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ABSTRACT 

We construct an optimization model that assists commanders, operators, and planners to 
effectively deploy and employ unmanned aerial vehicles (UAVs) in special operations 
missions. Specifically, we consider situations where targets (e.g., insurgents) enter a 
region of interest and a small special operations team is assigned to search and detect 
these targets. The special operations team is equipped with short-range surveillance 
UAVs. We combine intelligence regarding the targets with availability and capability of 
UAVs in an integer linear programming model. The goal is to detect the largest possible 
number of targets with the given resources. The model prescribes optimal deployment 
locations for the ground units and optimal time-phased search areas for the UAVs. The 
model has been implemented successfully in four field experiments. Preliminary 
empirical evidence indicates that the model provides 50% increase in detection 
opportunities compared with a plan manually generated by experienced commanders.  

 
 

1. INTRODUCTION  

Special operations missions are expected to increasingly make use of unmanned aerial 

vehicles (UAVs) for reconnaissance, surveillance, search, and enhanced situational 

awareness (Livingroom 2006, Feickert 2006, and Rolfsen 2005). However, concepts of 

operations for the use of UAVs in this context have not been fully developed (Cross 

2006). In this paper we address the problem of optimally utilizing UAVs by small teams 

of special operations forces (SOF) in a typical situation. Specifically, we consider a 

situation where mobile targets (e.g., insurgents) enter a certain region of interest. A SOF 

team, controlled by a tactical operations center, operates several short-range surveillance 

UAVs to search for the targets. Each UAV is controlled by a ground control unit (GCU) 

deployed also in the region. Surveillance data from a UAV is collected by its GCU and 

transmitted, through a mobile control center (MCC), to the tactical operations center. The 

MCCs are needed as relays to overcome short communication ranges of GCUs, and 

possible limited line-of-sight between a GCU and the tactical operations center. The 

problem is how to deploy the ground units (GCUs and MCCs) and how to route and 

schedule the UAVs in a most effective way. 

 

In response to operational needs, and in close consultation with SOF commanders, UAV 

operators, and military air traffic controllers, we have developed an integer linear 

programming model that prescribes optimal deployment locations for the MCCs and 

GCUs, and assigns optimal search areas and schedules for the UAVs. The model 
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combines (partially uncertain) information about the availability of UAVs with 

intelligence, of two types, about the targets. The model has been utilized as a planning 

tool in four multi-day field experiments carried out at Camp Roberts, California, under 

the USSOCOM-NPS Cooperative Field Experimentation Program. Empirical results 

from these experiments show a 50% increase in detection opportunities compared with a 

plan manually generated by experienced commanders from USSOCOM employing their 

own judgment. The operational setting in these experiments and the type of scenarios 

exercised were such that the area coverage of the UAVs was fairly high; any 

operationally feasible search plan (not necessarily optimal) could result in many 

detections. In reality, the UAV coverage will be much smaller, and therefore optimization 

would have a larger impact. Also, the commanders only considered search areas and 

schedules for the UAVs in the manual planning and not the optimal locations of the 

GCUs and MCCs, which were given by the model. These circumstances lead us to 

believe that the 50% increase of performance recorded in our field experiment may be a 

conservative estimate for the actual increase in search effectiveness in real-life 

operations.  

 

To the authors’ knowledge, the problem of determining deployment locations for MCCs 

and GCUs, and time-phased optimal search areas for UAVs has not been examined 

systematically in the open literature. There are however several related problems that 

have been studied in the past. In its simplest form, the problem of routing one UAV over 

points of interest can be formulated as an orienteering problem (also known as the 

maximum collection and selective traveling salesman problems) (Feillet et al. 2005). The 

orienteering problem is defined on a network where each node represents a point of 

interest and each arc represents travel between two nodes. Each node is associated with a 

prize and each arc with a travel time. The goal is to find a maximum-prize path or cycle 

whose total travel time does not exceed a specific limit. In the context of UAV search, the 

prize at a node may be an additive surrogate of the probability of detecting a target at the 

corresponding point of interest. In search and reconnaissance, a visit to certain points of 

interest may only be allowed during specific time windows and the prize associated with 

a visit may be time dependent. Generalizations of the orienteering problem to cases with 
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time-window constraints have been considered; see Kantor and Rosenwein (1992) for a 

theoretical study. Models with time dependent prizes are found in Brideau and Cavalier 

(1994) and Erkut and Zhang (1996), which consider a competitive environment where 

sales may decline over time due to the operation of competing salespersons.  

