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DEFINING EFFECTS FOR
PROBABILISTIC MODELING

by Dr. Mark A. Gallagher, Gregory |. Ehlers,
Wesley D. True, and Marc R. Warburton

With Effects Based Operations (EBO),
the Department of Defense is emphasiz-
ing achieving effects, rather than accom-
plishing tasks. For the operations re-
search community to fully engage in this
EBO paradigm, the effects have to be
quantifiable. As an initial step, the au-
thors propose a rigorous, but versatile,
definition of effects. Their definition pro-
vides a probability space for effects. As a
sample application, they demonstrate a
reliability approach to modeling proba-
bility of achieving an effect. Given a net-
work of parallel or series independent
events, the authors show the overall
probability of success and its variability
may be determined from the mean and
variance of the individual activities. Their
effects definition provides a measurable
foundation to improve EBO predictions
and assessments.

A COMPARISON OF
MULTIVARIATE OUTLIER
DETECTION METHODS FOR
FINDING HYPERSPECTRAL
ANOMALIES

by Timothy E. Smetek and
Kenneth W. Bauer Jr.

Hyperspectral imagery is an emerg-
ing technology useful in locating unusual
objects dispersed within some natural
background such as a desert scene. Cur-
rent anomaly detection methods com-
monly use non-robust statistical methods
that may lead to inaccurate detection re-
sults. This research explores the use of
different multivariate outlier detection
methods for the anomaly detection prob-
lem. These methods encompass a large
literature, which for unknown reasons,
have been principally overlooked. In the-
ory, these methods may be better suited
than existing anomaly detection methods
for finding anomalous objects in a hyper-
spectral image. This hypothesis is tested

Military Operations Research, V13 N4 2008

by applying a range of outlier detection
methods to both simulated and real-
world image data. Test results indicate
that multivariate outlier detection can
achieve superior detector performance
relative to benchmark anomaly detection
methods.

EFFICIENT EMPLOYMENT OF
NON-REACTIVE SENSORS

by Moshe Kress, Roberto Szechtman, and
Jason S. Jones

Advances in sensor technologies in-
duce new operational scenarios that neces-
sitate new algorithms for efficient sensor
employment. The objective is to find a
search pattern that maximizes the informa-
tional gain from a constrained set of sens-
ing assets. In this paper we consider two
types of non-reactive sensors, whose em-
ployment cannot be changed during the
search mission, and develop optimal search
patterns that maximize the information ob-
tained from the sensor.

REACH-BASED ASSESSMENT OF
POSITION

by Lt Col J. Todd Hamill, USAF,
Dr. Richard F. Deckro, Dr. Robert F. Mills,
and Dr. James W. Chrissis

As the interest in applying social net-
work analysis (SNA) techniques to mili-
tary problems has increased, so too has
the realization that numerous theoretical
and practical challenges must be over-
come when dealing with social networks
that cannot be easily observed. When an-
alyzing clandestine networks, efficiently
calculated measures that perform well
despite limited information are of in-
creasing interest, particularly to counter-
terrorism efforts. A new SNA measure,
the reach-based assessment of position
(RBAP), was specifically designed to
serve as a ‘screening’ tool to identify in-
dividuals within such a network who
may potentially serve important roles in
achieving organizational objectives.

Executive
Summaries
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EXECUTIVE SUMMARIES

MODELLING THE RURAL INFANTRY
BATTLE: THE EFFECTS OF LIVE
COMBAT ON MILITARY SKILLS AND
BEHAVIOUR DURING THE
APPROACH PHASE

by L. R. Speight and D. Rowland

Many combat models are based on esti-
mates of military performance and behaviour
that have been obtained in peacetime condi-
tions. However, historical analysis has shown
that performance in actual combat typically
strays far below the peacetime norm. A survey
of the recorded accounts of junior officers and
NCOs who have actively participated in dis-
mounted infantry attacks shows an extremely
wide range of behaviours. The heroic few have
appeared to be essentially unaffected by the
combat environment, exercising their military
skills to all intents and purposes at their peace-
time level. The remainder all seemed to suffer
noticeable degradation, stretching at best from
impaired use of their small arms to, at worst,

zero effective participation in the battle. The
present paper seeks to incorporate aspects of
this live combat behaviour in a stylised account
of an infantry assault. The approach started
with a combat model that was carefully aligned
to the outcomes of realistic instrumented trials
with trained troops. Rules were then superim-
posed in order to link the behaviour of each
individual attacker and defender, as revealed
by historical analysis, to the prospect of battle
and the characteristics of the opposing fire. The
results of a modelling exercise using this en-
hanced model were encouraging, in that the
outcomes were very much in accord with the
outcomes of historical battles. This exercise also
highlighted a number of topics that warranted
further effort if our models are to be made more
realistic in terms of genuine combat. The two
most important of these were, firstly, the ef-
fect of each soldier’s behaviour, especially
that of heroes, on the military contributions
of his immediate comrades in arms; and, sec-
ondly, the representation of the close quarter
battle and its effect on the final outcome of
any engagement.

Military Operations Research, V13 N4 2008



ABSTRACT

he Department of Defense is imple-
I menting Effects-Based Operations
(EBO). Critical EBO aspects include
planning for effects and assessing achieve-
ment of effects. Both of these steps are en-
hanced with an analytical model that
quantifies the probability of effect. Joint
Publication 5-0 defines effect as “the phys-
ical or behavioral state of a system that
results from an action, a set of actions, or
another effect.” Furthermore, that publica-
tion also defines Measure of Effectiveness
(MOE) as “a criteria used to assess changes
in system behavior, capability, or opera-
tional environment that is tied to measur-
ing the attainment of an end state, achieve-
ment of an objective, or creation of an
effect.” In this article, we develop the MOE
of Probability of Effect to assess the likeli-
hood of achieving a specified effect given a
proposed course of action.

Probability Theory requires a defined
sample space, where each possible outcome
is enumerated. In this article, we further
refine the Joint Publication effect definition
as an impact on a single functional capa-
bility or behavior with four specifications:
1) scope (affected entities or individuals), 2)
magnitude (specifies the desired extent of
the capability or behavior, which may con-
stitute a decrease, maintenance, or in-
crease), 3) start time, and 4) minimum du-
ration. We contend this definition is
universally applicable to the functions of
any system and behaviors of any group.
Furthermore, this definition lays a frame-
work for both operational implementation
and rigorous analysis.

For the limited situations where the
time-dynamics of actions are not critical
and system component reliabilities are in-
dependent, we present a reliability con-
struct to predict (before the action) or as-
sess (after the action based on limited
observables) effect achievement. Gallagher
and Whiteman (2004) calculate the overall
mean and variance for serial systems, such
as a kill chain, based on the means and
variances of the individual components.
Similarly, this article presents calculations
for the overall mean and variance for com-
ponents in parallel or combinations of se-
ries and parallel. We show that the beta
distribution adequately represents the un-
certainty of achieving an effect unless the

Military Operations Research, V13 N4 2008

mean is very close to zero or one. In addi-
tion, the equivalence of modeling reliability
(system functioning) and unreliability (sys-
tem not functioning) effects is shown.

EFFECTS DEFINED

The Department of Defense is imple-
menting Effects-Based Operations (EBO). A
common EBO approach is to consider Sys-
tems-of-Systems Analysis. These effects
may occur to friendly, adversary, and neu-
tral systems, such as the United States, Co-
alition Nations, Neutral Nations, Adver-
sary Nations, Terrorists, and other entities.
The latter category may include interna-
tional government bodies (such as the
United Nations and the World Trade Orga-
nization), Non-government Organizations
(such as Amnesty International and the
Red Cross), corporations, crime syndicates,
religions, or other groups. EBO considers
the dynamic impacts and interactions
among these entities with the goal of
achieving a desired end state for the enti-
ties. For example, military attacks have ef-
fects on the target, the attacker’s resources,
and may modify behaviors of third-party
observers. Commander’s intent should
specify the desired end-state for friendly,
adversary, and neutral systems and their
behaviors. Explicitly defining effects allows
for continual assessment of the current sta-
tus and selection of actions that are inte-
grated across the instruments of national
power to progress toward the desired end-
state. EBO planning and assessment across
this vast breath requires a systematic ap-
proach.

Joint Publication 5-0 (2006) describes
the EBO process. Planning begins with de-
termining the desired end state with sup-
porting objectives, which specify “clearly
defined, decisive, attainable goals”. The ef-
fects describe measurable system behavior
in the operational environment that are the
conditions for achieving objectives. Fur-
thermore, an effect is a “physical and/or
behavioral state of a system ...” The sys-
tem is composed of interacting or interde-
pendent elements or nodes. These nodes
may be individuals, places, or things. Links
represent the behavioral, physical, or func-
tional relationship between nodes. Tasks
direct friendly actions against nodes to
achieve desired effects. Our goal is to eval-
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uate likelihood of potential tasks, or equiva-
lently friendly actions, achieving desired effects
and causing undesired effects.

The complexity of interactions between
systems has resulted in stressing collaboration
among experts, where subject matter experts
become the primary means of planning and
integration. Given the vast scope of aspects to
consider, collaboration improves the options,
however using subjective judgment alone is un-
likely to develop an integrated and holistic set
of actions. A systematic approach to a problem
of this complexity needs to incorporate subjec-
tive assessments, but should not completely
rely on subjective evaluations.

We used seven attributes in developing our
effects definition. First, the terms should aid in
communication among senior leaders and man-
agers of the instruments of power. In the mili-
tary, the system should contribute to clear un-
derstanding among the commander, planners,
operators, and intelligence officers. Second,
consistent with Joint Publication 5-0 direction,
the impacts should be measurable. Even if not
directly observable, planning predictions and
outcome assessments should be stated in quan-
tifiable terms with meaningful units. While be-
havior can be measured, psychological states or
mental attitudes cannot and should not be in-
cluded as effects. Third, the system needs to
account for the uncertainty of prior estimates
and after-action assessments. Estimating the ex-
tent of uncertainty for effects regarding human
behavior is important. Fourth, effects should be
developed in a manner that they may be com-
bined toward higher effects, objectives and
eventually the desired end state. Fifth, the ef-
fects should be defined in a manner that en-
ables consideration of employing various
means to achieve them. In other words, effects
are described independent of actions that in-
duce them so that various actions may be eval-
uated in terms of their likelihood in achieving a
set of effects. Sixth, effects need to consider the
behavior of individuals, not simply mechanical
functions. Seventh, the dynamic nature of func-
tions and behaviors should be addressed. We
use these seven attributes in developing our
proposed system.

The heart of an EBO planning is the defini-
tion of effects. Three major definitions have

been published. The official DoD (2007) defini-
tion is, “A change to a condition, behavior, or
degree of freedom.” United States Joint Forces
Command (2005) defines effects as “the physi-
cal, functional, or psychological outcome,
event, or consequence that results from specific
military or non-military actions.” The Com-
mander’s Handbook for Effects-Base Approach to
Joint Operations (Joint Warfare Center, 2006)
and Joint Publication 5-0 use the effect defini-
tion of “the physical and/or behavioral state of
a system that results from an action, a set of
actions, or another effect.” These definitions,
without further specification, are not measur-
able; hence, ascertaining the probability of an
effect, as a prediction before an action or as an
assessment after an action, remains subjective
and arbitrary. In addition, the ability to com-
bine effects, as defined, in a systematic ap-
proach is unclear.

Rather than trying to define an effect, oth-
ers have tried to describe effects. This approach
leads to a lexicon with a myriad of verbs, like
“degrade” and “deny.” Unfortunately, this ap-
proach is not comprehensive, which leads to an
ever expanding dictionary of effect verbs. In
addition, many of these verbs specify how the
effect is achieved, rather than the functional
impact. For example, “destroy” implies a ki-
netic attack, even if a computer network attack
or electronic jamming could achieve the neces-
sary functional effect. Historically, the analyti-
cal community has worked extensively to build
a standardized taxonomy for kinetic damage
levels, which provides planners with consis-
tent, reproducible, and comparable evaluations
that enables selection of the optimal means.
Furthermore, these effect verbs lack the preci-
sion required for clear communication or rigor-
ous evaluations. We contend effects should not
be defined through the use of descriptor verbs.

In light of the seven desired attributes for
an EBO system, we define an effect as an im-
pact on a single functional capability or be-
havior with four specifications: 1) scope (the
affected entities, which may be geographical
such as a facility, city, region; organizational
such as individual, group, or nation; or net-
works), 2) magnitude (specifies the desired ex-
tent of the capability or behavior whether it is
decreased, maintained, or increased), 3) start

Military Operations Research, V13 N4 2008
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time, and 4) minimum duration. This refine-
ment of the general definitions establishes an
exhaustive and mutually exclusive outcome or
sample space. While only one outcome is pos-
sible, either the effect will/did or will not/did
not occur, our estimates need to account for the
uncertainty of random influences prior to tak-
ing actions and limited observability after ac-
tions.

