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Abstract. Interdiction operations involving search, identification, and interception of suspected 

objects are of great interest and high operational importance to military and naval forces as well 

as nation’s coast guards and border patrols. The interdiction scenario discussed in this paper 

includes an area of interest with multiple neutral and hostile objects moving through this area, and 

an interdiction force, consisting of an airborne sensor and an intercepting surface vessel or ground 

vehicle, whose objectives are to search, identify, track, and intercept hostile objects within a 

given time frame. The main contributions of this paper are addressing both airborne sensor and 

surface vessel simultaneously, developing a stochastic dynamic-programming model for 

optimizing their employment, and deriving operational insight. In addition, the search and 

identification process of the airborne sensor addresses both physical (appearance) and behavioral 

(movement pattern) signatures of a potentially hostile object. As the model is computationally 

intractable for real-world scenarios, we propose a simple heuristic policy, which is shown, using a 

bounding technique, to be quite effective. Based on a numerical case study of maritime 

interdiction operations, which includes several representative scenarios, we show that the 

expected number of intercepted hostile objects, following the heuristic decision policy, is at least 

60% of the number of hostile objects intercepted following an optimal decision policy.  

1. Introduction 

Interdiction operations involving search, identification, and interception of suspected 

objects are of great interest and high operational importance to military and naval forces 

as well as nation’s coast guards and border patrols [1]. There are two key assets in 

interdiction operations that we consider in this paper: an airborne sensor – an “eye” – 

such as surveillance (fixed-wing) aircraft, patrol helicopter, or unmanned aerial vehicle 

(UAV), whose mission is to search, detect, track, and identify potential targets, and a 

surface vessel or ground vehicle – a “fist” – which is dispatched following a cue from the 

sensor to investigate and potentially apprehended a suspicious object. This study is 

motivated by current operational needs in maritime counter-terrorism, counter-drug, and 

counter-piracy missions. In such targeted and focused missions only a single airborne 
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asset and a single surface vessel may operate in a certain part of a region of interest [2]. 

In this paper, we develop a stochastic dynamic-programming (DP) model for optimizing 

the combined operation of these two assets. In principle, the model is solvable by the 

Backward DP Algorithm (see for example [3], p. 50), but in real-world scenarios that 

approach may not be computationally feasible due to the model size. Consequently, we 

develop a greedy heuristic algorithm that can be used in real-time to effectively deploy 

and employ the two assets. We verify the quality of the heuristic by constructing a 

relaxation of the model and showing that for some realistic scenarios the heuristic 

generates solutions that are at most 40% from optimality.     

The field of classical search theory, addressing the problem of optimal search for static or 

mobile targets, has been extensively studied for over seven decades, since the 

groundbreaking research of Koopman [4], through the seminal works of Washburn [5] 

and Stone [6], to the recent surge in publications; for example see [7-19]. The problem of 

coordinating search and interception—the topic of this paper—is more involved. Wein 

and Atkinson [20] study a radiation detection system, combined with interception efforts, 

for protecting an urban area from nuclear terrorist attack. Jeffcoat et al. [21] deal with 

searching and engaging multiple targets where each search or engagement asset can 

engage at most one target. Barton et al. [22] consider a team of UAVs comprising two 

groups: searchers that use dynamic co-fields to avoid obstacles, and disposable UAVs 

that are called in, when targets are found, to kill the targets; see also [23] for a related 

study.  The balance between search for unknown targets and interception of known 

targets represents a classical exploration versus exploitation trade-off [24], which is 

known to be difficult to carry out optimally. We refer to [25] for a recent study of 

algorithms and complexity results and [26] for heuristics. A related study is also [27], 

which deals with the placement of stationary perimeter cameras while accounting for 

interceptions by an unmanned helicopter following detections by the cameras. We refer 

to [28] for a study of object identification without the need for search and interception.  

In contrast to many of the above studies, which mostly focus on technical and command-

and-control aspects of employing a large number of search and interception assets, we 

take an operational approach, which reflects typical current situations in maritime 
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missions, where interdiction assets are scarce [2]. We account for possible identification 

errors, consider both the physical signature of a suspicious object and its movement 

pattern, and optimize routing and scheduling decisions taken by a task-force commander. 

The measure of performance is the expected number of targets successfully interdicted. 

The main contribution of this paper is threefold: We model the combined effect of the 

“eye and the fist,” incorporate information about physical signature and movement 

pattern of suspicious objects, and derive operational insight about when to trigger 

investigation by the surface vessel. In an earlier study [29] we deal with a similar 

situation. However, that study does not consider tracking of suspicious objects, 

information about movement patterns of objects, and lacks the analytical rigor and the 

solution-quality bounds for the proposed heuristic algorithm presented in the current 

paper. Our modeling approach is similar to that found in the extensive literature on 

stochastic and dynamic task allocation and vehicle routing (e.g., [3,30] and references 

therein), but is specialized to the unique features of interdiction operations. 

The next section defines the operational scenario. Section 3 presents the stochastic DP 

model. Section 4 describes a heuristic algorithm for solving the model and an associated 

model that is used to construct a bound on the optimal value of the original model. 

Section 5 presents a case study for maritime interdiction missions.  

2. Scenario 

We consider an area of interest (AOI) that contains multiple mobile objects. Some of the 

objects are hostile, called targets, and the remaining are neutrals. The objective of the 

interdiction force is to intercept as many targets as possible within a finite time horizon 

discretized into time periods. The number of objects, which enter, move about, and 

(eventually) exit the AOI is unknown. The AOI is subdivided into a finite number of area 

cells (ACs). The objects are oblivious to the presence of the interdiction force and 

therefore they do not act strategically; they move independently of each other according 

to a known Markov chain defined on the set of ACs. The movements of targets and 

neutrals may follow different Markov chains. An object enters and departs the AOI 

according to a Bernoulli process. We assume stationarity in the sense that neither the 

entry probabilities nor the in-AOI transition or exit probabilities depend on the time 
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period. Motivated by our discretization of space and time, with resolution that can be 

arbitrarily high, and assuming that the AOI is relatively large compared to the (unknown) 

number of objects, we neglect the possibility of more than one object in any specific AC 

at any given time period. This is a reasonable approximation to the situation in open-sea 

scenarios and it simplifies the model. A similar assumption is made in [31]. The 

interdiction force comprises two assets: an airborne sensor, called a Recognizer, whose 

mission is to search, detect, track, and identify targets, and a ground vehicle or surface 

vessel, called an Interceptor, capable of intercepting and apprehending a target.  