 

In many situations the mission is to route multiple UAVs simultaneously. Chao et al. 

(1996) consider an extension of the orienteering problem that models the sport of team 

orienteering, where the combined prize-collecting effort of a team of participants is 

maximized. Millar and Kiragu (1997) consider a similar multi-vehicle orienteering 

problem with application to dispatching of fishing patrols. A generalization of the 

orienteering problem to multiple vehicles with time-window constraints is considered in 

Moser (1990), which routes aerial reconnaissance assets in a military setting. This model 

assigns a time-invariant prize to the visit of each point of interest. Moser (1990) 

addresses a similar problem to ours, but does not account for important factors such as 

airspace deconfliction constraints, time-dependent intelligence and ground-units’ 

deployment flexibility. We find similar shortcomings in Eagle and Yee (1990), Dell et al. 

(1996), and Washburn (1998), which consider a target that moves between cells 

according to some probability law, and one or more searchers that follow a continuous 

path searching for the target. These three papers derive specialized branch-and-bound 

algorithms for solving these problems optimally. Dell et al. (1996) also devise six 

heuristic algorithms.  

 

Our problem of determining deployment locations for ground units and time-phased 

search areas for UAVs also relates to location-routing problems in manufacturing and 

distribution industries (Laporte 1988 and Min et al. 1998). In these problems, a strategic 

level decision regarding facility locations is made before the operational decisions 

regarding routing of vehicles between facilities and customers. This “two-stage” decision 

process of location-routing problems motivates our approach, but the specific details of 

UAV operations hinder direct application of existing location-routing models.      
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Our model extends previous work in this area in several dimensions. First, we consider 

the two decisions regarding ground units’ locations and UAVs’ time-phased search areas 

within the same model. These two decisions are strongly connected by factors such as 

UAV range, topography, and communication capabilities. Second, operational constraints 

such as deconfliction among UAVs, flight endurance and possible communication 

interferences are explicitly represented in the model. Third, the model takes into account 

two types of uncertain information: operational readiness of UAVs and intelligence 

regarding possible threat scenarios. The uncertainties are reduced as the scenario unfolds, 

and by defining two levels of that uncertainty, we derive a two-stage optimization model. 

None of the existing models in the literature address all three aspects.  

 

In Section 2, we describe the combat situation in more detail. Section 3 presents our 

optimization model and Section 4 discusses a specific case study that illustrates the 

implementation of the model as a planning tool.   

 

2. THE COMBAT SITUATION  

Consider a situation where intelligence sources indicate that targets are expected to enter 

the region of interest in the near future. A special operations team, consisting of MCCs, 

GCUs, and UAVs of various types, is deployed in the region with the mission to search 

and detect the targets. Intelligence reports and analyses of past events indicate possible 

types of targets (e.g., on foot, in vehicles, etc.) and potential entry areas into the region. 

These reports also give good estimates for the velocities of the various types of targets.  

Each entry area and target type is associated with a number of routes that a target may 

take from the entry area. This information is called henceforth general intelligence. The 

general intelligence includes also the probabilities of a type of target and entry area, and 

the conditional probabilities of the routes associated with a certain entry area. 

 

Small UAVs are not as reliable and weather-robust as manned aircraft and therefore may 

not always be mission ready when called upon. It follows that the number and mix of 

mission-ready UAVs available at the start of a search mission are not known with 

certainty until the UAVs are about ready to be launched. Thus, we assume that the 
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number of mission-ready UAVs of a certain type is a random variable with a known 

probability mass function estimated from past readiness data. The general intelligence 

and the readiness data generate scenarios; each scenario comprises an entry area, a set of 

targets and a mix of mission-ready UAVs. We assume a finite set of scenarios, each with 

a known probability of occurrence, which is obtained from the general intelligence and 

past readiness data.  