We contend this definition meets all seven
of our proposed attributes. First, since we nat-
urally speak of functions and behaviors, this
definition fits within our normal vocabulary,
which improves communication between com-
manders, planners, operators, and intelligence
officers. Second, the single functional capability
or behavior with a specified magnitude ensures
quantifiable metric. Joint Publication 5-0 de-
fines these metrics as measures of effectiveness
(MOEs), “a criterion used to assess changes in
system behavior, capability, or operational en-
vironment that is tied to measuring the attain-
ment of an end state, achievement of an objec-
tive, or creation of an effect.” Third, the
uncertainty may be accounted in several ways
including probabilities or range of probabili-
ties. Fourth, these effects may be combined in at
least three manners. The functional capabilities
may be nested, such as the ability of a bridge to
support traffic would include the ability to sup-
port heavy traffic. One function degrade may
lead to a subsequent effect, such as inability to
communicate may reduce ability to be cued to
incoming threats. The effects may be related in
time; for example, we may desire electric power
interrupted during one time period and re-
stored at a later time. Fifth, this definition im-
poses no constraint on the means to achieve the
effect. The effect may even be achieved without
action based on the adversary’s incompetence
or reliability failure. Sixth, the definition may
include measurable human behavior. Seventh,
the definition incorporates the time aspects so
the dynamic nature of systems is addressed.

We contend this effect definition offers sev-
eral advantages. First, it applies to any function
or behavior that we may measure in any do-
main, so it is universally applicable. Second, the
effect is not linked to any action so the defini-
tion poses no limitations on evaluating alterna-
tive actions to achieve it. Third, this definition

Military Operations Research, V13 N4 2008

clearly maps outcomes (events) to a sample
space, which enables the application of proba-
bility theory. The Joint Technical Coordinating
Group for Munitions Effectiveness (JTCG/ME),
which publishes the Joint Munitions Effective
Manual (JMEM) to support the weaponeering
and combat assessment phases of the Joint Tar-
geting Cycle, has adopted this definition.
(JTCG/ME, 2006).

This effects approach enables wide consid-
eration of potential approaches to achieve it.
For example, rather than specifying “destroy-
ing a bridge,” the effect statement should be
eliminate ability of traffic to cross the bridge for
a specified time period. In this example, this
effect may be accomplished by a hazard sign,
blocking action, computer opening a draw
bridge, military occupation, or destruction.
These alternative courses of action should be
evaluated in terms of their likelihood of success
and their impact on other desired effects. Do
we want the bridge operating at a later time?
Do we prefer a clandestine operation so the
population is not enraged against our forces? Is
their infrastructure, such as power or commu-
nication lines, along the bridge that we do or do
not want to affect? Each of these other consid-
erations may be stated as additional effects. The
course of action that collectively best achieves
the desired effects while minimizing the unde-
sired effects should be selected. Consistent with
Joint Publication 5-0, we could call this collec-
tion of related effects an objective.

Effect, as defined, is limited to a single, mea-
surable, functional capability or behavior. To con-
struct a comprehensive assessment, multiple ef-
fect evaluations are required. A single action may
precipitate multiple effects, and a single effect
may be precipitated by multiple actions. Addi-
tionally, it may be desired that an action have
both a particular resultant effect and not have
negative consequences or undesired effects. For
example, concerns about detection and attribu-
tion may be represented as avoiding associated
effects of behavior responses. Another example is
selecting the best option to achieve two related
effects, such as electrical power outage for a time
and having it restored in a later time period. In
these cases, the associated single dimensional
measurements or MOEs for each effect may be
combined to form a state vector that varies over
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time. Actions should be considered such that the
state transitions toward the desired end-state.
This concept of an outcome state is consistent
with EBO literature. In addition, the concept of a
time-varying state vector facilitates direct appli-
cation of standard engineering approaches in-
cluding Box-Jenkins forecasting, stochastic esti-
mation and control theory, or simulation.

A variety of analytical techniques may be
applied to estimate the probability of effect in a
manner that enables a systematic construction
to determine the likelihood of achieving the
desired end-state. The remainder of this article
describes one simple approach that applies
when the target functions and vulnerabilities
are known and time-dynamics responses are
not critical. We contend this is applicable, at a
minimum, to many fixed targets. We envision
future analysts and planners will employ a va-
riety of techniques, beyond just this one that we
present, to estimate the probability of effect.

The description of this one approach is di-
vided into three main sections. First, we discuss
system analysis approaches to depict relation-
ships between potential actions and effect
achievements. Second, we present how, based
upon a reliability structure, a probability distri-
bution function for an effect may be con-
structed. This stochastic approach enables ac-
counting for intelligence uncertainties in
addition to operational variations. Third, we
demonstrate our approach. This approach en-
ables us to estimate a probability of effect for
either potential future actions with uncertain
results or for assessing mission success based
on limited observable indicators.

SYSTEM ANALYSIS

The initial step is specification of the de-
sired effect. In our approach, we begin at the
impact to facilities or individuals, which can be
incorporated into evaluation of higher states.
As a preliminary step, we advocate for con-
structing a list of general facility functions for
each of the installation category codes (DIA,
2001) used in the intelligence database. For ex-
ample, the installations categorized as a com-
mand bunker, 86400, would have two measur-
able primary functions: plan actions and

communicate. The planned actions function
may be measured by the MOE of equivalent
number of simple directions per time period.
The MOE for the communication function may
be the rate of data received or transmitted.
Even this simple specification significantly as-
sists in the implementation of EBO. Rather than
describing the damage required, warfighters
may begin to plan for consistent functional im-
pacts on installations.

The next step is to link actions on nodes or
components to the function specified in the effect.
Kapur and Lamberson (1977) state “The reliabil-
ity of a system is the probability that, when op-
erating under stated environmental conditions,
the system will perform its intended function ad-
equately for a specified interval of time.” This
definition has only the minor distinction from our
effects definition in that rather than the “perform
its intended function adequately” the effect defi-
nition specifies a “the desired extent of the func-
tional capacity.” As a result of this similarity,
much of the wealth of reliability literature and
techniques may be applied to our task. When
aging failures and repair times are greater than
the duration of interest, the reliability problem
may simplify from a dynamics to a static prob-
lem. Similarly, a planner’s estimate of a kill chain
success for military strikes on fixed installations is
usually determined without considering time as-
pects of the attacking forces or the target. The
timing for the needed effect clearly drives when
the target is attacked in the campaign.

When performing this functional analysis,
the planner must identify vulnerable nodes that
support the functional effect. These vulnerable
points may be entire nodes identified in center-
of-gravity analysis or crucial elements of a par-
ticular installation. For example, a command
bunker’s power supply may be critical for its
function to create, distribute, and communicate
commands. For effects that may be achieved
through military strikes, the actions including
both weapons and tactics being considered de-
termine the functional vulnerabilities; hence,
the level of analytical detail required. Clearly,
assessing the impact of a nuclear detonation
against a facility rarely requires subsystem de-
scriptions. The application of conventional ex-
plosives requires detailing the major compo-
nents at a minimum. Assessing a computer

Military Operations Research, V13 N4 2008
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network attack necessitates very detailed sys-
tem analysis. Therefore, while the functional
effect may be the same, different actions may
require varied levels of analysis to determine
the vulnerable objects and their impacts.

We may evaluate the function of a system
based on the component reliabilities. We must
be careful to consistently model the effect as
either the reliability or the unreliability of the
system. Actions against a system have success
rates (which may be referred to as reliabilities)
and affect the adversary’s system component
reliabilities. Friendly military actions, however,
are not part of that adversary system’s normal
construct. In fact, friendly military actions are
often counter to the adversary’s system func-
tioning. For example, an attack with a high
probability of arrival and probability of dam-
age should result in low adversary system
reliability. Modeling in terms of system reli-
ability, R, requires evaluating the failure of
military action to disable the adversary sys-
tem. Conversely, modeling a failure or unre-
liability effect of a system, E, entails evaluat-
ing the success of military action to disable
the system. Both of these approaches may
incorporate the system inherent reliability/
unreliability if it is significant. Let the effect
of the ith component be the complement of its
reliability; E; = 1 — R; = R;. For a system of n
component, in series,

The complementary nature of the reliability
and failure effect may be verified also for sys-
tems that contain combinations of series and
parallel structures. Ross (2000) states that any
system can be represented as a series arrange of
parallel minimal path structures or a parallel
arrangement of serial minimal cuts sets. This
dualism is similar to modeling system reliabil-
ity or mission effectiveness (a failure effect).
Realize that the effects definition may encom-

Military Operations Research, V13 N4 2008

pass functional and behavioral impacts much
broader than system failures.

The DoD Architecture Framework (2004)
lays out a systematic approach for developing
system relationships that may also be applied for
EBO planning. Their framework states “system
functions are executed by automated systems,
while operational activities describe business op-
erations that may be conducted by humans, au-
tomated systems, or both.” Effects, as we define
them, are synonymous with the operational ac-
tivities. The Operational Activity to Systems
Function Traceability Matrix, System View
(SV)-5, describes the necessary relationships. We
contend that the necessary relationships between
potential targeted components and primary func-
tions may be developed through architecture or
reliability techniques.

Admittedly, limited or incomplete intelli-
gence data on an adversary’s systems may be
addressed in this approach in two ways. First,
the node may be characterized as not having a
particular vulnerability due to the uncertainty.
For example, if we know a facility has a pump
but are not certain of its location within a build-
ing, we may assess the pump to have perfect
reliability. Second, we may address the uncer-
tainty through reduced reliability. In the pump
example, if the building size limits our chance
of successfully terminating its functioning, we
may reduce the probability of mission success.

As an example, we applied systems engi-
neering techniques to determine a functional
decomposition to vulnerable objects of a hypo-
thetical underground command and control fa-
cility. The results are shown in Figure 1. Many
systems, potentially even actions that encour-
age specific behaviors and their responses, may
be modeled as construction of series (intersec-
tions) and parallel (unions) of components.

PROBABILITY DISTRIBUTION
FUNCTION (PDF) FOR PROBABILITY
OF EFFECT (PE)

We account for the uncertainty based on
limited intelligence or operational variability
by incorporating the mean and variance of each
step in the action and system component. The
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Figure 1. Functional Diagram of Vulnerable Objectives of a Command and Control Bunker.

variances may be based on testing, a subjective
assessment, or a conservative upper bound.
With this additional information, our approach
provides decision makers with an estimate of
success and an indication of the certainty of
that estimate.

We applied a Bayesian approach to the
component reliabilities, action successes, and
overall PE for three main reasons. First, treating
the estimated PE as a random variable has more
intuitive appeal; decision-makers seem to grasp
the Bayesian direct representation of the uncer-
tainty of the estimate easier than the classical
approach to relate the variation to the fixed, but
unknown, “true” value. Second, the Bayesian
approach readily incorporates subjective as-
sessments. Third, the Bayesian approach incor-
porates the uncertainty of individual values
into the overall reliability.

We model the system functioning in a reli-
ability construct, which consist of series or par-
allel connections to accomplish the function of
the specified effect. Equivalently an unreliabil-
ity effect may be modeled by interchanging the
series (“and”) and the parallel (“or”) constructs
and replacing component reliability distribu-
tions with their complements. We estimate the
distribution parameters from the means and
variances of the individual component reliabili-
ties and their variances. Finally, we demon-
strate the overall distribution provides an ade-
quate model for probability of effect (PE).

We assume the overall system reliability or
effect follows a beta distribution. We selected the
beta distribution for five reasons: 1) the beta is the
distribution of success rate for binomial out-

comes; 2) the beta is the distribution for Bernoulli
outcomes with partial failures; 3) Gallagher and
Whiteman (2004) show theoretically the asymp-
totic product of a series of probabilities follows a
lognormal, but with limited number of terms in
the product, a beta distribution fits better; 4) the
beta distribution is one of the distributions with
no tails that exceed the probability limits of zero
and one; 5) the beta distribution is a conjugate
prior; hence beta distributions beget beta distri-
butions. (See Gallagher, Weir, and True (1997) for
one development.)

We applied our proposed Bayesian approach
to determine a beta distribution for PE, as de-
picted in Figure 2. A narrower probability density
function (PDF) or, equivalently, a steeper cumu-
lative distribution function (CDF) indicates more
certainty in the assessment. In addition, we may
calculate probability intervals for the estimate
based on the statistical distribution. For example,
the symmetric 90% probability interval for the PE
assessment in Figure 2 is (0.78, 0.91). This article
presents and tests our Bayesian approach for de-
veloping a statistical distribution for probability
of effect, either in planning or assessing an action.

A system functioning may be modeled as a
reliability network. Let Y; be defined as either the
reliability, R;, or failure effect (unreliability), E;, of
the ith subsystem or component. We treat Y; as a
random variable in this Bayesian approach.

