. ⊗

The last lemma lets us conclude that the optimal (u∗, v∗) pair must be a stationary point

∂gLO(u, v)

∂u
= 0, and

∂gLO(u, v)

∂v
= 0. (15)

Just like in the LO and BF case, we use numerical optimization to find such stationary
point, and select the one for which the detection rate is largest. Finding the optimal (u∗, v∗)
pair can become numerically costly when there exist many roots that need to be found and
compared.

Example 14 Suppose that Xi ∼ exp(1), Ri ∼ U(0, 1), and η(v) = exp(−v). Then a direct
calculation shows that

g(u, v) = e−v(1− e−u)(1− .5u/v),

for u ≤ v; this constraint is justified by the discussion following Example 11. Solving (15)
yields (u∗, v∗) = (.610, .726), and g(u∗, v∗) = .128. We now explain how this .128 fraction is
obtained. P (X ≤ u∗) = .457 is the fraction of targets that arrive to the part of the perimeter

that is searched. Of these, .457×∫ u∗/v∗

0
F̄R(t)dt = .223 are observed before reneging. Finally,

.223× exp(−v∗)/(u∗/v∗) = .128 is the fraction of targets that is detected.
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Figure 7: The LO trajectory (left) and BF trajectory (right), subject to investigation time.

5.2 Investigation time

So far we have postulated operational scenarios under the assumption that the detection
occurs instantaneously. In certain situations, however, targets are investigated by the sensor
upon detection, during which time the sensor remains immobile. This type of sensor policy is
common when the identification of the target is required before a decision is made as to the
necessary reaction, or when the sensor has to escort the target until a response force arrives
at the scene. Figure 7 illustrates this scenario when the investigation time is constant.

As in the previous sections, we would like to find a cycle length that maximizes detection
rate as t → ∞. Unfortunately, for a given cycle length u, the detection rate cannot be
analytically computed, and must be estimated by Monte Carlo simulation. This happens
because disjoint intervals do not have independent number of detections, so the detection
process is not Poisson anymore. Hence, we must use simulation optimization ideas to find a
good cycle length.

To make our developments simple we assume that investigation times are constant and
equal to θ > 0. The key to approximating detection rate for large values of t is to notice that
the number of detections that fall within complete uninterrupted trajectories and the times
elapsed between these trajectories are i.i.d. random variables. In other words, the system
regenerates whenever a trajectory with no detections occurs.

To get started, let Z = (Zi : i ≥ 0) be a stochastic process with state space on R∞.
A realization Zi = (ti,0, ti,1, . . . , ti,n) says that the i’th trajectory starts at time ti,0, and
the j’th detection occurs at time ti,j, for j = 1, . . . , n, n being the last detection in that
trajectory. We set Z0 = (0) to indicate that there are no detections in the first (irregular)
cycle. Because we know velocity and the endpoints of the patrolled sector, given Zi we
also know the location of the arrivals in that cycle. Observe that the Zi’s are, in general,
not i.i.d. random variables. However, homogeneous Poisson arrivals imply that P (Zn ∈
·|Zn−1, . . . , Z1) = P (Zn ∈ ·|Zn−1), and hence the process Z is Markov. Let us define stopping
times τ1 = inf{i > 0 : |Zi| = 1}, and τn = inf{i > τn−1 : |Zi| = 1} for n ≥ 2, where by |Zi|
we denote the cardinality of Zi. Observe that the τi’s are i.i.d. random variables. Observe
that if targets never renege it is possible to have τ = ∞. However, when 0 < µR < ∞, we
have the following

Lemma 10 If 0 < µR < ∞ then Eτ1 < ∞.

Proof: Assume momentarily that

P (τ1 > k) ≤ (1− exp(−µR))k, (16)
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for k ≥ 1. Hence,

Eτ1 =
∞∑

k=0

P (τ1 > k) ≤ exp(µR) < ∞.

To complete the proof we use induction to show (16):

P (τ1 > 1) = P (|Z1| > 1) = 1− exp

(
−H(u)

∫ u

0

F̄R(t)dt

)
≤ 1− exp(−µR),

where the second equality follows from the fact that the process Nd is Poisson. A similar
argument verifies the inequality

P (|Zk+1| > 1||Zk| > 1) ≤ 1− exp(−µR), (17)

for k > 1. Assume that P (τ1 > k) ≤ (1− exp(−µR))k for k > 1. Then,

P (τ1 > k + 1) = P (|Zk+1| > 1, |Zk| > 1, · · · , |Z1| > 1)

= P (|Zk+1| > 1||Zk| > 1)P (|Zk| > 1, · · · , |Z1| > 1) (Markov property)

≤ (1− exp(−µR))(1− exp(−µR))k (by (17) and the induction hypothesis).