We assume that the Recognizer has perfect detection capabilities, i.e., it can determine 

with certainty whether the AC, in which it is currently located, contains an object. This is 

a reasonable assumption as radars usually detect objects such as fishing vessels and go-

fast boats at a substantial range. The Recognizer examines one AC at a time until it 

detects an object. Following detection, the Recognizer tracks the object for one time 

period and then determines the nature of the object using a threshold policy described in 

Section 3. The Recognizer is subject to both false positive and false negative errors when 

identifying an object. The modeling of the tracking process is based on a series of 

“looks”, as described in Section 3.2. For more details on tracking see [32,33]. If the 

object is identified as a neutral, the Recognizer proceeds with its search. Otherwise, the 

Recognizer flags the suspected target and calls in the Interceptor. We do not describe in 

detail the “pursuer-evader game” (see for example [34-36]) that may take place after an 

object is flagged and make the simplifying assumption that once flagged, the object 

remains stationary at its location until the arrival of the Interceptor. This assumption 

simplifies considerably the model while affecting only marginally the operational reality 

because of the different time scales of airborne and surface vehicles. The Recognizer 

remains with the object until the Interceptor arrives and completes the interception, at 

which time the Recognizer returns to its search. Any object that is tracked by the 

Recognizer is tagged (e.g., electronically) as “examined” and is of no further interest.  

The Interceptor has perfect identification capability; it can distinguish with certainty 

between a target and a neutral. When not involved in an intercepting mission, the 

Interceptor moves according to a given deterministic policy. For simplicity of exposition, 
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we throughout the paper assume that the policy is to remain stationary. Thus, the 

Interceptor is stationary at the location of its last interception (or initial deployment 

absent interceptions), waiting for calls by the Recognizer. However, other policies can 

trivially be incorporated in the model. The goal of the interdiction force is to maximize 

the expected total time-discounted number of intercepted targets during the time horizon.  

3. Model Development 

The dynamic program in this paper is constructed based on conventions presented in [3], 

pp. 129–178. We first present the main components of the model and then discuss its 

details.  

3.1 The Main Components of the Model 

Let A  and 0A  denote the set of ACs in the AOI and the area outside the AOI, 

respectively. Let 1, 2,...,t T=  denote the (discrete) time index. While we could have 

formulated the dynamic program in the classical manner with a possible decision at each 

time period, we choose to adopt a somewhat unconventional approach that is event- 

rather than time-driven. The reason is that the situation we consider involves substantial 

blocks of time periods during which no decisions are required. Specifically, while the 

Recognizer is travelling to an AC, or tracking an object, or waiting for the Interceptor, no 

decisions are expected to be made. We utilize this special situation and develop an event-

driven formulation where decisions are only made at random time periods when certain 

events occur. This construct is described in detail below. Our approach results in a state 

space of smaller cardinality, which we utilize computationally in Sections 4 and 5. Thus, 

we define a state as a vector ( ), , , ,s t r i π θ= , where r∈A  and i∈A  are the 

Recognizer’s and Interceptor’s locations at time t, respectively, and π  and θ  are vectors 

of probabilities with components aπ  and aθ , a∈A , respectively. Here, aπ  

(respectively, aθ ) is the probability that a neutral (target) is present in AC a  at time 

period t. Let ⊂S { } [ ] [ ]1,2, , 0,1 0,1T × × × ×… A AA A  be the space of all possible state 

vectors. The inclusion of S  in the right-hand side is strict because the probabilities aπ  
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and aθ  may only take on a finite number of values in a given problem instance due to the 

finite number of detection and interception opportunities within the finite time horizon. 

Hence, the state-space S  is of finite, but extremely high, cardinality. 

A decision x∈A  determines the next AC to be visited by the Recognizer; this decision 

is made either at 0t =  or when the existing decision is fathomed. A decision x∈A  is 

said to be fathomed in one of the following three situations: (i) no object is found by the 

Recognizer in AC x , (ii) an object is found in AC x but identified as a neutral, or (iii) an 

object is found in AC x , identified as a target, intercepted, and determined to be either a 

target or a neutral. As soon as a decision is fathomed, a new decision is made. Each new 

decision constitutes a stage in the detection-interception process.  

Let ( ), , ,w w w ww t r i z= Δ  denote the vector of random variables representing the 

information available when a decision is fathomed. The first component wtΔ is the 

duration of a stage (i.e., the time between when a decision is made and when it is 

fathomed), and the variables wr  and wi  denote the Recognizer’s and Interceptor’s 

locations at the end of a stage, respectively. The Bernoulli random variable wz  equals 1 if 

the stage ends with a target interception and 0 otherwise. Let W  denote the space of 

possible realizations of w . The probability distribution of w , which depends on the state 

s  and the decision x , is derived in Section 3.3. To simplify notation, we write w  for 

both the random vector and its realization.  