 

The UAVs are launched once the team gets a clear indication (based on human 

intelligence or interception of communication) that one or more targets have entered the 

region. At that time, the entry areas and the number and type of targets become known, 

but the route selected remains unknown. We refer to the newly arrived information 

regarding the time and area of entry, and the number and type of targets, as specific 

intelligence. When the specific intelligence arrives, the search mission starts. At this time, 

the availability of mission-ready UAVs becomes known too. In other words, the realized 

scenario becomes known. Note that while the mission is planned and the ground units are 

deployed according to the probability distribution of the scenarios, which is based on the 

general intelligence and the uncertain readiness of the UAVs, the mission starts and the 

UAVs are launched only when the realized scenario unfolds, following the arrival of the 

specific intelligence. This combat situation is motivated by operations in remote areas 

were a penetration incident occurs when an individual insurgent (or a coordinated group 

of insurgents) enters the region of interest. Such an incident is relatively rare and 

therefore we do not consider multiple incidents. Moreover, we do not consider targets 

that enter the region undetected (i.e., targets not included in the specific intelligence 

generated by human intelligence or interception of communication) because small UAVs 

are not suited for general reconnaissance missions without specific target information.  

 

Each UAV has its own GCU, with which it must maintain constant line-of-sight and be 

within a certain range to avoid loss of control and interruption in data transfer. A UAV is 

launched from a location near its GCU and, while airborne, searches designated areas in 

an attempt to detect targets. The UAVs are equipped with electro-optical and infrared 

sensors. To avoid airspace conflicts and possible accidents, every UAV must maintain a 
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minimum distance to other UAVs at all times. This deconfliction is achieved by assigning 

different altitudes or different non-overlapping search areas to the UAVs. Every GCU 

must be located sufficiently close to an MCC so it can be connected to the MCC by either 

a cable or a wireless transmission. Moreover, due to interference between GCUs, a 

minimum distance, dependent on the type of GCU, must be maintained between any two 

GCUs. The GCUs and MCCs are mobile, but must be stationary when their controlled 

UAVs are airborne. The MCCs and the GCUs require a substantial setup time to re-

deploy, which comprises collecting the GCUs and UAVs, packing and moving the 

equipment, re-deploying the ground units, and checking communication among the 

tactical operations center, the MCCs, and the GCUs. In this study we consider a relatively 

short planning horizon of 1-10 hours, which, in practice, prevents effective re-

deployment. Hence, we assume that the MCCs, and their associated GCUs, remain 

stationary throughout the planning horizon.  

 

There are several types of UAVs available for the mission, which differ in their cruising 

altitude, field-of-view, resolution of their sensor, and velocity. We consider spatial 

deconfliction requirements, which apply to UAVs that share the same cruising altitude, 

and communication frequency conflicts among GCUs.    

 

The goal of our model is to assist commanders in determining optimal deployment 

locations for MCCs and GCUs, and optimal time-phased search areas for the UAVs. In 

the next section, we describe an optimization model that achieves this goal and that takes 

into account operational constraints such as air space deconfliction, line-of-sight, 

communication ranges, air velocity, and flying endurance.   

 

3. MODEL FORMULATION  

We discretize the planning horizon into time steps { }1,2,...,t T T∈ = , each of a fixed 

duration∆ . Let U be the set of UAVs available to the special operations team, where each 

UAV u U∈ lying endurance ue  measured in time steps. For each u U∈ , ivide 

the region of interest into a set uA  of non-overlapping search areas, where 'u uA A=  if 

 has f  we d
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UAVs u and 'u  are of the same type. A set uA  may cover the whole region of interest or 

only sub-regions of particular interest such as road segments, trails, and villages. The 

length of the time steps and the size of the search areas are selected based on the UAVs’ 

speed, altitude, sensor capabilities, and other factors, as discussed in Section 4. We also 

specify a finite set L of potential locations for deploying the MCCs and a finite set G of 

possible locations for deploying the GCUs. At any time step t , a UAV u U∈  is on the 

ground at its GCU site or is flying over an area ua A∈  searching for targe

 

ts.  

The plannin cess of the UAVs’ mi vided into two stages. First, the objective 

hile our model can handle multiple targets, plicity of exposition we co

g pro ssion is di

is to determine the locations of the MCCs and the GCUs based on the general 

intelligence and the uncertain readiness of the UAVs, that is, based on the possible 

scenarios and their probabilities. This decision is referred to as the first-stage decision. 