⊗
We will also make use of the following

Corollary 2 If 0 < µR < ∞ then E|Zk| < ∞, for k ≥ 1.

Proof: The proof follows from (17) since P (|Zk| > 1) = E(P (|Zk| > 1||Zk−1| > 1)) ≤
1− exp(−µR) implies E|Zk| < ∞. ⊗

Lemma 10 and its corollary let us use the Law of Large Numbers for Renewal Processes
to conclude that

# detections by time t

t
→ gINV (u), (18)

almost surely as t →∞, where

gINV (u) :=
E (

∑τ1
i=1(|Zi| − 1))

θE (
∑τ1

i=1(|Zi| − 1)) + uEτ1

. (19)

The term
∑τ1

i=1(|Zi|−1) is the (random) number of detections in a renewal, and θ
∑τ1

i=1(|Zi|−
1) + uτ1 is the (random) renewal time. Lemma 10 and its corollary ensure that gINV (u) is
well-defined. Observe that gINV (u) → 1/θ as the target arrival rate goes to ∞, for µ < ∞.
Although the notation does not reflect it, the right-hand side in (19) depends on cycle length
u.

Assume that gINV has a unique maximizer u∗INV . Then, because gINV (u) ≤ gLO(u) for
all u > 0, we have gINV (u) = O(u−1) and u∗INV < ∞. In other words, the search space
of the optimal cycle length is bounded. Regarding the optimal cycle origin, when r̄ < u it
is possible to show that a∗ is a solution of (1). Unfortunately, the problem is analytically
intractable in the general case when r̄ > u (possibly r̄ = ∞). We carried out an exhaustive
simulation optimization analysis for various distributions of R and X that meet Assumption
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1, and found that a∗ is a solution of (1) in all scenarios. This leads us to conjecture that the
optimal cycle origin solves (1).

In order to find an estimate of a cycle length that maximizes gINV , we employ the method
of Sample Average Approximation (SAA); see chapter 6 of [15] for an overview of SAA, and
Theorem 2.1 of [16] for the version of SAA used in this paper. The basic idea of SAA is to
maximize gINV (u) by optimizing (the ratio of) sample averages

ĝn(u) :=
V̄n(u)

W̄n(u)
,

where V̄n(u) = 1/n
∑n

i=1 Vi(u), W̄n(u) = 1/n
∑n

i=1 Wi(u), and the (Vi(u),Wi(u))’s are i.i.d.
random samples drawn from the same distribution of (

∑τ1
i=1(|Zi|−1), θ(

∑τ1
i=1(|Zi|−1))+uτ1).

Although this distribution is generally unknown, we can obtain samples from it by generating
a sufficiently large stream of reneging times Ri, locations Xi, and arrival times Ti, and then
using discrete event simulation [11].

In order to use SAA, we must have V (u) and W (u) Lipschitz continuous:

|V (u1, ω)− V (u2, ω)| ≤ ν(ω)|u1 − u2|, (20)

and
|W (u1, ω)−W (u2, ω)| ≤ ψ(ω)|u1 − u2|, (21)

where ω is a sample path, and ν and ψ are functions of ω with finite second moments. It
is possible to bound the LHS of (20) by the number of arrivals over the largest regenerative
cycle τ1 (amongst the two cycles stemming from selecting u1 or u2), which due to the Poisson
arrival assumption and Corollary 2 has a finite second moment. Hence, for |u1 − u2| ≥ 1,
Equation (20) is satisfied. Using the same type of argument, it is possible to bound the
LHS of (21), for |u1 − u2| ≥ 1. Unfortunately, this approach does not work for (20) and
(21) when |u1 − u2| < 1, and our setup is too complex to enable analytical verification of
both Lipschitz conditions. To overcome this difficulty, we ran a simulation with a very large
number of replications and several choices of parameters u1 and u2 such that |u1 − u2| < 1;
the simulation results indicate both Lipschitz conditions are satisfied when |u1 − u2| < 1.