The next state is determined by the state-transition function :Ms × × →S A W S , which 

depends on the current state, the decision, and the information obtained when the 

decision is fathomed; see Section 3.3 for details. The reward associated with state 

( ), , , ,s t r i π θ=  and the following realization ( ), , ,w w w ww t r i z= Δ  is given by  

 ( ) ( ) ( )1 ,,
0 , .

wt t
w w

w

z t t Tc w s
t t T

γ − +Δ⎧ ⋅ + + Δ ≤⎪= ⎨
+ Δ >⎪⎩

  (1) 

The reward is 0 if no target is intercepted or if the time of interception is beyond the time 

horizon, and is a discounted value, with discount factor γ , otherwise. The discount factor 
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captures the property that the sooner a target is captures the better the operational effect 

of the interception.  The Bellman equation for state ( ), , , ,s t r i π θ=  takes the form 

 ( ) ( ) ( )( )max , , , ,

0,

M

x
E c w s V s s x w t T

V s
t T

⎧ ⎡ ⎤+ <⎪ ⎣ ⎦= ⎨
≥⎪⎩

  (2) 

where V(s) is the value of being in state s, and the expectation is with respect to the 

probability distribution of w (see Section 3.3). The stochastic DP model in (2) is denoted 

by SDP, and the corresponding optimal policy is referred to as the SDP policy.  

3.2 Probability Updates  

Let ( ),P a a′  denote the single time-period transition probability from AC 'a  to AC a  of 

a neutral, and let ( ) 0, , ,P P a a a a′ ′⎡ ⎤= ∈ ∪⎣ ⎦ A A , be the corresponding matrix. Similarly, 

we define ( ),Q Q a a′⎡ ⎤= ⎣ ⎦  
for a target. Let aα  and aβ  denote the single time-period 

arrival probabilities of a neutral and a target, respectively, to AC a. Absent the 

interdiction force, let 0
aπ  (respectively, 0

aθ ) be the steady-state probability of a neutral 

(target) in AC a∈A . Note that both neutrals and targets are assumed to adhere to a 

homogeneous regular Markov chain (no index t to P and Q) and therefore, despite the 

final horizon T considered in our model, the steady-state probabilities are well defined as 

follows:  

 ( ) ( )( )0

1

1 1 1 ,k
a a l

l k

P l aπ α α
∞

∈ =

= − − −∏∏
A

  (3) 

where ( ),kP l a  is the ( , )l a  entry of kP , the transition matrix P  raised to the kth power. 

Similarly, for targets we obtain that  

 ( ) ( )( )0

1

1 1 1 , .k
a a l

l k

Q l aθ β β
∞

∈ =

= − − −∏∏
A

  (4) 

In the presence of an interdiction force, these probabilities may be updated as described 

in Section 3.3. Let t
aπ

 

and t
aθ  denote the updated probabilities of a neutral and a target in 

AC a at time t, respectively. Given t
aπ

 

and t
aθ  a∈A , and no updates during ( , '],t t ' ,t t>   
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( ) ( )( ) ( )( )

1
' '
'

1

1 1 1 , ' 1 , '
t t

t t t t k
a a a a

a a k

P a a P a aπ α π α
′− −

−
′

∈ ∈ =

⎛ ⎞⎛ ⎞
= − − − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∏ ∏∏
A A

  (5) 

 

where the second product in (5) is equal to 1 if ' 1t t− = . Similarly, for a target,  

 
( ) ( )( ) ( )( )

1
' '
'

1

1 1 1 , ' 1 , '
t t

t t t t k
a a a a

a a k

Q a a Q a aθ β θ β
′− −

−
′

∈ ∈ =

⎛ ⎞ ⎛ ⎞
= − − − −⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∏ ∏∏
A A

  (6) 

Suppose that the Recognizer visits AC a at time t and let ,t Det
aπ  and ,t Det

aθ  denote the 

updated probabilities following that visit. If the AC is void of objects then 
, , 0.t Det t Det

a aπ θ= =  Otherwise,  

 ,
t

t Det a
a t t

a a

ππ
π θ

=
+

  (7) 

 , ,1 .
t

t Det t Deta
a at t

a a

θθ π
π θ

= = −
+

  (8) 

Following a detection of an object, the Recognizer tracks the object for one time period 

and utilizes two modes of recognition: signature recognition (e.g., using an electro-

optical sensor) and movement recognition, in which the Recognizer tries to identify the 

movement pattern of the tracked object (i.e., leaving known shipping lanes or any other 

suspicious movement). The movement recognition relates to the extensive literature on 

anomaly detection; see, e.g., [37-39]. Without loss of generality, we assume that 

signature recognition takes place first and the Recognizer takes g  looks (glimpses) at the 

tracked object. The glimpses are conditionally independent given the presence of the 

object in that AC. Let 1 u−  and 1 v−  denote the single glimpse false negative probability 

of identifying a target as a neutral, and the false positive probability of identifying a 

neutral as a target, respectively. Suppose that n  glimpses result in “neutral” cues, g n−  

glimpses result in “target” cues, and the object moves from AC a to AC j (if the objects 

leaves the AOI, the decision is fathomed). Let 1,t Sig
jπ + denote the signature-posterior 

probability of a neutral following the g glimpses, where 

 
( )

( ) ( ) ( )

,

1,

, ,

1

1 1

g nn t Detg
xnt Sig

j g n n g nn t Det t Detg g
x xn n

v v

v v u u

π
π

π θ

−⎛ ⎞
⎜ ⎟⎜ ⎟+ ⎝ ⎠
− −⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−
=

− + −
  (9) 

and, similarly, the signature-posterior probability of a target is 
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( ) ( )

( ) ( ) ( )

,

1, 1,

, ,

1
1 .

1 1

n g n t Detg
xnt Sig t Sig

j jg n n g nn t Det t Detg g
x xn n

u u

v v u u

θ
θ π

π θ

−⎛ ⎞
⎜ ⎟⎜ ⎟+ +⎝ ⎠
− −⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−
= = −

− + −
  (10) 

Finally, observing that the object has moved from AC a to AC j , the movement 

recognition mode takes the posteriors of the signature recognition mode as priors and 

 
( )

( ) ( )

1,
1,

1, 1,

,
.