As described in Section 2, the locations of the MCCs and GCUs must be determined 

several hours prior to commencement of the UAV search operation. The deployment of 

these ground units is such that it provides the best locations for UAV operations in view 

of possible future scenarios. After the MCCs and GCUs are deployed and are ready to 

launch their UAVs, and the specific intelligence about enemy activity and entry areas 

becomes available, the second-stage decision regarding the UAVs’ time-phased search 

areas is made and executed. Specifically, the second-stage decision, which is made after 

the realized scenario becomes known, determines the search area for each UAV at every 

time step t T∈  of the operation. Note that while the uncertainty regarding the number 

and types of targets, the time and area of entry, and the readiness of UAVs is resolved 

when making the second-stage decision, the information regarding the specific routes 

taken by the targets in the realized scenario remains uncertain.  

 

W  for sim nsider 

only one target entering the region of interest. Let S  be a finite set of scenarios. Recall 

that a scenario s S∈  is defined by the type of target, the area of entry, and the mix of 

mission-ready UAVs. Each scenario s S∈  occurs with a probability sq . Given a scenario 

s , there is a set of routes, denoted sR , that the target may take to traverse the region. Let 
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,s rp , sr R∈ , denote the (conditional) probability that the target follows route r , given 

hese probabilities are estimated based on tactical intelligence information 

regarding the likelihood of the various routes. In principle, this information may be 

updated during the course of the operation based on new intelligence that arrives and the 

results of the UAV search. Such possible intelligence updates lead to multi-stage models, 

which are beyond the scope of this paper. These models, which may utilize Bayesian 

update procedures and re-optimization, are natural extensions of the current model. 

Research in this direction is currently a work in progress.  

 

scenario 

iven a scenario s, which includes the type of target and hence its velocity, and a 

s. T

G

route sr R∈ , we define the fractional presence by:  

, , ( ) fraction of time step  tha s r e target spends in 
search area  given scenario  and route .

t t Tτ = ∈

sa s S r∈ ∈
 

For example, suppose that a time step is 

R

10 min∆ = . According to scenario s and route 

sr R∈ , the target is going to be in search a een time (measured in minutes) 17 

5 from the beginning of the planning horizon. Then, , , (1) 0,a s rτ

rea a, betw

and 2 =  

, , (2) 0.3,a s rτ = , , (3) 0.5,a s rτ =  and , , ( ) 0 for 4,5,...a s r t tτ = = . Based on the valu  

, we ca ” of employing UAVs in certain 

search areas. There are several possible approaches for computing such a reward 

function, as discussed in the following.  

 

es of the

fractional presence , , ( )a s r tτ n compute the “reward

Let  be the ground speed and  the sweep width of a cookie-cutter sensor mounted 

 if UAV

s =  othe

recourse variables). Assuming independent detections among UAVs and among the 

 uv uw

on UAV u . Also, let da be the area size of search area a. Then, assuming random search 

within a search area, the conditional probability, given scenario s and route r, for the 

target evading all attempts by UAV u searching area a during time period t is 

( ), ,exp ( ) /a s r u u at w v dτ−∆  (see, e.g., Washburn 2002). Let , , ,u a t sX  be a binary variable, 

 u is searching area a during tim  t in scenario s, and 

, , ,u a tX rwise. Note that , , ,u a t sX  are second-stage decision variables (also called 

with , , , 1u a t sX = e step

0
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various tim l probe steps, the conditiona ability, given scenario s and route r, of the target 

evading all UAVs during the whole planning horizon is 

  

 ( ), ,exp ( )a s r u u ut w v Xτ−∆∏∏∏ , , , /a t s ad . (1) 

 
 view of (1), the (unconditional) probability of the target evad

planning horizon is   

uu U a A t T∈ ∈ ∈

In ing all UAVs during the 

  

 ( ), , ,exp ( ) /, , ,
s u

s s r a s r u u u a t s aq p t w v X dτ−∆∏∏∏ . (2) 

  

lity measure as the objective

io and Route  

stead of minimizing (2), we minimize the largest probability of evasion over all 

ize 

s S r R u U a A t T∈ ∈ ∈ ∈ ∈
∑∑

Ideally, we would like to adopt this probabi  function and to 

minimize it. However, due to its nonlinearity, and in anticipation of a large number of 

linear constraints, we opt to use a linear surrogate for (2) so that the problem formulation 

remains linear. In the following we present four possible linear objective functions as 

surrogates for (2).  