Gallagher and Whiteman (2004) present the
mean and variance of the intersection of # in-
dependent random variables, NiZ"Y, based on
the individual random variables” means and
variances.
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Figure 2. Example Statistical Distribution of Probability of Effect
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Equations (1) and (2) are appropriate for re-
liabilities of independent components ar-
ranged in series or the complement of failure
effects of independent components arranged
in parallel. Similarly, the mean and variance
of the union of n independent random vari-

ables, _@1 Y;, based on the individual random

variables” means and variances are

Koy~ [1 -[la-v)

i=1 i=1

=1- E[]__[(l —-Y)|,and (3)

i=1
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Equations (3) and (4) model independent com-
ponent reliabilities arranged in a parallel struc-
ture or the complement of independent failure
effects arranged in series.

Complex structures with combinations of
series and parallel arrangements may also be
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assessed. The distribution for each node is de-
termined based on the prior nodes’ distribu-
tions with repeated applications, as appropri-
ate, of (1) and (2) for series relationships and (3)
and (4) for parallel relationships.

If only an estimate Yi is known, with no
basis for determining the associate variance,
Gallagher and Whiteman (2004) suggest assum-
ing that variance is based on the minimum
number of binomial testing in which exactly
one failure or one success occurs. This assump-
tion yields a geometric series and an upper
bound for the variance of

> Y,(l - Yi)Z for Yi =05 5
TviT1Y1-Y) forY,<05" ®)

We approximate the overall reliability with
a beta distribution,

x* H1 — x)P!

0<x<1

=1

flx) = J t (1 — )P dt
=0

0 otherwise

The mean and variance of the beta distribution
are given by

and (6)

) ap
et pat By )

(o

One may view the formulation as either a prob-
ability of reliability or a probability of unreli-
ability, equivalently a failure effect. Since unre-
liability is simply one minus the reliability, the
parameters of the beta distribution simply re-
verse roles. The reliability and unreliability dis-
tributions means are the probabilistic comple-
ments while the distribution variances are
equal.

Algebraic manipulation of the beta’s mean
and variance formulas, given in (6) and (7),
yields parameters for the beta distribution
when mean and variance are known as

a=u[“(10§“)—1],and (8)

/U«(laz ® o 1] ©)

B:(l_M)[

Analysts may determine subjectively the beta
parameters by specifying the mean and setting
the equivalent number of tests equal to the sum
of a and B. We can determine a based on (6)
and then B as the number of tests minus «.
Intelligence uncertainty may be accounted for
by a high variance or modeling some compo-
nent as invulnerable.

DEMONSTRATION

We present some numerical examples to
clarify this approach. Consider a system with
two components operating in series to accom-
plish a function that we desire to affect. The
reliability of the first component is 0.99 and
the reliability of the second component is 0.98
to accomplish their contribution to the sys-
tem’s function. Based on (5), the respective
variances are 0.00010 and 0.000392. From (1)
and (2), we calculate the system reliability
mean as 0.97 and variance as 0.0022. The beta
distribution that matches these moments us-
ing (8) and (9) has parameters o = 1.82 and
B = 59.35. Equivalently, we could model the
failure effect (unreliability) with the comple-
ments of each term. The result is a beta dis-
tribution with parameters o = 59.35 and 8 =
1.82 with a mean of 0.03 and variance of
0.0022. Hence, the unreliability distribution is
the complement of the reliability distribution
in that the beta parameters switch, which re-
sults in the mean equal to the complement of
the system reliability and the same variance.
Thus, the probability of effect is 3% for not
taking any action due to the system’s own
inherent reliability.

Let us consider actions that impact the
function of this system. We modeled probabil-
ity distributions for three components. These
components may represent phases of the kill
chain and components of the targeted system,
but all distributions must consistently represent
either reliabilities of system operation or sys-
tem failures. For conditional series arrange-
ment, we could have a mission with a proba-
bility of arrival, a probability of damage given
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arrival, and unreliability of the target given
damage. The equivalent parallel construct
would have unreliability of mission arrival, un-
reliability of mission strike given arrival, and
target reliability given strike.

We tested this approach with a Monte
Carlo simulation. For each system case, we gen-
erated random variables in two nested loops. In
an outer loop of 2,000 replications, we generate
success rates from the beta distribution for each
component in the combined action and affected
systems. In the inner loop of 2,000 replications,
we generate Bernoulli values for each of the
components and determine whether success is
achieved. We compare the empirical averages
over the inner loop iterations with the theoret-
ical distribution statistics from applying our
approach. We used three tests to compare the
empirical distribution of the 2,000 resulting
means with theoretical parameters based on (1)
through (8), as appropriate. We evaluated the
difference in the modeled and generated means
and variances. Further, we calculated the Kol-
mogorov-Smirnov (KS) and the Anderson-Dar-
ling (AD) goodness-of-fit statistic for the beta
distribution with parameters based on the the-
oretical mean and variance. Law and Kelton
(1991) present 95% critical values for parame-
ters not estimated from the data of 1.358 for an
adjusted KS and 2.492 for AD. For component
distributions, we test a range of beta distribu-
tions with parameters shown in Table 1 and
depicted in Figure 3.

Gallagher and Whiteman (2004) demon-
strated that (1) and (2) represent the mean and
variance of a system in series and that a beta
distributions fits unless significant probabilities
are near either zero or one. Table 2 shows re-
sults for three components combined in paral-
lel. Since the order of components does not
matter, the 20 unique combinations of the four

distribution parameter sets are depicted. The
columns labeled w and ¢? are the theoretical
parameters while the columns “Mean” and
“Variance” are the empirical statistics. The av-
erage and maximum absolute differences in
mean values are 0.002 and 0.004, respectively,
and corresponding variances differences are
zero to three decimals and 0.002. Hence, this
methodology accurately represents the first two
moments.

The shaded KS and AD statistics are greater
than the 95% critical value. The beta distribu-
tion fails to reject only 50% and 44%. The over-
all system has a mean very close to one so often
the simulation of 2,000 replications has no fail-
ures. Since the beta distribution must have zero
probability at both zero and one, it has diffi-
culty fitting some of the distributions that have
significant likelihood at these limits. The corre-
lation between the theoretical mean and the KS
and AD statistics of 50% and 47%, respectfully,
is evidence of this modeling challenge. As the
mean approaches either limit, the beta distribu-
tion fit is less adequate. In Table 2, the good-
ness-of-fit statistics often exceed the critical
value when the theoretical mean is greater than
0.87. Since KS equally weighs each data point,
whereas the AD heavily weighs data at the
limits, the AD consistently has lower non-rejec-
tion rates for these trials.

While (1) through (4) combine either paral-
lel or series independent components, these
equations may be applied repeatedly to evalu-
ate systems with combinations of series and
parallel structures. Starting from the initial
components, the inputs to each component are
combined using the appropriate equations until
the overall system parameters are determined.
If desired, the corresponding beta distribution
may be determined with (5) and (8).

Table 1. Beta Parameters and Statistics for Tested Distributions

FORM ALPHA BETA MEAN VARIANCE
Uniform 1 1 0.5 0.083
Symmetric Mode 3 3 0.5 0.036
Left Skewed 5 2 0.714 0.026
Right Skewed 2 5 0.286 0.026

Military Operations Research, V13 N4 2008
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Figure 3. Tested Component Beta Distributions

Table 2. Results for System with 3 Parallel Components

Comp 1 Comp 2 Comp 3 s Mean o Var KS AD
Left Skew Left Skew Left Skew 0.977 0.977 0.001 0.001 3.122 15.245
Left Skew Left Skew Uniform 0.959 0.959 0.002 0.002 1.497 3.200
Left Skew Left Skew Symmetric 0.959 0.958 0.002 0.002 2.241 6.595
Left Skew Left Skew Right Skew 0.942 0.942 0.003 0.003 1.050 1.668
Uniform Uniform Left Skew 0.929 0.928 0.007 0.007 1.698 4.153
Uniform Symmetric Left Skew 0.929 0.930 0.005 0.005 1.447 3.509
Symmetric Symmetric Left Skew 0.929 0.928 0.004 0.004 1.581 4.743
Uniform Left Skew Right Skew 0.898 0.898 0.009 0.009 1.017 1.645
Symmetric Left Skew Right Skew 0.898 0.894 0.006 0.006 1.175 3.037
Uniform Uniform Uniform 0.875 0.877 0.021 0.020 2.051 8.307
Uniform Uniform Symmetric 0.875 0.871 0.016 0.018 0.981 1.497
Uniform Symmetric Symmetric 0.875 0.874 0.012 0.012 0.761 0.628
Symmetric Symmetric Symmetric 0.875 0.874 0.008 0.008 0.807 1.162
Left Skew Right Skew Right Skew 0.854 0.852 0.009 0.010 0.916 1.210
Uniform Uniform Right Skew 0.821 0.825 0.028 0.027 1.240 1.283
Uniform Symmetric Right Skew 0.821 0.821 0.019 0.019 0.787 0.907
Symmetric Symmetric Right Skew 0.821 0.821 0.012 0.012 0.630 0.359
Uniform Right Skew Right Skew 0.745 0.749 0.031 0.030 1.386 3.935
Right Skew Right Skew Symmetric 0.745 0.746 0.017 0.017 0.924 0.717
Right Skew Right Skew Right Skew 0.636 0.639 0.021 0.021 0.971 1.131
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Table 3 presents the results for a three-
component system. The first two components,
R; and R,, are in parallel followed by a third
component, R;, in series. The reliability func-
tion is R = (1 — (1 — R)(1 — R,))R;. We
determined the parameters for the combination
of R, and R, with (3) and (4). Then, we apply (1)
and (2) to obtain the series parameters of R;
with the combined results of R;/R,. Again, we
see the method determines the mean and vari-

ance with great accuracy. For these samples, the
average errors are extremely small; the maxi-
mum absolute difference in means is 0.009 and
in variance is only 0.002. The goodness-of-fit
test statistics for the beta distribution surpassed
the 95% critical values with overall non-rejec-
tion rates of 87.5% for KS and 82.5% for AD. In
these applications, the theoretical means, which
range from 0.14 to 0.66, are not near zero or one
and the beta distribution fits very well.
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Table 3. Results for Three Components (Two in Parallel Followed by One in Series)

Comp 1 Comp 2 Comp 3 n Mean o Var KS AD
Left Skew Left Skew Left Skew 0.656 0.653 0.024 0.024 0.784 0.571
Left Skew Symmetric Left Skew 0.612 0.606 0.024 0.025 0.888 1.489
Left Skew Uniform Left Skew 0.612 0.616 0.027 0.029 1.511 2.455
Left Skew Right Skew Left Skew 0.569 0.564 0.025 0.024 1.227 1.415
Symmetric Symmetric Left Skew 0.536 0.541 0.025 0.026 1.674 2.860
Symmetric Uniform Left Skew 0.536 0.533 0.032 0.032 0.721 0.647
Uniform Uniform Left Skew 0.536 0.527 0.040 0.040 1.034 2.114
Right Skew Symmetric Left Skew 0.459 0.460 0.024 0.025 0.634 0.574
Left Skew Left Skew Symmetric 0.459 0.459 0.031 0.031 0.765 0.407
Right Skew Uniform Left Skew 0.459 0.454 0.038 0.037 1.003 1.167
Left Skew Left Skew Uniform 0.459 0.464 0.072 0.072 1.289 2.287
Left Skew Symmetric Symmetric 0.429 0.434 0.029 0.029 0.971 1.176
Left Skew Uniform Symmetric 0.429 0.427 0.031 0.030 0.735 0.365
Left Skew Symmetric Uniform 0.429 0.428 0.065 0.065 0.989 3.111
Left Skew Uniform Uniform 0.429 0.426 0.066 0.067 0.805 1.539
Left Skew Right Skew Symmetric 0.398 0.407 0.027 0.027 1.186 3.253
Left Skew Right Skew Uniform 0.398 0.406 0.058 0.056 1.697 6.118
Symmetric Symmetric Symmetric 0.375 0.376 0.026 0.025 0.589 0.438
Symmetric Uniform Symmetric 0.375 0.375 0.029 0.030 0.710 0.694
Uniform Uniform Symmetric 0.375 0.375 0.034 0.034 0.706 0.583
Symmetric Symmetric Uniform 0.375 0.377 0.053 0.054 1.224 3.025
Symmetric Uniform Uniform 0.375 0.382 0.058 0.058 1.335 2.076
Uniform Uniform Uniform 0.375 0.383 0.063 0.063 1.101 1.458
Right Skew Right Skew Left Skew 0.350 0.353 0.020 0.021 0.833 0.739
Right Skew Symmetric Symmetric 0.321 0.321 0.022 0.023 0.697 0.471
Right Skew Uniform Symmetric 0.321 0.322 0.029 0.029 0.756 0.802
Right Skew Symmetric Uniform 0.321 0.323 0.043 0.042 1.144 2.338
Right Skew Uniform Uniform 0.321 0.320 0.051 0.050 0.590 0.529
Left Skew Left Skew Right Skew 0.262 0.263 0.022 0.022 0.578 0.262
Right Skew Right Skew Symmetric 0.245 0.245 0.016 0.015 0.686 0.790
Right Skew Symmetric Right Skew 0.245 0.245 0.020 0.020 1.088 0.726
Right Skew Uniform Right Skew 0.245 0.242 0.020 0.020 1.512 2.047
Right Skew Right Skew Uniform 0.245 0.246 0.029 0.028 1.120 2.771
Left Skew Right Skew Right Skew 0.227 0.229 0.018 0.019 0.643 0.413
Symmetric Symmetric Right Skew 0.214 0.212 0.016 0.015 0.877 1.421
Symmetric Uniform Right Skew 0.214 0.214 0.018 0.018 1.001 0.913
Uniform Uniform Right Skew 0.214 0.220 0.020 0.021 1.145 1.646
Right Skew Symmetric Right Skew 0.184 0.190 0.013 0.014 1.273 2.425
Right Skew Uniform Right Skew 0.184 0.180 0.016 0.016 1.412 2.569
Right Skew Right Skew Right Skew 0.140 0.144 0.009 0.009 1.199 1.901