, ,

t Sig
jt Rec

j t Sig t Sig
j j

P a j
P a j Q a j

π
π

π θ

+
+

+ +=
+

  (11) 

for a neutral, and  

 
( )

( ) ( )

1,
1, 1,

1, 1,

,
1

, ,

t Sig
jt Rec t Rec

j jt Sig t Sig
j j

Q a j
P a j Q a j

θ
θ π

π θ

+
+ +

+ += = −
+

  (12) 

for a target. If (12) exceeds a predetermined threshold M , then the object is considered 

to be a suspected target and the interceptor is called in.  

3.3 State Transitions  

Given the state ( ), , , ,s t r i π θ=  at the beginning of a decision stage, the decision x, and 

the realization of the information vector ( ), , ,w w w ww t r i z= Δ , the state-transition function 

is ( ), , ( , , , , )M M M
w w ws s x w t t r i π θ= + Δ , where 

Mπ  and Mθ are the probability vectors π  

and θ  of the next state, just prior to making the next decision. The superscript M (M for 

Markov) indicates the dependence of the state transition on the underlying Markov 

process that governs the movements of both neutrals and targets. There are three time 

intervals (cases) we potentially need to account for when computing Mπ and Mθ . First, 

the time between making the decision x  and the Recognizer’s arrival at x , second, the 

tracking and identification time of the detected object (a single time period), and third, 

the waiting time for the Interceptor to arrive and complete the interception. Figure 1 

summarizes the three different cases that may occur, where ,
R

r xT  is the time required by 

the Recognizer to move from AC r to AC x. 

In Case 1, there is no object in AC x and therefore 0M
xπ =   and, for ,a x≠  M

aπ is given 

by (5) with 't  replaced by ,
R

r xt T+ . Similarly, 0M
xθ =  and, for ,a x≠  M

aθ  is given by (6) 
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with 't  replaced by ,
R

r xt T+ . In Case 2, we first compute M
aπ and M

aθ  as described for 

Case 1 and denote these values by ,M temp
aπ and ,M temp

aθ . Then, we update these values to 

account for the single time period tracking and set 0M
aπ =  if a is the AC into which the 

tracked object’s has transited at time t+1. Otherwise, we set M
aπ  as given by (5) with 't  

and 
t
aπ  replaced by 1t +  and ,M temp

aπ , respectively. Similar computation applies to .M
aθ  

Case 3 is computed by applying the computations of Case 2 repeatedly, until the 

Interceptor arrives at the AC of the object, the interception is completed, and the stage is 

over (i.e., decision is fathomed).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.   Timeline of state transitions 

3.4 Probability Distribution of the Information Vector w 

The final piece in formulating SDP is the probability mass function of the information 

vector ( ), , ,w w w ww t r i z= Δ . Recall that w  describes the consequences of a decision to 

visit a certain AC x : the time until the decision is fathomed, the locations of the 

Recognizer and Interceptor when this happens, and whether a target has been intercepted. 

Since our setting is discrete so is also w. Let ,
I

i jT  denote the time it takes the Interceptor to 

Making a decision  Arrival to AC x , decision is fathomed, 
end of stage, new state 

t ,
R

r x wt T t t+ = +Δ  
Case 1: No object detected in AC x

Making a decision  Arrival to AC x , 
object detected 

t ,
R

r xt T+  

End of tracking, decision is 
fathomed, end of stage, new state 

, 1R
r x wt T t t+ + = + Δ  

Case 2: Object detected in AC x , but it is not flagged as a likely target  

Making a decision  Arrival to AC x , 
object detected 

t ,
R

r xt T+  

End of tracking

, 1R
r xt T+ +  

Case 3: Object detected in AC x , and it is flagged as a likely target 

Interception, decision is fathomed, 
end of stage, new state 

wt t+ Δ  
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travel from AC i to AC j and to complete the processing of a suspected target in j. We 

assume that this time is fixed and given. 

We consider five different and exhaustive events that may occur given state 

( ), , , ,s t r i π θ=  and decision x : 

(i) no object is detected in AC x , which results in ( ), , , , 0R
r xw T x i= ; 

(ii) an object is present in AC x  and it exits the AOI while being tracked, i.e., 

( ), 1, , , 0R
r xw T x i= + ; 

(iii) an object is present in AC x ,  it moves to AC j∈A  and is identified by the 

Recognizer as a neutral, i.e., ( ), 1, , , 0R
r xw T j i= + ; 

(iv) an object is present in AC x , it moves to AC j∈A , is identified by the 

Recognizer as a target, and when intercepted is confirmed as a neutral, i.e., 

( ), ,1 , , , 0R I
r x i jw T T j j= + + ; 

(v) as event (iv) but when intercepted the object is confirmed as a target, i.e., 

( ), ,1 , , ,1R I
r x i jw T T j j= + + .  

Next we introduce notation that describes the various possible events following a 

detection of an object in a certain AC x. The random variable d represents the outcome of 

a search in AC x, i.e.,  d = –1 if there is no object in AC x , d = 0 if there is an object in 

AC x and while being tracked it exits A , and d = j if there is an object in AC x  and 

while being tracked it moves to AC j . The random variable f represents the result of 

tracking: f = 0 if there is an object in AC x  and, following tracking, it is not identified as 

a target, and f = 1 if there is an object in AC x  that is identified as a target. Note that

0f =  can either imply that the tracked object is identified by the Recognizer as a neutral, 

or that the object has left the AOI. Let ˆxπ  and x̂θ  denote the probabilities given by (5) 

and (6), respectively, when 't  is replaced by ,
R

r xt T+ .  We consider the five events in turn.  
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Event (i) is equivalent to { }1d = −  and, hence, { } { } ˆˆPr (i) Pr 1 1 x xd π θ= = − = − − . Event (ii) 

is equivalent to { }0d =  and, hence, { } { } ( ) ( )0 0
ˆˆPr (ii) Pr 0 , , .x xd P x Q xπ θ= = = +A A  

To compute the probabilities of the other three events, let Recθ  denote the probability 

that, following tracking, the Recognizer identifies the object as a target; see (12). Recall 

that a tracked object is identified as target if ,Rec Mθ ≥  where M is a given probability 

threshold. With a slight abuse of notation, let { target}x =  and { neutral}x =  denote the 

events that AC x contains a target and a neutral, respectively, at the time when the 

Recognizer arrives at AC x. We defer the calculation of event (iii) and next compute the 

probability of event (iv).  