 

Worst-case Scenar

In

scenarios and routes, i.e., we minim

  

 ( ), , , , ,,
max ex

ss S r R∈ ∈ ∏∏∏ p ( ) /a s r u u u a t s at w v X dτ−∆ . (3) 

 
sing a standard logarithmic transformation, this objective function 

maximizing an auxiliary variable 

uu U a A t T∈ ∈ ∈

U is linearized by 

ξ  subject to the constraints 

, sS r R
∈ ∈ ∈

∈ . (4) 

 
ote that the worst-case formulation does not depend on the scenario a

probabilities.  

  

 , , , , ,) /a s r u u u a t s at w v X d sτ ξ∆ ≥ ∀ ∈∑∑∑ (
uu U a A t T

N nd route 
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Worst-case Scenario and Expected Fractional Presence 

This surrogate is similar to (3) but considers only scenarios, not individual routes. It 

inimizes the largest probability of evasion over all scenarios and utilizes the expected m

scenario fractional presence defined by  

  

 , ( ) ( )a s t p tτ τ= , , ,
s

s r a s r
r R∈
∑ . (5) 

 
This leads to the following objective function 

  

( ), , , ,max exp ( ) / . 
u

s S u U a A t T∈
∈ ∈ ∈

a s u u u a t s at w v X dτ−∆∏∏∏  (6) 

gain, using a standard logarithmic transformation, the problem is 

auxiliary variable 

 
A to maximize an 

ξ  subject to the constraints 

 

 , ( )
u

a s u u u
u U a A t T

t w v Xτ ξ
∈ ∈ ∈

∆ ≥∑∑∑ , , , / .a t s ad s S∀ ∈  (7) 

verage Overlap Time  

This surrogate maximizes the average overlap time between UAVs and the target. It 

presents the “detection opportunities” of the UAVs. In this case, we maximize   

 

 

A

re

 

 , , , , ,( ) .
u

s u a s u a t s
t T u U a A s S

q t Xτ
∈ ∈ ∈ ∈

∆∑∑ ∑∑  (8) 

 
N p-width and velocity) of the ote that (8) does not account for the capabilities (swee

various UAV and only attempts to place the UAVs in the “right” area at the “right” time.  
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Linearized Evasion Probability  

e also derive a lower bound on the probability of evasion (2), which we use as a 

urrogate of that probability. Using the fact that 

W

exp( ) 1z z− ≥ −  for real-valued zs , we 

) /
s u

obtain that  

  

 , , ,1 ( ., , ,s s r a s r aq p dτ− ∆∑∑∑∑∑  (9) u u u a t s
s S r R u U a A t T

t w v X
∈ ∈ ∈ ∈ ∈

e exception of the constant in (9). In the case study of Sec

e objective function.  

f the co

 
is a lower bound on (2). We note that minimizing (9) is identical to maximizing (8) with 

th tion 4, we use (9) as /u u aw v d  

th

 
In the following formulation o mplete model, we let ( )f X  be a generic objective 

function in the form (2), (3), (6), the negative of (8), or (9 e seek to minimize. 

ultiple optima may occur in these optimization problems, some of which may result in 

) that w

M

frequent and unnecessary changes of search areas. To eliminate such solutions, we assign 

a small penalty ε  to each change of search area and add the total penalty to the objective 

function.   

 

Based on these assumptions, we formulate a two-stage integer linear stochastic program 

with recourse, where the first-stage decision variables determine the locations of the 

CCs and GCUs, and the second-stage decision variables specify the time-phased search 

   UAV or its GCU, u ∈ U. 

Time step, t ∈ T. 

Search area, a A∈ U . 

s   Scenario, s ∈ S. 

M

areas for the UAVs given the realized scenario. We note that there is no reward 

associated with the first-stage decision. 

 

Notation 

Indices 

, 'u u

t   

, 'a a     u
u U∈
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m   Mobile control center (MCC), m ∈ M. 

l  CC, l ∈ . 

nit (GCU) locations, g ∈ G. 

ts 

 Set of search areas for UAV u. 

 Set of scenarios. 

M

L Cs. 

G  Set of possible locations for GCUs. 

ea pairs , with 

 Location for M  L

, 'g  Ground control ug  

 

Se

U   Set of UAVs. 

uA  

S  

  Set of MCCs. 

 Set of possible locations for MC

( , UAV and search ar)C u a  ( ', ')u a 'u U∈  and , such that 

e time step UAV  is searching 

 UAV  move to from searc

'' ua A∈

uUAV 'u  cannot search area 'a  at the sam

area a .  