Table 4 presents results from another
three-component system. In this case, compo-
nents 1 and 2 are combined in series. The
composite R;/R, is combined with R; in par-
allel. The reliability functionis R = (1 — (1 —
R{R,)(1 = Rj3). The errors between the empir-
ical and theoretical moments are always very
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small. These samples are below the 95% crit-
ical values at a rate of 77.5% for the KS test
and 65.0% for the AD test. We tracked the
number of times that the each case generated
a sample of all pass or all failures. Although
rare, these counts have correlation coeffi-
cients of 43% with KS and 99% with AD.
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Table 4. Results for Three Components (Parallel of Two in Series and One)

Comp 1 Comp 2 Comp 3 n Mean o Var KS AD
Right Skew Right Skew Right Skew 0.344 0.347 0.024 0.024 1.061 1.143
Right Skew Symmetric Right Skew 0.388 0.386 0.024 0.024 0.588 0.308
Right Skew Uniform Right Skew 0.388 0.388 0.027 0.027 0.593 0.222
Right Skew Left Skew Right Skew 0.431 0.436 0.025 0.024 1.263 1.698
Symmetric Symmetric Right Skew 0.464 0.466 0.025 0.023 1.020 1.843
Symmetric Uniform Right Skew 0.464 0.461 0.032 0.031 0.782 0.810
Uniform Uniform Right Skew 0.464 0.469 0.040 0.040 0.766 1.055
Left Skew Symmetric Right Skew 0.541 0.540 0.024 0.023 0.542 0.427
Right Skew Right Skew Symmetric 0.541 0.540 0.031 0.030 0.648 0.593
Left Skew Uniform Right Skew 0.541 0.534 0.038 0.036 1.328 2.178
Right Skew Right Skew Uniform 0.541 0.534 0.072 0.071 1.013 32.461
Right Skew Symmetric Symmetric 0.571 0.574 0.029 0.028 0.834 1.045
Right Skew Uniform Symmetric 0.571 0.570 0.031 0.031 0.913 0.598
Right Skew Symmetric Uniform 0.571 0.574 0.065 0.066 1.094 3.767
Right Skew Uniform Uniform 0.571 0.579 0.066 0.068 1.480 17.889
Right Skew Left Skew Symmetric 0.602 0.601 0.027 0.026 0.923 0.804
Right Skew Left Skew Uniform 0.602 0.600 0.058 0.059 1.372 33.694
Symmetric Symmetric Symmetric 0.625 0.624 0.026 0.026 0.711 0.465
Symmetric Uniform Symmetric 0.625 0.629 0.029 0.029 1.076 1.442
Uniform Uniform Symmetric 0.625 0.627 0.034 0.033 0.670 0.713
Symmetric Symmetric Uniform 0.625 0.621 0.053 0.052 1.750 35.440
Symmetric Uniform Uniform 0.625 0.620 0.058 0.058 1.058 46.570
Uniform Uniform Uniform 0.625 0.629 0.063 0.065 1.288 46.892
Left Skew Left Skew Right Skew 0.650 0.653 0.020 0.021 1.050 0.867
Left Skew Symmetric Symmetric 0.679 0.681 0.022 0.023 1.012 0911
Left Skew Uniform Symmetric 0.679 0.676 0.029 0.031 0.587 0.612
Left Skew Symmetric Uniform 0.679 0.674 0.043 0.044 1.822 37.303
Left Skew Uniform Uniform 0.679 0.679 0.051 0.051 0.419 45.705
Right Skew Right Skew Left Skew 0.738 0.740 0.022 0.022 0.819 0.825
Left Skew Left Skew Symmetric 0.755 0.750 0.016 0.017 1.291 2.186
Right Skew Symmetric Left Skew 0.755 0.759 0.020 0.019 0.737 0.908
Right Skew Uniform Left Skew 0.755 0.758 0.020 0.020 0.939 15.998
Left Skew Left Skew Uniform 0.755 0.760 0.029 0.029 1.556 49.838
Right Skew Left Skew Left Skew 0.773 0.772 0.018 0.019 0.992 0.940
Symmetric Symmetric Left Skew 0.786 0.789 0.016 0.016 0.962 1.003
Symmetric Uniform Left Skew 0.786 0.786 0.018 0.019 1.100 1.247
Uniform Uniform Left Skew 0.786 0.783 0.020 0.021 0.594 0.503
Left Skew Symmetric Left Skew 0.816 0.816 0.013 0.014 0.393 0.224
Left Skew Uniform Left Skew 0.816 0.815 0.016 0.016 1.104 1.953
Left Skew Left Skew Left Skew 0.860 0.859 0.009 0.009 0.709 0.842

Again, significant probabilities at the distri-
bution limits of zero and one cannot be mod-
eled well with the beta distribution.

We mentioned earlier, a reliability struc-
ture can be related to an equivalent failure
effect (unreliability) construct where the ef-
fect, E = 1 —R. For a failure-effect construct,
all the components in parallel reliability

structures must fail, so parallel reliability
structures relate to failure-effect (unreliabil-
ity) series. Similarly, any component in a re-
liability series failing equates to a failure ef-
fect so reliability series relate to failure-effect
parallel structures. In addition, the comple-
ment for each component distribution ap-
plies. For example, the system used in Table
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3, viewed as a reliability system, directly re-
lates to the system in Table 4, viewed as a
failure effect.

R=(1-@1-R)Qa - Ry))R;
=(1-EE)1 - E;)
=1-E

The cases arranged by theoretical means, in-
creasing in Table 3 and decreasing in Table 4. In
each corresponding case, the distributions are
the complement (right skew versus left
skewed), the means are the complements, and
the variances of the reliability/effect are the
same. Undem (2000) describes how we gain a
great deal of insight when we examine our task
based on either reliability or effect (survivabil-
ity and targeting in his vernacular).

So far we have assumed independent com-
ponents. In actuality, we may encounter situa-
tions in which a single action affects more than
one component. Ross (2000) shows that the ac-
tual reliability may be calculated by adjusting
for the correlation coefficients of all combina-
tions (pairwise, three-wise, etc.) of component
reliabilities. We can bound the correlated prob-
ability, one bound is the independent case, as
developed in this article, and the other bound is
perfectly correlated case where the construct is
modified so that correlated components are re-
placed with one composite component.

SUMMARY

We define effect so that the outcomes map to
a sample space and probability theory may be
applied. This enables accounting for uncertainty
while considering potential actions or evaluating
results based on limited observables. We develop
a statistical distribution for the probability of ef-
fect for systems functioning or behavior that can
be described as a combination of series and par-
allel constructs. The overall estimate’s mean and
variance may be estimated from the individual
factors” means and variances under the assump-
tion of independence. A conservative variance
estimate, depicting the most possible uncertainty,
may be obtained from individual means. We
demonstrate that our approach matches the over-
all mean and variance of the series, parallel, or

Military Operations Research, V13 N4 2008

combined systems. Except when the mean ap-
proaches the limits of zero or one, the beta distri-
bution is very reasonable distribution of the un-
certainty in the overall outcome.

Disclaimer

The views expressed in this article are those
of the authors and do not reflect the official
policy or position of the United States Air
Force, Department of Defense, or the US Gov-
ernment.
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ABSTRACT

yperspectral anomaly detection is a
Huseful means for using hyperspec-

tral imagery to locate unusual ob-
jects. Current anomaly detection methods
commonly use non-robust statistical meth-
ods that may lead to inaccurate detection
results. This research explores the use of
different multivariate outlier detection
methods for the anomaly detection prob-
lem. Theoretically, these methods are better
suited than existing anomaly detection
methods for finding anomalous objects in a
hyperspectral image. This hypothesis is
tested by applying a range of outlier detec-
tion methods to both simulated and real-
world image data. Test results indicate that
multivariate outlier detection can achieve
superior detector performance relative to
benchmark anomaly detection methods.

INTRODUCTION

Hyperspectral imaging of the Earth’s
surface provides a unique means for iden-
tifying objects of interest. Specifically, the
unique spectral signatures of the materials
in an image can be measured and com-
pared to reference signatures to positively
identify an object. If reference signatures
are not available, hyperspectral image data
can still be used to locate objects that are
anomalous to the predominant background
materials contained in the image.

The basic hyperspectral anomaly detec-
tion problem is an exercise in detecting out-
liers in a multivariate dataset. Though nu-
merous methods have been proposed in the
technical literature to detect multivariate
outliers, there is surprisingly little evidence
that these methods have been used for hy-
perspectral anomaly detection. Rather, the
majority of anomaly detection methods
found in the literature rely on non-robust
statistical methods known to be unreliable
in the presence of outlying observations.
Use of such methods that do not accommo-
date the effects of outliers can lead to the
undesirable effects of masking and swamp-
ing. Masking refers to the phenomenon of
strong outliers skewing statistical estimates
to the degree that weaker outliers do not
appear abnormal. Swamping, on the other
hand, refers to the case in which outliers
distort statistical estimates in such a way
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that otherwise normal observations appear
to be outlying. If the goal of an analysis is to
correctly identify anomalies, we can say
that masking leads to a decrease in true
positives and swamping leads to an in-
crease in false positives. In almost all appli-
cations, either one of these conditions is to
be avoided.

The focus of this research effort is to
study the ability of different multivariate
outlier detection methods to find hyper-
spectral anomalies while minimizing the
masking and swamping effects. To this
end, we have selected four outlier detection
methods from the literature and adapted
them for use as hyperspectral anomaly de-
tectors. These detectors are tested against
both simulated hyperspectral data and real-
world imagery, and their performance is
compared to that of benchmark anomaly
detection methods from the literature.

In the remainder of this paper, we first
provide background information on basic
hyperspectral concepts and related anom-
aly and multivariate outlier detection liter-
ature. We then give an overview of the
outlier detection algorithms we evaluated,
followed by a summary of the simulated
and real-world performance tests. The pa-
per concludes with significant insights
gained from these tests, as well as recom-
mendations for further research.

BASIC HYPERSPECTRAL
CONCEPTS

To gain a basic understanding of hy-
perspectral imagery, we can begin with a
discussion of the common digital camera
that has become ubiquitous in modern so-
ciety. Conceptually, when we use a digital
camera to take a color photograph, the
camera divides the imaged scene into a
two-dimensional grid of pixels. For each
pixel, three pieces of information are col-
lected. Namely, the amount of energy em-
anating from the pixel in the red, green,
and blue portions of the electro-magnetic
(EM) spectrum. This information is stored
in three separate two-dimensional arrays.
For any given pixel, combining its respec-
tive red, green, and blue information pro-
duces the true color of the pixel. Of course,
viewing the array of colored pixels on a
computer screen or in its printed form re-
veals the scene originally photographed.
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If we image a scene for the purpose of
identifying different objects that it may contain,
a simple color image produced by a digital
camera may suffice; however, a true-color im-
age has its limitations. To address these limita-
tions, hyperspectral sensors collect information
beyond the visible region of the electro-mag-
netic spectrum. Just as a digital camera pro-
duces three images for wavelength bands cor-
responding to red, green, and blue light, a
hyperspectral sensor produces images for
many different contiguous wavelength bands,
typically spanning the visible to near-infrared
regions of the EM spectrum. The number of
image bands collected by a sensor can range
from twenty to over 500. When the separate
two-dimensional image bands are “stacked” on
top of each other, the resulting three-dimen-
sional array is referred to as the image cube. A
notional schematic of this imaging concept is
shown in Figure 1.