For any j∈A , 

 

{ } { }
{ } { }
{ } { }
{ } { } { }

0

Pr (iv) Pr 1, , neutral

Pr , neutral Pr 1| , neutral

Pr , neutral Pr | , neutral

Pr , neutral Pr | , neutral, Pr | , neutral

Rec

g
Rec

n

f d j x

d j x f d j x

d j x M d j x

d j x M d j x n n n n d j x

θ

θ
′=

= = = =

= = = = = =

= = = ≥ = =

′ ′= = = ≥ = = = = = =∑

(13) 

where g is the given total number of glimpses the Recognizer takes while tracking the 

object, and n g≤ is the number of glimpses that returned “neutral” cues. Note that for 

every j∈A , we can calculate the maximum value of n  for which Rec Mθ ≥ . Let *
jn  

denote this value. Thus,  

 { }
*

*

1, if 
Pr | ,

0 , if 
jRec

j

n n
M d j n n

n n
θ

′⎧ ≤⎪′≥ = = = ⎨
′ >⎪⎩

  (14) 

Hence, in view of (13),  

 
{ } { } { }

{ } { }
*

0

0

Pr , neutral Pr | , neutral, Pr | , neutral

Pr , neutral Pr | , neutral
j

g
Rec

n

n

n

d j x M d j x n n n n d j x

d j x n n d j x

θ
′=

′=

′ ′= = ≥ = = = = = =

′= = = = = =

∑

∑
 (15) 

Using Bayes’ rule for the first multiplicative term on the right-hand-side of (15),  
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  (16) 

Following a similar derivation, we obtain for event (v) that 

 { } { } ( ) ( ) ( )( )
*

0

Pr (v) Pr 1, , target ˆ, 1 .
jn

n g ng

n
n

xf d j x uQ x j uθ
′ ′−

′
′=

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

= = = == −∑   (17) 

Finally, for event (iii) we follow the derivation in events (iv) and (v) and obtain that for 

j∈A , 

 

{ } { }

( ) ( )( ) ( ) ( )( )
* *1 1

Pr (iii) Pr 0,

1 1ˆˆ, , .
j j

g g
g n nn g ng g

n n
n n n n

x x

f d j

v v u uP x j Q x jπ θ′ ′−′ ′−

′ ′
′ ′= + = +

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= = = =

= − −+∑ ∑   (18) 

3.5 Computation of Bellman’s Equation  

Given a state ( ), , , ,s t r i π θ=  and information ( ), , ,w w w ww t r i z= Δ , we see from (1) that 

( ),c w s  is only a function of t, wtΔ , and wz . Hence, for the computation of 

( ) ( ) { }, , Pr
w

E c w s c w s w w
′∈

′ ′⎡ ⎤ = =⎣ ⎦ ∑
W  

we only need the joint probability distribution of  

wtΔ , and wz . Similarly, ( ),Ms s w  is only a function of wtΔ , wr , and wi . Hence, we only 

need the joint probability distribution of these three random variables for the calculation 

of ( )( ) ( )( ) { }, , , , PrM M
w

E V s s x w V s s x w w w
′∈

⎡ ⎤ ′= =⎣ ⎦ ∑ W
. The detailed derivation of 

Bellman’s equation is given in Appendix A. The resulting size of SDP is large; the 

number of different paths the Recognizer can take during the time horizon T  is no larger 

than TA , and therefore the number of different values of π  and θ  is no larger than 

.TA  Hence, the state space size is 2T TT T += ⋅ ⋅ ⋅ = ⋅S A A A A .  The size of the 

information space is 3 2= ⋅ +W A . While in principle a SDP policy can be determined 

using the Backward DP Algorithm (see for example [3], p. 50), most situations result in a 
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model that renders that algorithm impractical due to its run time of  

( )( )3 3 2TO T +⋅ ⋅ ⋅ +A A , which is exponential in the number of time periods. Thus, we 

consider a heuristic algorithm.  

4. Heuristic Algorithm and Model Relaxation 

In this section we develop a simple greedy heuristic for solving SDP and examine its 

effectiveness using a relaxation. Of course, numerous heuristics could be considered, but 

in this paper we focus on modeling and do not explore such possibilities further.  

4.1 Heuristic Algorithm  

For any state ( ), , , ,s t r i π θ= , we define the heuristic policy  

 ( )
, ,

ˆ
arg max

1
H a

R I
a r a i a

x s
T T

θ
∈

⎧ ⎫⎪ ⎪∈ ⎨ ⎬+ +⎪ ⎪⎩ ⎭A
  (19) 

where the numerator ( âθ ) is the probability of a target in AC a  at the time the 

Recognizer reaches AC a  computed by (6), and the denominator is the approximated 

total time to interception. This is a greedy policy that balances the likelihood of a target 

in a certain AC and the “cost” in time that such a visit would incur. In related search 

situations similar greedy policies are proven to be optimal (see e.g., [6], [14]).  

4.2 Model Relaxation 

The heuristic policy results in a lower bound on the optimal value of SDP. To assess the 

quality of that heuristics, we define a relaxation of SDP, denoted by rSDP, which 

provides an upper bound for the SDP policy. In rSDP, a decision x is identical to that in 

SDP, and the information is similar, but its probability distribution is different. The state 

transition functions and the Bellman equations are essentially the same.  