Let ûn be the cycle length obtained by numerically maximizing ĝn. Then, Theorem 2.1
of [16] (a version of the Delta Theorem) ensures that

n1/2

(
gn(ûn)− gINV (u∗INV )

σ̂n

)
⇒ N(0, 1),

as n →∞, where

σ̂2
n = σ2

V

1

W̄ 2
n(ûn)

+ σ2
W

V̄ 2
n (ûn)

W̄ 4
n(ûn)

− 2σV W
V̄n(ûn)

W̄ 3
n(ûn)

,

and σ2
V = (n − 1)−1

∑n
i=1(Vi(ûn) − V̄n(ûn))2, σ2

W = (n − 1)−1
∑n

i=1(Wi(ûn) − W̄n(ûn))2,
σ2

V W = (n− 1)−1
∑n

i=1(Vi(ûn)− V̄n(ûn))(Wi(ûn)− W̄n(ûn)).
This result provides theoretical support for building asymptotically valid confidence in-

tervals for gINV (u∗INV ):
P (gINV (u∗INV ) ∈ [Ln, Rn]) → 1− δ,



September 11, 2007 22

Investigation time θ

Parameter 0.0 0.2 0.4 0.6 0.8 1.0

gn(ûn)± 1.96σ̂n/n1/2 .295 .287± .01 .276± .008 .265± .008 .244± .007 .240± .007
ûn 2.05 2.04 1.97 1.90 1.92 1.90
ân -1.02 -1.02 -.99 -.95 -.96 -.96

Table 1. Detection rate with different investigation times.

as n →∞, where

Ln = gn(ûn)− z
σ̂n

n1/2
,

Rn = gn(ûn) + z
σ̂n

n1/2
,

and z is selected so that P (−z ≤ N(0, 1) ≤ z) = 1− δ.

Example 15 Set Xi ∼ N(0, 1), Ri ∼ exp(1), and n = 3000. For investigation times θ =
.2, .4, .6, .8, and 1, we construct an approximate 95% confidence interval for gINV (u∗INV ).
The results are summarized in Table 1. As expected, detection rate decreases as investigation
time increases. Compared to our result from Example 5, gLO(u∗LO) = .295, the simulation
results indicate that reasonably small investigation times cause no significant degradation
in detection rate. The optimal cycle length ûn decreases with the investigation time—this
happens because investigation time causes more targets to renege before detection, and the
perimeter traversed is chopped at both endpoints to counter this fact. The row headed by ân

shows the optimal origin, as determined by the simulation and optimization results; ân does
not exactly equal −ûn/2 due the finite number of regenerative cycles generated during the
simulation.

6 Final Remarks

In this paper we developed models of border surveillance when infiltrators arrive according
to a Poisson process and can renege after a random amount of time. For both leap-to-origin
and back-and-forth trajectories, we derived an expression for the detection rate given the
reneging, arrival location distribution and the length of the patrolled sector (the decision
variable). We extended this analysis to study the effects of sensor velocity and investigation
time.

Our analysis suggests that there is not a significant difference in the target detection
rate among the two trajectories considered when the cycle length is very small or very large.
When each target is investigated upon detection, we find that the cycle length that maximizes
detection rate decreases as investigation time increases, in order to compensate for the extra
reneging of targets that occurs.
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A basic limitation of our models is that the sensor footprint is one-dimensional. This
assumption is a reasonable representation of reality when the size of the sector is significantly
greater than the sensor’s footprint width.

Given that our modeling assumptions are relatively mild and the operational scenarios
we describe are currently being employed (as in, for example, the U.S.—Mexico border;
see [1] and [17]), we believe that the sequence of sensor/target configurations we pose in
this paper yields valuable insights into the operation of sensor platforms in realistic border
control settings.
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[15] A. Ruszczyński and A. Shapiro. Stochastic Programming, volume 10 of Handbooks in
Operations Research and Management Science. Elsevier, 2003.

[16] Alexander Shapiro. Asymptotic analysis of stochastic programms. Annals of Operations
Research, 30:169–186, 1991.

[17] The New York Times. U.S. project to secure borders will begin in Arizona desert.
http://www.nytimes.com/2006/09/22/us/22border.html, September 22nd 2006.

[18] Alan R. Washburn. On patrolling a channel. Naval Research Logistic Quarterly, 29:609–
615, 1982.

[19] Alan R. Washburn. Search and Detection. Institute for Operations Research and the
Management Sciences, 4th edition, 2002.