From Figure 1 we can see that there is a
pixel in each image band that corresponds to
the same spatial location of the scene. For ex-
ample, the pixel in row m, column n of band 1
refers to the same spatial location of the scene
as the pixels in row m, column 7 of every other
band in the image cube. The sensor reading for

a pixel in row m, column 71, and band A, can be
referred to by the variable x,,,,. For a given
pixel address (m, 1), we can form the vector:

Xmn1
X
()

Xunp

where P is the total number of image bands in
the image cube. This vector is often referred to
as a pixel vector. If we take the transpose of all
the pixel vectors in the image and place them in
a MNxP array, where M is the total number of
rows and N the total number of columns, we
then have a data matrix, X, that is commonly
used in multivariate statistical analysis. Using
X, we are free to analyze the image data using
multivariate analysis methods such as principal
component analysis, cluster analysis, maxi-
mum likelihood classification, discriminant
analysis, and others.

As shown in Figure 1, we can also plot the
elements of a pixel vector against their respec-
tive image band numbers. Such a plot reveals
the spectral signature of the material contained
in pixel (m, n). Due to the chemical and physical
properties of different materials, these spectral

Figure 1. The basic hyperspectral imaging process and data representation.
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signatures can be used to identify the materials
in an image scene. Thus, if we have reference
library signatures for known materials, it is
possible to compare pixel signatures to library
signatures to locate and identify objects of in-
terest. Unfortunately, there are several compli-
cating factors that make this signature match-
ing strategy difficult to execute. First and
foremost, library signatures typically describe
the manner in which a material reflects a
known energy source, whereas a hyperspectral
sensor detects the amount of energy radiating
from a pixel’s spatial location. The process of
converting a radiance signature to a reflectance
signature, or vice a versa, is a complicated pro-
cess that requires knowledge of the atmo-
spheric conditions, sun angle, sensor location,
object orientation, and other parameter values
that existed at the time the hyperspectral image
was acquired. Additional obstacles to success-
ful signature matching include material weath-
ering, objects that are smaller than a pixel’s
spatial dimension, the inherent variability of an
object’s spectral signature, sensor noise, and
other inaccuracies imposed by the image acqui-
sition process.

As an alternative to signature matching, the
data matrix, X, can also be searched for pixel
vectors that are anomalous relative to the ma-
jority of the pixel vectors contained in the im-
age cube. In the lexicon of hyperspectral anal-
ysis, this process is referred to as anomaly
detection. The advantage of anomaly detection
relative to signature matching is that the sensor
data can be analyzed without concern for radi-
ance-reflectance conversion. The disadvantage,
however, is that anomalous pixel vectors may
not actually be objects of interest and must be
further analyzed to determine their true iden-
tity. Nonetheless, anomaly detection provides a
feasible means for locating potential objects of
interest when little is known about an object’s
spectral signature or the conditions under
which an image was acquired. To make an
anomaly detection analysis most valuable, the
number of false alarms should be kept to a
minimum since each anomalous pixel vector
must be further analyzed—either visually or by
another sensor—to confirm its status as an ob-
ject of interest.
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The preceding discussion has provided an
admittedly brief overview of basic hyperspec-
tral concepts. The intent of this overview is to
provide the proper context for the remainder of
this paper. For a more detailed discussion of
hyperspectral imagery and its applications, the
reader is referred to the article by Landgrebe
(2002), as well as the texts by Landgrebe (2003),
Chang (2003), and Richards and Jia (1999).

RELATED LITERATURE

There are two primary bodies of literature
upon which this present research effort is built:
hyperspectral anomaly detection and multivar-
iate outlier detection. In the following para-
graphs, these research areas are summarized in
order to provide vectors for more in-depth
study of these fields. For more detailed discus-
sions on anomaly detection, the reader is re-
ferred to the review provided by Stein et al.
(2002), while the text by Barnett and Lewis
(1994), or the survey provided by Beckman and
Cook (1983), serve as good entry points to the
study of outlier detection. A more detailed sur-
vey of the anomaly detection and multivariate
outlier detection literature can also be found in
Smetek and Bauer (2007).

Anomaly Detection Literature

Anomaly detection methods can be catego-
rized under two general strategies: local detec-
tion, and global detection. Local anomaly de-
tectors are characterized by the wuse of
processing windows that are passed over every
pixel in an image to find anomalies. In general,
the pixel vectors contained in the processing
window are used to characterize the local back-
ground materials. The pixel vector in the center
of the window is then tested relative to this
background to determine if it is an anomaly.
The original detection method that fostered the
local window scheme is the RX detector pro-
posed by Reed and Yu (1990). For the RX de-
tector, assuming Gaussian data, the test statistic
computed for each pixel vector, x, relative to its
local processing window is given by:
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RX(x) = (x— @'

N 1 ) o -1 )
N+15+N+1(X_M)(X_M) (x— )
(2)

where,

Qo the window mean vector,

S = the window covariance matrix, and
N = the number of pixel vectors in the
processing window.

Asymptotically, as N becomes large, (2) re-
duces to the following:

RX(x) = (x = p)TS7(x — ) ©)

which is simply the Mahalanobis Squared Dis-
tance (MSD) for x relative to the mean vector
and covariance matrix of the processing win-
dow. Again using the Gaussian assumption, (3)
can be compared to an appropriate quantile of
the x*-distribution with p degrees of freedom—
where p is the dimensionality of the data—to
assess if x is an anomalous pixel vector.
Several limitations are known to exist with
the RX detector. Specifically, the algorithm has
difficulty locating large anomalies, its perfor-
mance degrades with the signal-to-noise ratio of
the sensor, and the Gaussian assumption for the
processing window data is not always accurate.
RX-based detectors that attempt to correct these
limitations include those proposed by Chang and
Chiang (2001), Hsueh and Chang (2004), Riley et
al. (2004), Kwon and Nasrabadi (2005), and Gau-
cel et al. (2005). Of particular interest are modifi-
cations proposed by Schaum (2004), West et al.
(2005), and Schaum (2006). These methods at-
tempt to account for heterogeneous materials in
the processing window that may produce inaccu-
rate background mean and covariance estimates.
In addition to these RX modifications, several
local detectors have been proposed that dispense
with the metric in (3) while retaining the process-
ing window strategy. These methods include
multiple—window detectors given by Kwon et
al. (2003), Liu and Chang (2004), Rosario (2004),
and Goovaerts et al. (2004). Local detectors have
also been proposed that attempt to use Markov
Random Fields (MRFs) to capture contextual in-
formation provided by a pixel’s surrounding

neighbors. Examples of these MRF detectors can
be found in Schweizer and Moura (2000),
Schweizer and Moura (2001), and Hazel (2000).

Where local anomaly detectors attempt to
classify a pixel based on local window statistics,
global detectors strive to find pixels that are
anomalous relative to the entire image scene.
By using this philosophy, global detectors are
theoretically better-suited to find large anoma-
lies and avoid false alarms resulting from scene
clutter. In general, global detectors can be di-
vided into two groups: mixture model methods
and distribution-based methods.

In the case of mixture model detectors, the
fundamental assumption is the existence of M
distinct background material spectra—referred to
as endmember spectra—with characteristic signa-
tures given by the vectors, s, m =1, ..., M. Thus,
each pixel vector, x, in the image can be repre-
sented as a linear combination of the M endmem-
ber spectra plus an additive noise vector, n:

M
X = Eamsm +n. (4)

m=1

where the «,, are referred to as the abundance
fractions since they relate the relative abundance
of each endmember material contained in the
pixel. The endmember vectors may be actual sig-
natures found in the image, or may be derived in
such a way that they span the subspace defined
by the image. Once the endmembers are found,
anomalies are detected by finding the pixels that
produce the greatest residuals when fit by (4).
Alternatively, endmembers that represent inter-
esting signatures are identified from the M end-
members, and those image pixels that are most
similar to the some interesting object’s endmem-
bers are identified as anomalies. Implementations
of mixture model anomaly detectors are given by
Grossman et al. (1998), Stein et al. (2002), and
Clare et al. (2003).

The fundamental challenges of global mix-
ture model anomaly detectors are determining
the appropriate number of endmembers and ac-
tually selecting the endmember spectra them-
selves. To avoid these issues, the distribution-
based view of global anomaly detection can be
adopted. The basic premise of these methods is
that each of the background materials in an image
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can be represented by a multivariate distribution.
Detecting anomalies under this assumption en-
tails estimating the distributions contained in the
image and determining the likelihood that each
pixel in the image comes from one of the distri-
butions. Pixels with low likelihood relative to all
distributions are considered anomalies. The pri-
mary characteristics that differentiates distribu-
tion-based detectors is the method used to deter-
mine the constituent distributions of an image
scene and the form of the distributions. Schaum
and Stocker (1997) and Stein et al. (2002) outline a
detector that assumes the component distribu-
tions are Gaussian and uses stochastic expecta-
tion-maximization to estimate the distribution pa-
rameters. The method proposed by Carlotto
(2005) also assumes a mixture of Gaussian distri-
butions, but uses k-means clustering to identify
the sample of pixels for each distribution. In a
similar manner, Catterall (2004) uses k-means to
determine which pixel vectors belong to which
distributions, but assumes Multivariate Normal
Inverse Gaussian (MNIG) distributions when es-
timating the parameters. In order to avoid the
issue of density estimation altogether, Chiang et
al. (2001) and Achard et al. (2004) use projection
purstuit to find univariate projections of the image
data to locate pixel vectors that induce the most
skewness or kurtosis in the projected data.

To conclude this discussion on existing
anomaly detection methods, it is significant to
note the apparent absence in the existing liter-
ature of attempts to use multivariate outlier
detection to find hyperspectral anomalies. This
is an interesting omission considering that hy-
perspectral anomalies could be considered
nothing more than outlying observations in a
multivariate data set. With this idea in mind,
we now focus attention on the significant meth-
ods that have been proposed in the multivariate
outlier detection literature.

Multivariate Outlier Detection
Literature

Detecting unusual, or outlying, observa-
tions has been a subject of interest for hundreds
of years. However, due to the computational
challenges posed by multivariate data, multi-
variate outlier detection first received serious
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attention in the early 1970s with the survey
conducted by Gnanadesikan and Kettenring
(1972). Since that time, a number of outlier de-
tection algorithms have been proposed in the
pursuit of several ideal characteristics: 1) the
detector should have a high breakdown point,
defined as the percent of the dataset that can be
outlying while still allowing the algorithm to
detect the outliers; 2) the detector should be
computationally efficient with large datasets in
high dimension; and 3) the detector should be
affine equivariant so that detection results do
not change due to translations, rotations, or
scaling of the data. Needless to say, these goals
are somewhat lofty, and no single method has
succeeded in satisfying the complete set.

In order to digest the range of multivariate
outlier detection methods that have been pro-
posed, we categorize them into two groups: ro-
bust distance methods, and non-traditional meth-
ods. Robust distance methods—by far the most
popular of the two detection strategies—attempt
to assess if an observation is outlying using the
MSD in a similar manner to the RX detector men-
tioned previously; however, rather than using the
classical mean and covariance estimate for the
data when computing the distance, robust esti-
mates are used instead. For the case of non-tradi-
tional methods, alternative characteristics of out-
lying observations, besides large MSDs, are
exploited to reveal the outliers. Existing methods
that fall in these two categories are summarized
in the following paragraphs.

The majority of robust distance detectors
found in the literature use some variant of the
Minimum Volume Ellipsoid (MVE) or Mini-
mum Covariance Determinant (MCD) estima-
tors proposed by Rousseeuw (1983) to obtain
robust mean and covariance estimates. The
MVE estimation method involves finding the
ellipsoid of minimum volume that encom-
passes at least h = [(n + p + 1)/2] of the
observations, where n is the sample size, p is
the dimension of the data, and & is often re-
ferred to as the “half-sample.” The mean vector
is taken to be the center of the ellipsoid and the
covariance estimate defines the ellipsoid. MCD
estimation—which has better convergence and
efficiency characteristics than the MVE estima-
tor—consists of finding the subset of /i obser-
vations whose covariance matrix has the mini-
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mum determinant. The MCD mean estimate is
then the centroid of the half-sample and the
covariance estimate is the covariance of the
half-sample, scaled for consistency. The MVE
and MCD estimates are attractive for robust-dis-
tance outlier detection because they have break-
down points near 50% and are affine equivariant.
However, finding these estimates entails solving
combinatorial optimization problems whose ap-
proximate solutions are generally found using
heuristic search. Robust distance detectors that
use approximate MVE estimates are proposed
by Rousseeuw and Leroy (1987), Rousseeuw
and van Zomeren (1990), Hadi (1992), Hadi
(1994), and Atkinson (1994). MCD-based detec-
tors include the Feasible Solution Algorithm of
Hawkins (1994), the compound method of
Rocke and Woodruff (1996), the FAST-MCD
method of Rousseeuw and van Driessen (1999),
an iterative deletion method proposed by Vil-
joen and Venter (2002), and a robust clustering
method given by Hardin and Rocke (2004). This
last method is somewhat interesting in that it is
apparently the only multivariate outlier detec-
tion method that assumes the majority of the
dataset is composed of observations from mul-
tiple “good” populations vice a single popula-
tion. By “good” we mean that observations
from the population can be expected in the
dataset and should not be considered outlying.