The main difference between SDP and rSDP is that the state space in the latter becomes 

considerably smaller by eliminating the two probability vectors π  and θ . Each time a 

decision is fathomed, we “reset” the two probability vectors π  and θ  to their initial, 

steady-state values at time 0t =  and therefore these two vectors need not be part of the 

state vector. In other words, the Recognizer is memory-less. By not nullifying the 
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probabilities in an AC following a visit (see Sections 3.2 and 3.3), rSDP assigns each 

ACs a probability of containing a target no smaller than the corresponding probability in 

SDP. Hence, rSDP is a relaxation of SDP. Having this memory-less property, rSDP may 

generate a policy that “traps” the Recognizer in an AC that has a high probability of a 

target. To avoid these traps in rSDP, we temporarily drop the probability of an object in 

the Recognizer’s AC down to 0. This temporary update holds until the current decision is 

fathomed. Once we complete the current state transition, we ignore this temporary update 

and reset to the steady-state probabilities. We next define rSDP, where bars are used to 

denote parameters and variables.  

We define a state in rSDP by ( ), ,s t r i= , where ( ), ,t r i  are the time, Recognizer’s 

location, and Interceptor’s location, respectively. The state space is denoted by S .  As in 

SDP, a decision x∈A  is selecting the next AC to be visited by the Recognizer. Let the 

random vector ( ), , ,w w w ww t r i z= Δ  denote the information obtained when a decision is 

fathomed in rSDP. The definitions of the components of w  and its space of possible 

values are exactly the same as in SDP, but the probability mass function is different.  

The state transition function :Ms × →S W S  in rSDP differs from that in SDP because 

x  is not included explicitly as an argument of the function but only implicitly by 

affecting the probability mass function of w . We define ( ), ( , , )M
w w ws s w t t r i= +Δ , 

where ( ), ,s t r i=  is the state and ( ), , ,w w w ww t r i z= Δ is the obtained information. The 

reward :c × → \W S , which is a function of w  and the state s , is defined by  

 ( ) ( ) ( )1 ,,
0,

wt t
w w

w

z t t Tc w s
t t T

γ − +Δ⎧ ⋅ + + Δ ≤⎪= ⎨
+ Δ >⎪⎩

  (20) 

The value ( )V s  is given by the Bellman equation 

 ( ) ( ) ( )( ){ }max , , ,

0,

M

x
E c w s V s s w t T

V s
t T

⎧ ⎡ ⎤+ <⎪ ⎣ ⎦= ⎨
⎪ ≥⎩

  (21) 
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Computing ( )V s  for rSDP is similar to computing ( )V s  in SDP. The only difference is 

the change in probability mass function. Specifically, the updated probabilities θ  and π  

are replaced by  

 
0

0 ,
0,

a
a

a r
a r

θ
θ

⎧ ≠
= ⎨

=⎩
  (22) 

 
0

0 ,
0,

a
a

a r
a r

π
π

⎧ ≠
= ⎨

=⎩
  (23) 

where 0θ  and 0π  are the steady-state probabilities; see (3) and (4). The derivation of 

Bellman equation for rSDP is given in Appendix B. The state space in rSDP has 

cardinality 
2T= ⋅S A
 

and the run time of the backward DP algorithm is 

( )( )3 3 2O T ⋅ ⋅ ⋅ +A A .  Hence, solving rSDP may be possible in reasonable time. 

5. Model Implementation 

We consider a maritime interdiction mission in an AOI comprising 25 ACs and a time 

horizon of 48 time steps. We also briefly consider a situation with 64 ACs. The relaxation 

rSDP is in these situations a tractable dynamic program and is optimally solved using the 

Backward DP Algorithm (see for example [3], p. 50). Direct calculation of the value of 

the heuristic policy is impractical and we estimate it by Monte-Carlo simulation. All 

models and algorithms were implemented and analyzed using MATLAB on a MacBook 

Pro with Dual-Core 2.53GHz CPU and 4GB of RAM.  

5.1 Scenario Data 

We are unable to present results for actual interdiction missions due to security 

constraints on operational data. However, we generate realistic scenarios based on 

unclassified information we obtained from active-duty naval officers who have 

operational experience with counter-drug operations [2]. The analysis comprises a base 

scenario, and several variations thereof. The baseline scenario represents a strait-like 

AOI, with land on the North and South edges of the AOI (i.e., no arrivals from or 

departures to the North and South of the AOI). The AOI is a square grid comprising 25 

ACs, each of size 5nm x 5nm. The time horizon is 12 hours, divided into 48 time steps of 
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15 minutes each.  Arrivals are only possible to ACs 1–10, that is 0a aα β= =
 

for 

11,..., 25a = . We assume that .05, .01a aα β= =
 

for 1,...,10.a =  The transition 

probabilities of neutrals (P) and targets (Q) are different, representing different 

movement patterns. In a single time period, an object can only move to one of the four 

immediate neighboring ACs, or remain in the current AC. We assume that neutrals tend 

to move along the strait (West-East traffic), while targets tend to move perpendicular to 

the shipping lanes (North-South traffic).  

For any object the probability to stay in its AC during a time-step is 0.1 and the transition 

probability East (North) is equal to the transition probability West (South). For neutrals 

these probabilities are 0.3 East and 0.15 North, while for targets these probabilities are 

reversed. Objects exiting the AOI do not return.  

In the base scenario both the Recognizer and the Interceptor start in center AC. We 

assume that the Interceptor has roughly the same velocity as both the neutrals and targets, 

which is one AC per time period (approximately 20 knots in real-life). The Recognizer 

velocity is assumed to be four times the velocity of the Interceptor. The Recognizer’s and 

Interceptor’s transition times between ACs include the travel time and processing time 

(detection time for the Recognizer and boarding time for the Interceptor). 