Subset of search areas Au that  u can h area a.  ( , )N u a  

Subset of MCC locations L that allows connection between the MCC and 

GCU  at

( , )L u g  

 u  location g.  

g.   

 

Data 

( , )G u a  Subset of GCU locations G from which UAV u can search area a. 

( , )H u g  GCU and location pairs ( ', ')u g  such that GCU 'u  cannot be located at 'g

if GCU u is located at 

 

ε     Transition penalty for each UAV. 

   Endurance of UAV u (time steps). ue  

sq     Probability of scenario s. 

p ,s r   o s. 

 

Variables 

uX tep t in scenario s, 0 otherwise. 

Probability of route r given scenari

, , ,a t s  1 if UAV u is searching area a at time s
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,m lY          1 if MCC m is deployed at location l, 0 otherwise. 

,u gZ          1 if GCU u is deployed in location g, 0 otherwise. 

         1 if UAV u transitions to a new search area between time steps t and t+1 in 

 

Math cal

, ,u t sW

scenario s, 0 otherwise. 

emati  Formulation 

min ( ) , ,s u t s
s S u U t T

q Wε
∈ ∈ ∈

+f X ∑ ∑∑  

  

 

s.t.

, , , 1, , ,
u

u a t s
a A

X u t s
∈

≤ ∀∑  (10) 

     

, 1,m l
l L

Y m
∈

= ∀∑  (11) 

 
( )', ', , , , ,

( ', ') ( , )
min{u a t s 1, ( , )} 1 , , , ,u a t s u

u a C u a
X U≤∑ C u a X u a A t s

∈

− − ∀ ∈  (12) 

    

, , , , , 1, , ', 1,
' ( , )

, , , | | 1,u a t s u a t s u a t s u
a N u a

X X X u a A t T+ +
∈

≤ + ∀ ∈ ≤ − s∑  (13) 

 
, ,

( , )
, ,u g m l

m M l L u g
Z Y u

∈ ∈

≤ ∀ g∑ ∑  (14) 

 
, 1,u g

g
Z u= ∀∑  (15) 

           
, 1,u g

u
Z g≤ ∀∑  (16) 

 
 ( )', ' ,min{ 1, ( , )} 1 , ,u g u g

( ', ') ( , )u g H u g
Z U H u g Z u g≤ − − ∀∑  

∈

(17) 

 
,, , , ,

( , )
, , ,u a t s u g u

g G u a
X Z u a A

∈

≤ ∀ ∈ t s∑  (18)  
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, , ',
'

, , | |
u

u

t e

u a t s u u
t t a A

,X e u t T e
+

= ∈

≤ ∀ ≤ −∑∑ s

u a t s u a t s u t s u

  (19) 

 
 2,, , , , , 1, , , , , ,X X W u a A t−− ≤ ∀ ∈ ≥ s  (20) 

 
{ }, , , , , , ,, , , 0,1u a t s m l u g u t sX Y Z W ∈ ,       , , , , , ,u a t s l m g∀  

 

Constraints (10) ensure that each UAV searches at most one search area during a time 

ep. In constraints (11), we select one location for each MCC. Air-space deconfliction is 

 

uring 2006 and 2007, several versions of this model were implemented in several, 

eriments at Camp Roberts, California. These field experiments 

st

manifested in constraints (12), where a UAV is prevented from searching areas that are in 

conflict with other UAVs’ search areas. Constraints (13) ensure feasible flying routes; 

each UAV either remains in the same search area or moves to an adjacent area in the next 

time step. We assume that there is no transit time between adjacent search areas, 

otherwise we could simply define dummy search areas. Constraints (14) determine the 

feasible deployment locations for the various GCUs. Constraints (15) assure that each 

GCU is assigned to one location only, and constraints (16) specify that from a certain 

deployment location at most one GCU can operate. Constraints (17) represent GCU 

deconfliction requirement and constraints (18) restrict UAVs’ searches only to areas 

controllable from their respective GCU locations. Constraints (19) limit the number of 

time steps in which UAVs can be airborne. Constraints (20) ensure that , , 1u t sW =  if UAV 

u  transitions to a new search area in time step t . Each transition is penalized in the 

objective function to avoid unnecessary transitions.   