A significant limitation of MVE and MCD-
based methods is the computational complexity
of even approximate solution methods. To over-
come this weakness, several attempts have been
made to develop robust distance methods that
are computationally fast at the expense of being
less theoretically formal than MVE and MCD
methods. These detectors include the Smallest
Half-Volume and Resampling by Half-Means
methods of Egan and Morgan (1998), the Blocked
Adaptive Computationally efficient Outlier
Nominator (BACON) detector of Billor et al
(2000), and the Closest Distance to Center method
of Chiang et al. (2003).

An alternative approach to robust distance
detection is to apply weights to the observa-
tions to obtain robust mean and covariance es-
timates, with more weight given to observa-
tions near the center of the data. Examples of
this detection approach include an M-estima-
tion method proposed by Campbell (1980), and

the Stahel-Donoho Estimator method devel-
oped by Maronna and Yohai (1995). These
methods are theoretically interesting, but are
difficult to implement due to the nonlinear op-
timization problems that must be solved to ob-
tain their respective robust estimates.

Turning our attention to non-traditional out-
lier detection methods, these types of detectors
attempt to exploit some alternative characteristic
of outlying observations in their detection scheme
besides large Mahalanobis distances. Several
methods based on principal component analysis
are given by Gnanadesikan and Kettenring
(1972), Chiang et al. (2003), and Gao et al. (2005).
Kim (2000) gives a decomposition of the Mahal-
anobis distance and uses it to generate scatter
plots that can be informally analyzed to reveal
outliers. Pan et al. (2000) use projection pursuit to
analyze the data in higher-dimensional space,
while Juan and Prieto (2001) study the distribu-
tion of the data projected on the unit hypersphere
to detect concentrations of outlying observations.

To conclude this discussion on multivariate
outlier detection research, two points should be
noted. First, virtually all the methods discussed
in the previous paragraphs assume Gaussian or
elliptically distributed data. The primary rea-
sons for this assumption is to validate statistical
tests of significance used for formal outlier de-
tection, and to ensure the data has an elliptical
structure that lends itself to a particular type of
analysis. Second, as mentioned previously, all
the methods found in the literature, with the
exception of Hardin and Rocke’s clustering
method, assume the data comes from a single
population contaminated by outliers from other
populations. If a dataset is known to contain
observations from multiple “good” popula-
tions, applying single population detection
methods is not appropriate. To apply multivar-
iate outlier detection methods to hyperspectral
data, these issues must be considered.

ALGORITHM OVERVIEW

In the preceding sections we have attempted
to introduce the basic concepts of hyperspectral
imagery, as well as the existing literature pertain-
ing to hyperspectral anomaly detection and mul-
tivariate outlier detection. We now return to the

Military Operations Research, V13 N4 2008



A COMPARISON OF MULTIVARIATE OUTLIER DETECTION METHODS

purpose of this research which is to compare the
effectiveness of different outlier detection meth-
ods in finding hyperspectral anomalies. In this
section, we outline the four outlier detection
methods used in our assessment. These detectors
include the FAST-MCD method of Rousseeuw
and van Driessen (1999), the BACON method of
Billor et al. (2000), the non-traditional method
proposed by Juan and Prieto (2001), and a mod-
ification of the Stahel-Donoho Estimator (SDE)
method of Maronna and Yohai (1995). These
methods were selected as potential anomaly de-
tectors for two reasons. First, they collectively
represent the different types of multivariate out-
lier detectors discussed earlier. Second, these
methods appear best able to accommodate ex-
tremely large hyperspectral datasets that typi-
cally contain tens of thousands of observations in
high-dimensional space.

Each algorithm is outlined in the following
paragraphs. It should be noted, however, that
the algorithms are only described in enough
detail to convey their respective solution strat-
egies. The reader interested in implementing
these methods should consult the original arti-
cles for the necessary details.

The FAST-MCD Detector

The primary objective of the FAST-MCD
detector is to rapidly search for a solution to the
following non-linear optimization problem:

min det (S)

Zti(xf - Etjxj/ Zt/)(xi - Etjxj/ Etj)T

i=1 j=1 j=1 j=1 j=1

= det

n

k-1

(5)

s.t.

" o [m+p+1)
o= [

t,e{0,1}Vi=1,. ..n.
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where x; is an observation vector, # is the total
number of observations in the dataset, det(®) is
the determinant operator, and (¢) is the trans-
pose operator. The search is conducted by first
selecting a user-specified number of random
subsets of size h from the original dataset. For
each subset, a C-step procedure is performed
consisting of the following: 1) the Mahalanobis
squared distances are computed for all obser-
vations in the dataset using the mean vector
and covariance matrix of the subset data; 2) the
distances are sorted; and 3) the / observations
from the original dataset with smallest squared
distances are used to form a new subset. Rous-
seeuw and van Driessen (1999) prove that re-
peated applications of the C-step procedure to a
dataset will produce a new subset of size & that
has a covariance determinant less than or equal
to that of the preceding estimate.

After applying the C-step procedure to
each random subset until convergence of the
respective covariance determinant, the subset
that produced the smallest covariance determi-
nant is identified. The mean vector of this sub-
set is used for the robust mean estimate of the
original dataset, and the covariance matrix of
the subset is used as the robust estimate of the
data’s shape matrix. This shape matrix is then
scaled to be consistent with Gaussian data in
the sense that the median of the Mahalanobis
squared distances obtained using the scaled co-
variance matrix is equal to the 0.5-quantile of a
Chi-squared distribution with p degrees of free-
dom. The resulting scaled matrix becomes the
robust covariance estimate. These robust esti-
mates are used to compute robust Mahalanobis
squared distances for each observation in the
dataset. Any observation whose squared dis-
tance exceeds an appropriate quantile of the
Chi-squared distribution with p degrees of free-
dom is considered an outlier.

To allow the FAST-MCD method to handle
very large datasets, Rousseeuw and van Dries-
sen also propose a nesting scheme that initiates
the search by selecting a random sample of the
original data and forming the initial subsets
from this random sample. As the search pro-
ceeds, more and more of the original data is
included in the search until the final solution is
obtained. The FAST-MCD method is imple-
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mented in S-Plus 4.5 as the cov.mcd function
and in SAS/IML 7 as the MCD function.

The BACON Detector

The BACON detector proposed by Billor et
al. (2000) is a robust distance detector designed
to rapidly identify outliers in very large data-
sets. The algorithm is relatively simple to im-
plement with the added advantage that it is
very fast relative to the other detectors we con-
sider, even for extremely large datasets.

BACON attempts to find outlying observa-
tions by first identifying a basic subset of
“clean” observations close to the centroid of the
data. The user has the option of using either a
robust, non-affine equivariant or a non-robust,
affine equivariant method to find this subset.
Once determined, the basic subset is used to
estimate a mean vector and shape matrix for
the dataset. The shape matrix is multiplied by a
small-sample correction factor derived by Billor
et al. from a Monte Carlo simulation study.
Using the mean vector and scaled shape matrix,
Mahalanobis squared distances are computed
for all observations in the dataset. Any obser-
vations whose squared distances are less than
an appropriate quantile of the Chi-squared dis-
tribution with p degrees of freedom are then
used to form a new basic subset. This process is
repeated until the basic subset fails to increase
in size between iterations. Any observations
not in the basic subset when the algorithm ter-
minates are considered outliers.

The Juan-Prieto Detector

The outlier detector proposed by Juan and
Prieto (2001)— hereafter referred to as the Juan-
Prieto detector—is a non-traditional outlier de-
tection method that avoids the computation of
Mahalanobis distances altogether. Thus, the
method offers a good contrast to the other
methods we consider. The Juan-Prieto detector
is also designed to locate concentrated outliers,
which, intuitively, would seem to match well
with the problem of finding interesting objects
in a hyperspectral scene.

The underlying statistical theory exploited
by the Juan-Prieto detector is that p-dimen-

sional Gaussian data projected onto the p-di-
mensional unit hypersphere has a Uniform dis-
tribution. Further, the angles between each
normalized vector and a reference direction
will have a Beta distribution. These properties
are also reasonably robust to departures from
normality if the data is elliptically symmetrical.
With this theory in mind, the Juan-Prieto detec-
tor begins by normalizing all the observation
vectors so that they have a magnitude of one,
and thus lie on the p-dimensional unit hyper-
sphere. A reference direction is then chosen
using a non-linear optimization method sug-
gested by Juan and Prieto, and the angles be-
tween the reference direction and each normal-
ized vector are computed. To determine if these
angles have the prescribed Beta distribution,
they are entered as arguments to the inverse of
the appropriate Beta distribution function. If
the angles indeed have the proper distribution,
the outputs to the inverse distribution function
should, in turn, have a Uniform distribution.
This hypothesis is tested by analyzing the max-
imum spacing between the ordered inverse
function outputs. If the maximum spacing is
not consistent with a Uniform distribution, all
corresponding observations beyond the maxi-
mum spacing in the ordered inverse function
outputs are considered outliers.

The Modified Stahel-Donoho
Estimator (SDE) Detector

The original SDE detector proposed by
Maronna and Yohai (1995) is a robust distance
method that arrives at mean vector and covari-
ance matrix estimates using a robust estimation
method originally proposed by Stahel (1981)
and Donoho (1982). The SDE mean vector, T,
and covariance matrix, S, are given by:

n
Ewixi
i=1

T(X) =

(6)

n

and
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Ewi(xi - TX)(x; — T(X))T
S(X) =" (7)

where the w; are weights whose magnitudes
depend on the degree to which the correspond-
ing observation is outlying. Though different
weight functions can be employed, Maronna
and Yohai demonstrate empirically that the fol-
lowing function provides good statistical effi-
ciency of the estimator:

w; =I(r;=c) + (c/r)(r;c) (8)

Where
I(g) = the indicator function, and
r; = the measure of “outlyingness” for

observation i.

The parameters c and g in (8) are constants.
Maronna and Yohai suggest values for these
constants based on experimental tests that at-
tempt to minimize a “bias” measure for the
covariance estimate. Details of this experiment
are beyond the scope of this paper, but can be
found in the original article by Maronna and
Yohai. The r; metric in (8) for an observation
vector, x;, is defined as:

la"x; — med(a’x;)|
j
med|a"x, — med(a’x;)|
k j

9)

r; = sup
[lll=1

The interpretation of (9) is we are looking
for some projection vector, a, on the p-dimen-
sional unit hypersphere that maximizes the
standardized distance between the projection
of x; onto a and the centroid of the projected
dataset onto a. To ensure a robust estimate of 7;,
the median of the projected data is used to
estimate the centroid, and the median absolute
deviation (MAD) is used to estimate the stan-
dard deviation. The rationale for using (9) to
measure “outlyingness” is that for elliptically
symmetric data, an outlier in p-dimensional
space will be an outlier in some univariate pro-
jection of the data.

Once the robust estimates of (6) and (7) are
obtained, they can be used to compute robust
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Mahalanobis distances for all the observations
in the dataset. Maronna and Yohai suggest that
these distances are F-distributed, and provide a
suitable critical value for screening them for
outliers. Hence, implementing the SDE outlier
detector entails: 1) computation of the r; for
each observation; 2) using these values to com-
pute (6) and (7); 3) using the robust estimates to
compute Mahalanobis squared distances for
the observations; and 4) using the appropriate
critical value to screen the distances for outliers.
The practical challenge in using this detector,
however, is solving the non-linear optimization
problem given by (9). Due to the non-differen-
tiable objective function, derivative-free optimi-
zation methods must be used to search for a
local solution.

Rather than using penalty or barrier func-
tion methods to solve (9), Maronna and Yohai
suggest generating random points on the unit
hypersphere that have a Uniform distribution.
Each point, or vector, is then substituted into (9)
to find an approximate solution to the maximi-
zation problem. As an alternative to random
vector generation, we propose using number
theoretic methods (NTM) to generate points
that are uniformly scattered—as opposed to
uniformly distributed—on the unit hyper-
sphere. We favor this method because NTM
point generation requires fewer points to
evenly cover the unit hypersphere than random
point generation, as explained in Fang and
Wang (1994). Thus, given the same number of
points generated by the two methods, we can
be more confident of an “even” search of the
feasible region with NTM generation than with
random generation.

By modifying Maronna and Yohai’s SDE
detector using NTM point generation, we de-
fine the SDE-NTM generator as follows:

1) Generate a set of uniformly scattered points,
or vectors, on the p-dimensional unit hyper-
sphere using the TFWW method outlined in
Fang and Wang (1994).