The Recognizer’s sensor takes three glimpses at a tracked object ( 3g = ). The false 

positive and false negative detection probabilities of a target are 0.2 ( 0.8u v= = ). The 

discount factor is 0.05γ = , which means that the reward obtained from a target 

intercepted at the end of the 12 hours time horizon is approximately 1
10  of the reward 

obtained at 0t = . The value of the probability threshold M for calling in the Interceptor 

is varied to examine its effects on the results.  
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Figure 2.   Expected rewards for Heuristic and Upper Bounding (rSDP) policies in 
Baseline scenario for various probability threshold values M  

With the given hardware and software, rSDP is solved in approximately 30 minutes and 

estimating the expected total reward under the heuristic policy, using Monte Carlo 

simulation and stopping when the 95% confidence interval has width less than 5% of its 

center, needs about 6 minutes.  

In addition to the base scenario, we also considered scenarios with zero-discounting, 

longer transition time for the Interceptor, 96-hour time horizon, and an 1600nm2 AOI.  

5.2 Numerical Results 

We first examine the performance of the heuristic policy described in Section 4.1. Recall 

that the heuristic and rSDP policies provide lower and upper bounds, respectively, for the 

optimal expected reward of SDP. Figure 2 presents the expected reward for both policies 

in the baseline scenario, using various threshold values of M. The error bars in Figure 2 

(and later in Figures 3 and 4) represent 95% confidence intervals of the estimated 

expected reward following the heuristic policy. The average gap between the two 
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expected rewards is about 30%, with relatively little sensitivity to the choice of M . This 

means that the heuristic policy results in an expected reward that is at least 70% of the 

optimal value in these situations. 

 

Figure 3.   Expected rewards for Heuristic and Upper Bounding (rSDP) policies in a no-
discounting scenario for various probability threshold values M 

Figure 3 represents the same results for the case with a discount factor of zero. In this 

case the gap is slightly larger than in the baseline scenario, with an average gap of about 

40%. The shapes of the graphs in Figures 2 and 3 are similar. The slightly better 

performance of the heuristics when discounting time may be explained by the greater 

focus on near-term rewards, rather than long-term, in SDP in that case.  

From the baseline scenario (Figure 2), we observe that the expected reward is 

monotonically decreasing in the probability threshold M for 0.05M ≥ . In other words, 

larger thresholds (than 0.05) result in worse performance of the interdiction force. This 

observation appears to be counter intuitive, as one would expect a larger threshold to be 

more efficient so that the Interceptor and the Recognizer do not waste time dealing with 

unlikely targets. In order to better understand these counter intuitive result, we evaluated 
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board inspection time (“boarding time”). Figure 4 compares the results of three 

interception times: (1) base scenario, (2) base scenario + 5 time periods, (3), base 

scenario + 20 time periods. 

 

Figure 4.  Sensitivity of expected reward for Heuristic and Upper Bounding 
(rSDP) policies to boarding time. (x marks scenarios which have not been 
calculated) 

A threshold value of approximately 0.2 appears to be the best threshold in the scenario 

with boarding time of five time periods, while a value of approximately 0.4 is the best 

threshold in the scenario with boarding times of 20 time periods.  In any case, the 

threshold M is relatively small. This result is consistent with common practice in which 

even the slightest suspicion triggers investigation. In a sparsely populated environment, 

such as the one modeled in this analysis, it is “better to be safe than sorry,” even at the 

expense of many false alarms. 

Finally, we investigate the heuristic’s performance for a longer time horizon and larger 

AOI, where all other parameters remain the same as in the base scenario. For a 24 hour 

scenario ( 96T =  time periods), the heuristic’s expected reward is approximately 0.57 

(with 95% confidence interval of width less than 0.03) and that of rSDP is 0.85, with a 
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gap of 33%, which is similar to the gap in the shorter scenario. For a 1600nm2 AOI, with 

8nm-by-8nm ACs. The heuristic expected reward is approximately 0.45 (with 95% 

confidence interval of width 0.02), while that of rSDP is 0.62, with a gap of 28%, which 

is also in agreement with previously presented results.  

6. Conclusions 

We developed a stochastic DP model for a combined search and interdiction operation. 

The operation comprises an airborne sensor for detection, identification, and tracking of 

suspected objects and a surface vessel or ground vehicle for subsequent interception. 

While the model is rich and reflects real-world military and naval operations, it is also 

intractable by standard algorithms.  Thus, we developed a greedy heuristic policy, which 

results in a lower bound on the optimal expected number of successful interdictions 

within the planning horizon, and a relaxation of the model, which generates an upper 

bound. We show that for certain realistic maritime interdiction scenarios the gap between 

the two bounds is in the range of 30% - 40%. The study provides the operational insight 

that the threshold for triggering investigation by the surface vessel is quite low. For 

realistic situations examined in this paper, a target (posterior) probability as low as 0.1 

after tracking and identification by the airborne sensor should result in interception of the 

potential target by the surface vessel.  
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Appendix A 

This Appendix provides details about the calculations of Bellman’s equation in SDP; see 

Section 3.5. For notational convenience, we define for any x∈A , ( ), , , ,s t r i π θ= , 

( ), , ,w w w ww t r i z= Δ , ( ) ( ), , ,w wc t z s c w sΔ ≡� , and ( ) ( ), , , , , ,M M
w w ws s x t r i s s x wΔ ≡� . Using 

these functions, we find that 

( )[ ] ( )[ ] ( ) { }
1

0 0

, , , , , Pr ,
ww

w w w w
z t

w w w wE c w s E c t z s c t z s t t z z
∞

′ ′= Δ =

′ ′ ′ ′= Δ = Δ Δ = Δ =∑ ∑� �   (24) 

( )( )