4. CASE STUDY  

D

multi-day field exp

involved up to 16 UAVs searching for one or more targets in sets of controlled, yet 

uncertain, situations. The goal of these field experiments was to implement and test, in 

cooperation with UAV operators and commanders, the optimization model in a real-

world, operational setting. The model provided optimal deployment sites for ground units 
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and time-phased search areas for UAVs that were executed in the field experiments. In 

the following, we describe in detail the implementation of the model for the October 29-

31, 2006 field experiment. In this field experiment we compared the effectiveness of an 

optimal search plan generated by our model with a plan formulated by experienced 

commanders and operators.  

 

Operational Setting and Implementation 

 Special Operations team is assigned three UAVs: a Tern (Tern 2007), a BUSTER 

each with its corresponding GCUs, and one 

anning horizon is 48 minutes, starting at the target’s time of entry, and consists of 

ix 8-minute time steps (i.e., ∆ = 8 min). The length of a time step has been determined 

A

(Buster 2007), and a Raven (Raven 2007), 

MCC. Even though all three UAVs are physically present at the staging area, past 

experience indicates that the Tern, BUSTER, and Raven can be successfully launched 

only 80%, 70%, and 60% of the time, respectively. According to general intelligence 

reports, a target may enter the region of interest within a few hours. Consequently, the 

team deploys its ground units – GCUs and MCC – to certain locations so that it can 

rapidly and effectively respond to alerts generated by a specific intelligence report. This 

report indicates an imminent entry of a specific target into the region of interest and a 

corresponding entry area. Upon receiving the specific information regarding the target, 

the UAVs are launched to search and detect the target. The region of interest is Camp 

Roberts, a California National Guard base in California’s Central Coast region. 

According to general intelligence, the target may enter the region of interest through one 

of six possible entry areas labeled E1, E2, S1, S2, W1 and W2, see Figure 1. The target is 

assumed to be a vehicle. The six entry areas, coupled with seven possible non-empty 

mixes of the three UAVs, generate 42 scenarios. Once the specific intelligence becomes 

available, one of these 42 scenarios is realized and the search operation begins. The 

remaining uncertainty is with regard to the route the target selects from the given entry 

area.  

 

The pl

s

after consulting UAV operators. This length is a compromise between increasing the 

resolution and sensitivity of the model and the desire to avoid overloading the command-
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and-control system with too frequent changes in search areas. We assume that processing 

the specific intelligence and preparing the UAVs for take-off consume one time step, so 

the UAVs are available for search during time steps 2-6.  

 

The probabilities of the 42 scenarios are evaluated as follows. Each one of four entry 

reas (in the west and east of Camp Roberts) has probability 1/8 of occurring, while each a

of the two entry areas in the south has probability 1/4. These probabilities, together with 

the probabilities of mission-ready mixes of UAVs, determine the scenario probabilities 

s ,q s S∈ . The region of interest contains numerous roads. From an entry area, the target 

moves on these roads, along a minimum-time route, either towards an exit zone in the 

 or towards one of 11 possible internal destination points, labeled C1,…,C11 in 

Figure 1. The target moves at 10 and 15 miles per hour on dirt and paved roads, 

respectively. General intelligence estimates that the target will proceed to the exit zone 

with probability 0.5. Otherwise it will move towards one of the internal destination 

points. If the target exits the area, it cannot be detected anymore. If the target reaches an 

internal destination point, it remains stationary and subject to detection. All of the 

internal destination points are assumed to be equally likely. From this information, we 

generate a set of twelve possible routes 

northeast

sR  for the target in each scenario, with 

corresponding probabilities of occurrence ,s rp .  
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Destination Points (circles), Figure 1: Entry Areas (ovals), and Area Cells (boxes) in the 

region of interest at Camp Roberts  

 

The region of interest is div . Each area cell represents 

ne search area for the Raven. Two or three area cells are grouped together to form 

’s

e endurance longer than 40 minutes and hence the constraints in (19) are 

edundant. With this data, the model is implemented in GAMS and is solved using 

CPLEX 10.0. The model consists of approximately 30,000 variables and 60,000 

ided into 17 area cells, see Figure 1

o

appropriate search areas for BUSTER and Tern. These UAV-dependent sets of area cells, 

denoted uA , are designed according to the speed, maneuverability and sweep width of the 

specific UAV. The GCUs of the Raven and BUSTER have eight possible locations, while 

the Tern  GCU and the MCC have each only one possible location due to operational 

restrictions.    