2) Use the vectors from Step 1 to find an ap-
proximate solution to (9) for each observa-
tion.

3) Use the r/s from Step 2 to compute the mean
vector and covariance estimates given by (6)
and (7), respectively.
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4) Compute the Mahalanobis squared distance
for each observation relative to the robust
mean and covariance estimates computed in
Step 3.

5) Scale the squared distances from Step 4 by
the median of the squared distances, and
declare as outliers any observation whose
scaled squared distance, d*, exceeds F(a/n;
p, n-2p)/F(0.5; p, n-2p), where « is a specified
significance level and F(e; a, b) is the F-
distribution function with 2 and b degrees of
freedom.

The critical value given in Step 5 is based on
empirical simulation studies conducted by
Maronna and Yohai that indicate the following:

diy=F(i/(n + 1);p;n — k)/F(0.5;p;n — k)
(10)
where,

df, = the ith ordered d*, and

kelp2p]

Though the SDE-NTM detector offers a
more efficient procedure for finding approxi-
mate solutions to (9) relative to the original SDE
detector, the method is still computationally
expensive, particularly in high-dimensions. To
reduce the number of unnecessary computa-
tions, we suggest computing and storing uni-
formly scattered sets of points for different
combinations of dimensionality and numbers
of points.

Summary

The preceding paragraphs outlined the
four multivariate outlier detection methods
used in the comparison tests described in the
following sections. Again, these methods were
selected based on their perceived ability to han-
dle very large datasets, as well as the different
detection strategies they employ. By comparing
the relative performance of this diverse set of
detectors, it is hoped that useful insights may
be obtained as to how best multivariate outlier
detection may be used to find hyperspectral
anomalies.

SIMULATED DATA TESTS

To assess the relative anomaly detection
performance of the FAST-MCD, BACON, Juan-
Prieto, and SDE-NTM detectors, we first ap-
plied them to controlled datasets consisting of
simulated hyperspectral signatures contami-
nated with known quantities of outlying signa-
tures. To produce the simulated signatures, we
collected signatures of known materials from a
hyperspectral image of Fort A.P. Hill, Virginia,
taken with the airborne COMPASS sensor. The
signatures we collected correspond to grass,
road, dead grass, and shadow. The mean spec-
tral signatures for each material are shown in
Figure 2; the error bars in the plots indicate the
standard deviation of the signatures at each
band. To ensure our results were not image
dependent, we also collected grass, asphalt,
gravel, and water signatures from an image of
the National Mall in Washington, D.C., ac-
quired from the airborne AVIRIS sensor. These
signatures are also shown in Figure 2.

For each material, we used the collected
signatures to obtain a mean vector and covari-
ance matrix estimate. These estimates were
then used to generate random, multivariate
Gaussian signatures with the same mean vector
and covariance matrix as the real-world signa-
tures. Because the hyperspectral analysis com-
munity is divided on the validity of the Gauss-
ian assumption, we also used the reference
signatures to generate multivariate t-distrib-
uted signatures with twelve degrees of free-
dom. We chose this alternative distribution
based on the research of Manolakis and Mar-
den (2002), Kerekes and Manolakis (2004), and
Manolakis et al. (2005).

With this strategy for generating simulated
hyperspectral signatures in mind, our simu-
lated data tests were executed in the following
manner:

1) From the available materials, one material
was chosen as the background material and
another was chosen as the outlying material.

2) Two thousand background signatures were
generated using the Gaussian distribution.

3) A specified number of outlying signatures
were generated using the Gaussian distribu-
tion.

Military Operations Research, V13 N4 2008



A COMPARISON OF MULTIVARIATE OUTLIER DETECTION METHODS

Figure 2. Mean spectra for materials used to generate simulated hyperspectral data. Error bars indicate

standard deviation of data.

4) The background and outlier materials were
combined into a single dataset.

5) Each of the four outlier detection methods
was applied to the dataset to detect the out-
liers, with the number of true-positives and
false-alarms recorded for each method. We
also applied a classical Mahalanobis dis-
tance detector to the dataset to better assess
the benefits of using multivariate outlier de-
tection methods.

6) Steps 2 through 5 were repeated 30 times,
keeping the number of outliers constant. The
mean and standard deviation of the number
of true-positives and false-alarms were com-
puted for each method across these 30 rep-
etitions.

7) Steps 2 through 6 were then repeated for
another level of contamination. The level of
contamination was varied from 0 to 500 out-
liers in increments of 50 outliers.

8) Steps 1 through 7 were repeated using a
different combination of background and
outlier materials while ensuring both mate-
rials came from the same image.

9) Steps 1 through 8 were repeated using the
multivariate t-distribution.

The combinations of background and out-
lier materials used in our tests are listed in
Table 1. We used these combinations because it
was shown in Smetek and Bauer (2007) that
they suffer significantly from the masking ef-
fect when using classical Mahalanobis distance
detection.

The outcome of our tests are summarized
in Tables A-1 through A-4 of the Appendix.
Tables A-1 and A-2 show the mean true-posi-
tives obtained by each detector for the Gaussian
and multivariate t-distributed data, respec-
tively. Similarly, Tables A-3 and A-4 show the

Table 1. Background/Outlier material combinations used for simulated data tests.

Fort A.P. Hill Combinations

D.C. Mall Combinations

Background Outlier Background Outlier
Grass Road Grass Asphalt
Grass Shadow Grass Water
Dead Grass Shadow Asphalt Water
Road Shadow Gravel Asphalt

Military Operations Research, V13 N4 2008
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mean number of false-positives for the two dis-
tributions. For each mean value, the standard
error is also reported as a measure of detector
performance variability. To keep these tables as
concise as possible, we have only included re-
sults from a subset of the contamination levels
tested; however, we feel they are sufficient to
show the relative performance of the detectors.

From Tables A-1 and A-2, several conclu-
sions can be made. First, it is clear that the
classical, non-robust Mahalanobis distance de-
tector suffers significantly from masking, as in-
dicated by the low number of true positives
across all the material combinations, contami-
nation levels, and distributions. Second, we see
that the BACON, FAST-MCD, and SDE-NTM
detectors successfully identify all outliers in the
cases tested. This finding is true for both the
Gaussian data and the multivariate t-data,
which confirms similar conclusions reported in
Smetek and Bauer (2007). The ability of these
detectors to successfully find outliers in heavy-
tailed distributions is important since it pro-
vides an alternative to the challenging task of
correctly identifying a specific distribution
from the multivariate t-distribution family. A
third observation from Tables A-1 and A-2 is
the inability of the Juan-Prieto detector to find
outliers when the contamination level is rela-
tively low. The likely cause of this limitation is
that relatively few outliers are not likely to
affect the uniformity of the data when projected
onto the unit hypersphere.

Turning to the false positive data reported
in Tables A-3 and A-4, it is seen that when all
detectors are applied to the Gaussian data, the
number of false positives is close to zero for all
levels of contamination and material combina-
tions. The reason for this seemingly ideal false
positive rate is the use of a Bonferoni signifi-
cance level of a/n used to threshold the respec-
tive test statistics for the different detectors,
where o = 0.05 and 7 is the total number of
observations. For all cases tested, the expected
number of false alarms for the significance level
used is less than one.

In the case of the multivariate t-data, the
false alarm data is somewhat more interesting.
First, we note that the false alarms for the
BACON detector remain close to zero. In con-
trast, the false alarms for the FAST-MCD and

SDE-NTM methods are significantly higher.
The reason for this difference is that both the
FAST-MCD and SDE-NTM methods arrive at a
covariance estimate by first estimating the
shape matrix of the data by trimming away all
the observations far from the center. Because
“good” observations may also be trimmed, the
shape matrix underestimates the true variance
of the good data. Hence, either the shape matrix
or the Mahalanobis distances derived from it
must be scaled before testing the distances for
outliers. We have found that the scaling process
used for both the FAST-MCD and SDE-NTM
methods still tend to underestimate the true
variance in the data, particularly when com-
pared to the scaling method used by the
BACON detector. Hence, it is reasonable to ex-
pect more false alarms with the FAST-MCD
and SDE-NTM methods relative to the BACON
detector, particularly with heavy-tailed data.
A final observation of note in the false
alarm data is the decreasing number of false
alarms for the FAST-MCD and SDE-NTM de-
tectors as the level of contamination in-
creases. We hypothesize that this phenome-
non occurs for the following reason: as the
contamination level increases, it is more
likely that outliers are still contained in the
set of observations used to estimate the shape
matrix, since neither the FAST-MCD nor the
SDE-NTM methods are guaranteed to gener-
ate a “clean” estimate. Though few in num-
ber, these outliers are sufficient to artificially
increase the variance of the data. This in-
creased variance will, in turn, result in a
lower false alarm rate. A similar affect was
demonstrated in Smetek and Bauer (2007).

REAL-WORLD IMAGE TESTS

To confirm that our simulated test results
translate to actual hyperspectral images we ap-
plied the BACON, FAST-MCD, and SDE-NTM
detectors to real-world hyperspectral scenes.
We omitted the Juan-Prieto detector from this
test due to its limited ability to detect small
numbers of outliers, as indicated by the simu-
lated data tests—initial hyperspectral image
tests also supported this omission. In addition
to the three multivariate outlier detectors, we
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also applied the RX anomaly detector—out-
lined earlier in this report—and a Cluster de-
tector to the image scenes. The Cluster detector
is a global anomaly detector based on the Clus-
ter-Based Anomaly Detector (CBAD) proposed
by Carlotto (2005). The performance of the RX
and Cluster detectors provide a performance
benchmark used to assess the merit of the mul-
tivariate outlier methods.

Three hyperspectral image scenes were
used for this test. Scene 1 was taken from the
Forest Radiance I dataset acquired by the
HYDICE sensor. The scene contains a number
of manmade square panels of varying sizes and
materials arranged in a grid pattern in a rela-
tively uncluttered grass field. Scene 2 is also
taken from the Forest Radiance I dataset, but is
somewhat more complex. This scene contains a
number of vehicles with different paint
schemes parked in a grass field, and also con-
tains additional background materials such as
road, trees, dirt, and shadow. Scene 3 is the Fort
A.P. Hill image scene from which we obtained
the signatures for the simulated data tests. This
image contains manmade objects of varying
size and compositions strewn throughout a
grass field. The scene also contains road, trees,
dirt, shadow. Taken collectively, these three
scenes offer a range of objects, sensors, and
scene complexity to adequately test and com-
pare the detection methods.

Using the fore-mentioned detectors and
image scenes, the real-world image tests pro-
ceeded in the following manner. Each detector
was applied to each of the scenes to identify
pixel vectors that appeared anomalous. Using
ground-truth images, Operating Characteristic
(OC) curves were constructed depicting the
true-positive fraction of the detectors as a func-
tion of the false-positive fraction. A particular
point on an OC curve indicates the number of
true positives detected at a corresponding false-
positive fraction. In addition to the OC curves,
a binary object image was produced for each
scene-detector combination indicating which
pixels the respective detector labeled as anom-
alies. These object images can be visually com-
pared to the ground-truth images for a qualita-
tive assessment of detector performance. The
OC curves for the three scenes are shown in
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Figure 3, and the object images for each scene
are given in Figures 4 though 6.

Prior to applying the detectors to the im-
age scenes, several preprocessing steps where
implemented. First, a principal components
analysis (PCA) was applied to each image to
reduce the dimensionality the data to ten fea-
tures. Though technically not required, this
data reduction significantly reduces the com-
putational time required for all detectors. For
the RX detector, no other preprocessing was
required. Because the BACON, FAST-MCD,
and SDE-NTM, detectors are designed to op-
erate on datasets from a single, homogeneous
population, each image was clustered into k
groups of homogenous pixels using the k-
means clustering algorithm. Each detection
method was then applied to each of the k
clusters to find anomalies. The value of k for
each image was set to the number of back-
ground materials in the image based on vi-
sual inspection. It should be noted that, for a
given image, the same clustering was used
for all algorithms to account for the stochastic
nature of k-means clustering.

From the OC curves and object images,
we note several significant observations.
First, the BACON detector has the best OC
performance of all the methods tested across
the three image scenes. This superior perfor-
mance is verified by visual inspection of the
object images relative to the respective
ground truth image. Though the BACON de-
tector is not perfect—as evident by the com-
plete omission of some objects of interest in
Scene 2—it appears to be most effective at
detecting man-made objects while minimiz-
ing the number of false alarms. A second
observation is that clustering methods, in
general, perform considerably better than the
local RX detector when presented with com-
plex scenes. Though the RX detector per-
formed well against Scene 1, it was ineffective
in detecting the larger objects in Scenes 2 and
3 while at the same time producing more false
alarms. A third insight drawn from the detec-
tion results is the extremely high number of
false alarms generated by the FAST-MCD and
SDE-NTM methods, as shown in Figures 4
through 6. These object images would appear
to disagree with the OC curves which seem to
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Figure 3. Operating Characteristic (OC) curves for (a) Scene 1, (2) Scene 2, and (3) Scene 3.

indicate that these two methods are superior
to the CBAD and RX detectors. The reason for
this apparent contradiction is that the signif-
icance level used by the detectors to generate
the object images results in a false positive
fraction for the FAST-MCD and SDE-NTM
methods that is beyond the range shown in
the OC curves. In these omitted regions of the
OC curves, the CBAD detector is actually out-
performing the FAST-MCD and SDE-NTM
methods.