( )( ) ( )( ) { }
0

, ,

, , , , , , , , Pr , ,
w w w

M

M M

w w w w w w w w w w w w
t r i

E V s s x w

E V s s x t r i V s s x t r i t t r r i i
∞

′ ′ ′Δ = ∈ ∈

′ ′ ′ ′ ′ ′= Δ = Δ Δ = Δ = =

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦ ∑ ∑∑� �
A A

 (25) 

where   
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t t z z t t r r i i z z
′ ′∈ ∈

′ ′ ′ ′ ′ ′Δ = Δ = = Δ = Δ = = =∑ ∑
A A

  (26) 

 { } { }
1

0

Pr , , Pr , , ,
w

w w w w w w w w w w w w w w
z

t t r r i i t t r r i i z z
′ =

′ ′ ′ ′ ′ ′ ′Δ = Δ = = = Δ = Δ = = =∑   (27) 

Using (27) and the probability mass function of w , we find that  

( )( ) ( )( ) ( )( )( ) ( )( )( ) ( )( ), ,M

j j
E V s s x w I II III IV V VI VII VIII

∈ ∈

⎡ ⎤ = + + +⎣ ⎦ ∑ ∑
A A

 

where  



 25

( ) ( )( )
( ) ( )
( ) ( )( )

,

, ,

, , , ,

ˆˆ1

, , 1 , ,

M R
r x

x x

M R I
r x i j

I V s s x T x i

II

III V s s x T T j j

π θ

=

= − −

= + +

�

�

   (28) 

( ) ( ) ( ) ( ) ( )

( ) ( )( )
( ) ( ) ( ) ( ) ( )

( ) ( )( )
( ) ( )

*

*

0

,

1

,

0

ˆ ˆ1 , 1 ,

, , 1, ,

ˆ ˆ1 , 1 ,

, , 1, ,

ˆ,

j

j

n
n g ng n n

x x
n

M R
r x

g
n g ng n n

x x
n n

M R
r x

x

g g
IV u u Q x j v v P x j

n n

V V s s x T j i

g g
VI u u Q x j v v P x j

n n

VII V s s x T x i

VIII Q x

θ π

θ π

θ

′ ′−′ ′−

′=

′ ′−′ ′−

′= +

⎛ ⎞⎛ ⎞ ⎛ ⎞
= − + −⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠⎝ ⎠

= +

⎛ ⎞⎛ ⎞ ⎛ ⎞
= − + −⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠⎝ ⎠

= +

= +

∑

∑

�

�

A ( )0 ˆ, xP x πA  

Similarly, we can use (26) and the probability mass function of w  to compute  

 ( ) ( ) ( ) ( ) ( ) ( )
*

, ,1

0

ˆ, 1 , 1
jR I

r x i j
n

t T T n g ng
x n

j n
E c w s Q x j u uθ γ ⎛ ⎞

⎜ ⎟
⎜ ⎟
⎝ ⎠

− + + + − ′

′
∈ ′=

⎛ ⎞
′⎜ ⎟⎡ ⎤⎣ ⎦ ⎜ ⎟

⎝ ⎠
= + −∑ ∑

A

  (29) 

Appendix B 

In this Appendix we provide details about the calculations of Bellman’s equation for 

rSDP. Let ˆ
xπ  denote the probability given by (5) when 't  and 

t
aπ  are replaced by ,

R
r xt T+  

and 0
aπ , respectively. Moreover, we let ˆ

xθ  denote the probability given by (6) when 't  

and 
t
aθ  are replaced by ,

R
r xt T+  and 0.aθ   Substituting θ  and π  with (22) and (23) in (28) 

and (29), respectively, while explicitly computing the next state using the state transition 

function, we get the following formulas for computing the Bellman equation for rSDP:  

( )[ ] ( )( ) ( )( )( ) ( )( )( ) ( )( ), ,w w w
j j

E V t t r i I II III IV V VI VII VIII
∈ ∈

+ Δ = + + +∑ ∑
A A  

where ( ), ( , , )M
w w ws s w t t r i= +Δ  is the next state given state ( ), ,s t r i=  and 

realization ( ), , ,w w w ww t r i z= Δ and
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( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( )

( ) ( ) ( ) ( ) ( )

*

,

, ,

0

,

, ,

ˆˆ1

1 , ,

ˆ ˆ1 , 1 ,

1, ,

ˆ ˆ1 , 1 ,

j

R
r x

x x

R I
r x i j

n
n g ng n ng g

x xn n
n

R
r x

n g ng n ng g
xn n

I V t T x i

II

III V t T T j j

IV u u Q x j v v P x j

V V t T j i

VI u u Q x j v v P x j

π θ

θ π

θ

′ ′−⎛ ⎞ ⎛ ⎞′ ′−⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠′=

′ ′−⎛ ⎞ ⎛ ⎞′ ′−⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠

= +

= − −

= + + +

⎛ ⎞
= ⎜ − + − ⎟
⎜ ⎟
⎝ ⎠

= + +

= − + −

∑

( )
( ) ( )
( ) ( ) ( )( )

* 1

,

0 0

1, ,

ˆ ˆ, ,

j

g

x
n n

R
r x

x x

VII V t T x i

VIII Q x P x

π

θ π

′= +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

= + +

= +

∑

A A

  (30) 

 
and 

 
( ) ( ) ( ) ( ) ( ) ( )

*

, ,1

0

ˆ, 1 , 1
jR I

r x i j

n
t T T n g ng

x n
j n

E c w s Q x j u uθ γ ⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

− + + + ′ − ′

′
∈ ′=

⎛ ⎞
⎜ ⎟⎡ ⎤⎣ ⎦ ⎜ ⎟
⎝ ⎠

= + −∑ ∑
A

  (31) 

 

The expressions in (30) are completely parallel to those of (28). The state space in rSDP 

has cardinality 
2T= ⋅S A  and the run time of the backward DP algorithm is 

( )( )3 3 2O T ⋅ ⋅ ⋅ +A A , which is much faster than that for SDP.    

 
 

 