 

All UAVs hav

r
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constraints. The total solution time is 2 minutes on a 3.8 GHz desktop computer with 3 

GB of RAM. The output of the model is optimal locations for the MCC and GCUs and, 

for each scenario, optimal time-phased search areas for the UAVs.  

 

Results 

The model determines two central locations for the Raven and BUSTER GCUs so these 

AVs can quickly respond to targets entering from any entry area. (Tern’s GCU and the 

 operationally restricted to specific locations and no optimization is possible in 

 entry area). These 36 situations were implemented during the 

xperiment at Camp Roberts both according to the model’s optimal plan and the manual 

n that the target is in the sensor’s 

eld of view. Furthermore, the model does not deal with target recognition and 

U

MCC are

this case.) The model also determines search plans for each scenario. Table 1 presents an 

example of the model output for the scenario corresponding to entry area W1 with all 

UAVs being available. Each row in Table 1 specifies the designated area cells for the 

UAVs as defined in Figure 1. We note that Raven is always assigned a single area cell, 

while BUSTER and Tern searches multiple area cells in the same time period due to their 

higher speed and altitude. To compare, we also asked a group of experienced UAV 

operators and commanders assigned by USSOCOM to the field experiment to plan search 

areas for the given scenarios based on the general intelligence, the UAV readiness data, 

and the optimal location of the ground units, provided to them from the model solution. 

Their resulting plan was to assign each UAV to a certain sub-area of the region of 

interest, and keep it there throughout the operation.  A partial explanation for this 

conservative plan was the human planners’ concern about operational constraints such as 

airspace deconfliction.     

 

We randomly generated 36 situations from the 504 possible situations (42 scenarios times 

12 target routes from each

e

plan generated by the commanders. The order of the exercises was randomized to avoid 

biases due to operator errors, day light conditions, etc.  

 

Our model does not account for possible loss of video link, poor visibility, and other 

factors that may prevent a sensor to detect a target, give

fi
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identification. Consequently, we counted the number of detection opportunities – 

situations where the target is in the UAV’s vicinity – as the measure of effectiveness 

(MOE). Since both the target and the UAVs were continuously tracked, this MOE could 

be calculated quite reliably. In 24 of the 36 situations exercised using the model as the 

planning tool, a detection opportunity of the target was recorded. The corresponding 

number when using the manual plan was 16 detection opportunities. Hence, our model 

increased the probability of having a detection opportunity by 50% – from 44% in the 

manual plan to 67%.  

 

 
Area Cells Time Period 

Raven BUSTER Tern 

0 – 8 min At GCU At GCU At GCU 

8 – 16 min 6 12;13 16;17 

16 – 24 min 10 16;17 8;9 

2  4 – 32 min 11 12;13 5;6 

32 – 40 min 7 14;15 10;11 

40 – 48 min 7 10;11 14;15 

 
Tab  search plan (given in terms of area cells, see Figure 1) in 

W -entry by the target. 
 

 

5.

e have developed a two-stage stochastic integer linear programming model for 

ptimizing UAV deployment and employment during special operations search missions. 

s optimal locations of ground control units and mobile control 

le 1. Optimal the case of 
1

 CONCLUSIONS  

W

o

The model determine

centers, as well as time-phased search areas for UAVs. We ensure that the output of the 

model is robust with respect to a variety of contingencies by accounting for (uncertain) 

information about target movement as well as reliability of the available UAVs. The 

model has been utilized by commanders, UAV operators, and military air traffic 

controllers as a planning tool during four field experiments at Camp Roberts, California. 
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Comparing the optimized plan with manual plans generated by experienced commanders, 

the model provided plans that resulted in 50% more detection opportunities of targets. 

We note that commanders are not used to plan search missions with a mix of different 

UAVs, which explains part of this improvement. However, even for trained commanders, 

the large number of constraints related to air space deconfliction, line-of-sight restrictions 

and other physical and operational conditions, may be overwhelming. These constraints, 

coupled with ambiguous intelligence pictures, make manual planning tedious, error 

prone, and most likely – sub-optimal. A model like ASOM, which has been described in 

this paper, can prove to be a valuable and useful planning tool for UAV search missions. 

Ultimately, the goal is to implement this model in a decision-support system used by 

commanders in the field.   
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