So why do the FAST-MCD and SDE-NTM
methods produce such a large number of false
alarms? For the same reason given in the sim-
ulated data tests, these detectors are underesti-
mating the variance in the data, thereby in-

creasing the false alarm rates. In other words,
the scaling factors used with the shape matrix
estimates for these two detectors are not suffi-
ciently inflating the matrices to adequately rep-
resent the variance in the data.

To demonstrate the validity of this asser-
tion, we used the scaling method of the
BACON detector with the FAST-MCD and
SDE-NTM detectors and applied these modi-
fied detectors to Scene 2. The resulting OC
curves and object images are shown in Figures
7 and 8. Inspection of these figures reveals a
marked improvement in the performance of the
modified detectors that is almost identical to
the performance of the BACON detector. In
fact, modifying FAST-MCD and SDE-NTM in
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Figure 4. Object images for Scene 1. (a) Truth Image.
SDE-NTM Detector. (e) Cluster Detector. (f) RX Detector.

Figure 5. Object images for Scene 2. (a) Truth Image.
SDE-NTM Detector. (e) Cluster Detector. (f) RX Detector.

this manner essentially produces a BACON de-
tector that uses either the FAST-MCD or SDE-
NTM robust mean and covariance estimates to
form the initial basic subset. Further research is
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(b) BACON Detector. (c) FAST-MCD Detector. (d)

(b) BACON Detector. (c) FAST-MCD Detector. (d)

required to determine if other scaling methods
found in the literature also lead to better detec-
tion performance of the FAST-MCD and SDE-
NTM methods.
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Figure 6. Object Images for Scene 3. (a) Truth Image. (b) BACON Detector. (c) FAST-MCD Detector. (d)
SDE-NTM Detector. (e) Cluster Detector. (f) RX Detector.

Figure 7. OC curve for modified FAST-MCD and SDE-NTM detectors.
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Figure 8. Object images for modified FAST-MCD
and SDE-NTM detectors. (a) Truth Image. (b) Mod-
ified FAST-MCD. (c) Modified SDE-NTM.

CONCLUSIONS

The objective of this research is to compare
the relative performance of different multivar-
iate outlier detection methods when used to
detect hyperspectral image anomalies. To this
end, we applied the BACON, FAST-MCD,
Juan-Prieto, and SDE-NTM detectors to simu-
lated and actual anomaly detection problems.
These tests indicated that multivariate outlier
detection methods are superior to non-robust
benchmark anomaly detectors in locating
anomalies. In the case of the BACON detector,
these anomalies were found while maintaining
a low number of false alarms. The FAST-MCD
and SDE-NTM methods, though effective in
finding anomalies, require modification from
their original forms to reduce the their respec-
tive false alarms rates to acceptable levels. In
addition to these and other conclusions dis-
cussed in the previous sections, we noted the
following:

e The BACON detector is the least computa-
tionally expensive outlier detection method
tested. For the relatively large Scene 2 image,
BACON detection took a matter of seconds
to complete, while FAST-MCD detection
took several minutes. SDE-NTM detection
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was the longest of the methods, taking on the
order of tens of minutes to complete.

e All methods benefit from PCA data reduc-
tion in terms of improved computation
speed. Though exploratory tests indicate that
detection accuracy may improve if the orig-
inal, full-dimensional dataset is used, the
added computation time may be prohibitive.

e Of the methods tested, the BACON detector
appears most practical for hyperspectral
anomaly detection due to its superior accu-
racy, ease of implementation, and computa-
tional speed.

To extend this research in the pursuit of an
accurate, operationally useful hyperspectral
anomaly detector, we recommend the follow-
ing areas for further study:

1) Investigate methods to automate the cluster-
ing process used to group the hyperspectral
scene into homogeneous groups. For the
present research, we simply guessed at the
proper number of clusters based on visual
inspection of the image. Automation of this
process will result in an anomaly detector
that is less dependent on user interaction.

2) Explore using the r; values produced during
the SDE-NTM detection process to reveal
outliers. If the distribution of these values
can be determined, a wuseful detection
method may result.

3) Conduct a thorough investigation of the
false-negatives resulting from the anomaly
detection process to better understand why
they elude detection. Such an investigation
may suggest ways to improve detection al-
gorithms or to better understand operational
limits of such methods.

4) Implement a more rigorous algorithm test-
ing methodology to better assess the perfor-
mance of anomaly detectors against a broad
range of imagery and operational condi-
tions. Development of such a testing scheme
is complicated by the expense of collecting
hyperspectral imagery; however, the use of
simulated hyperspectral imagery may alle-
viate this problem.

By exploring these research areas further, it
is our goal to produce an anomaly detection
scheme that is useful against a broad range of
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image scenes and that requires minimal subjec-
tive input from the user. We feel such an algo-
rithm is most beneficial in an operational mili-
tary environment and will make the wealth of
information provided by hyperspectral data
more accessible to the military and civilian
community.

DISCLAIMER

The views expressed in this article are those of
the authors and do not reflect the official policy of the
United States Air Force, Department of Defense, or
the U.S. Government.

REFERENCES

Achard V., Landrevie A. and Fort J.C., 2004,
Anomalies Detection in Hyperspectral
Imagery Using Projection Pursuit
Algorithm, SPIE Conference on Image and
Signal Processing for Remote Sensing X,
5573:193-202

Atkinson Anthony C., 1994, Fast Very Robust
Methods for the Detection of Multiple
Outliers, Journal of the American Statistical
Association, 89:1329-1339

Barnett Vic and Lewis Toby, 1994, Outliers in
Statistical Data, 3" Ed., John Wiley & Sons,
Inc., Chichester, UK

Beckman R.J. and Cook R.D., 1983, Outlier. . .
s, Technometrics, 25:119-163

Billor Nedret, Hadi Ali S. and Velleman Paul
F., 2000, BACON: Blocked Adaptive
Computationally Efficient Outlier
Nominators, Computational Statistics &
Data Analysis, 34:279-298

Campbell N.A., 1980, Robust Procedures in
Multivariate Analysis I: Robust Covariance
Estimation, Applied Statistics, 29:231-237

Carlotto Mark J., 2005, A Cluster-based
Approach for Detecting Man-made Objects
and Changes in Imagery, IEEE Transactions

on Geoscience and Remote Sensing, 43:374—
387

Catterall Stephen, 2004, Anomaly Detection
Based on the Statistics of Hyperspectral

Imagery, SPIE Conference on Imagery
Spectroscopy X, 5546:171-178

Chang Chein-I, 2003, Hyperspectral Imaging:
Techniques for Spectral Detection and
Classification, Kluwer Academic/Plenum
Publishers, New York

Chang Chein-I and Chiang Shao-Shan, 2001,
Real-time Processing Algorithms for Target
Detection and Classification in
Hyperspectral Imagery, IEEE Transactions
on Geoscience and Remote Sensing, 39:760—
768

Chiang Leo H., Pell Randy J. and Seasholtz
Mary Beth, 2003, Exploring Process Data
with the Use of Robust Outlier Detection
Algorithms, Journal of Process Control, 13:
437-449

Chiang Shao-Shan, Chang Chein-I and
Ginsberg L.W., 2001, Unsupervised Target
Detection in Hyperspectral Images Using
Projection Pursuit, IEEE Transactions on
Geoscience and Remote Sensing, 39:1380—
1391

Clare Phil, Bernhardt Mark, Oxford William,
Murphy Sean, Godfree Peter and Wilkinson
Vicky, 2003, A New Approach to Anomaly
Detection in Hyperspectral Images, SPIE
Conference on Algorithms and
Technologies for Multispectral,
Hyperspectral, and Ultraspectral Imagery
IX, 5093:17-28

Donoho D. L., 1982, Breakdown Properties of
Multivariate Location Estimators, PhD
Qualifying Paper, Harvard University,
Cambridge, MA

Egan William ]. and Morgan Stephen L., 1998,
Outlier Detection in Multivariate Analytical
Chemical Data, Analytical Chemistry, 70:
2372-2379

Fang Kai-Tai and Wang Y., 1994, Number
Theoretic Methods in Statistics, Chapman
and Hall, London

Gao Shaogen, Li Guoying and Wang
Donggian, 2005, A New Approach for
Detecting Multivariate Outliers,
Communications in Statistics-Theory and
Methods, 34:1857-1865

Gaucel J.-M., Guillaume M. and Bourennane
S., 2005, Whitening Spacial Correlation

Military Operations Research, V13 N4 2008



A COMPARISON OF MULTIVARIATE OUTLIER DETECTION METHODS

Filtering for Hyperspectral Anomaly
Detection, 2005 IEEE International
Conference on Acoustics, Speech, and
Signal Processing (ICASSP ‘05), 1:333-336

Gnanadesikan R. and Kettenring J.R., 1972,
Robust Estimates, Residuals, and Outlier
Detection with Multiresponse Data,
Biometrics, 28:81-124

Goovaerts Pierre, Jacquez Geoffrey, Warner
Amanda, Crabtree Bob and Marcus
Andrew, 2004, Detection of Local
Anomalies in High Resolution
Hyperspectral Imagery Using Geostatistical
Filtering and Local Spatial Statistics, 2003
IEEE Workshop on Advances in Techniques
for Analysis of Remotely Sensed Data, 1:
385-394

Grossman John M., Bowles Jeffrey, Haas
Daniel, Antoniades John A., Grunes
Mitchell R., Palmadesso Peter, Gillis David,
Tsang Kwok Y., Baumbeck Mark, Daniel
Mark, Fisher John and Triandaf Ioana, 1998,
Hyperspectral Analysis and Target
Detection System for the Adaptive Spectral
Reconnaissance Program, SPIE Conference
on Algorithms for Multispectral and
Hyperspectral Imagery, 1V, 3372:2-13

Hadi Ali S., 1992, Identifying Multiple
Outliers in Multivariate Data, Journal of the
Royal Statistical Society, Series B, 54:761-
771

Hadi Ali S., 1994, A Modification of a Method
for the Detection of Outliers in Multivariate
Samples, Journal of the Royal Statistical
Society, Series B, 56:393-396

Hardin Johanna and Rocke David M., 2004,
Outlier Detection in the Multiple Cluster
Setting Using the Minimum Covariance
Determinant Estimator, Computational
Statistics & Data Analysis, 44:625-638

Hawkins Douglas M., 1994, The Feasible
Solution Algorithm for the Minimum
Covariance Determinant Estimator in
Multivariate Data, Computational Statistics
& Data Analysis, 17:197-210

Hazel Geoffrey, 2000, Multivariate Gaussian
MREF for Multispectral Scene Segmentation
and Anomaly Detection, IEEE Transactions
on Geoscience and Remote Sensing, 38:
1199-1211

Military Operations Research, V13 N4 2008

Hsueh Mingkai and Chang Chein-I, 2004,
Adaptive Causal Anomaly Detection for
Hyperspectral Imagery, 2004 IEEE
International Geoscience and Remote
Sensing Symposium (IGARSS ‘04), 5:3222—
3224

Juan Jesus and Prieto Francisco J., 2001, Using
Angles to Identify Concentrated
Multivariate Outliers, Journal of the
American Statistical Association, 43:311-322

Kerekes John P. and Manolakis Dimitris, 2004,
Improved Modeling of Background
Distributions in an End-to-End Spectral
Imaging System Model, Proceedings of the
2004 IEEE International Geoscience and
Remote Sensing Symposium, 2:972-975

Kim Myung Geun, 2000, Multivariate Outliers
and Decompositions of Mahalanobis
Distance, Communications in Statistics-
Theory and Methods, 29:1511-1526

Kwon Heesung, Der S.Z. and Nasrabadi
Nasser M., 2003, Adaptive Anomaly
Detection Using Subspace Separation for
Hyperspectral Imagery, Optical
Engineering, 42:3342-3351

Kwon Heesung and Nasrabadi Nasser M.,
2005, Kernel RX-Algorithm: A Nonlinear
Anomaly Detector for Hyperspectral
Imagery, IEEE Transactions on Geoscience
and Remote Sensing, 43:388-397

Landgrebe David A., 2002, Hyperspectral
Image Data Analysis, IEEE Signal
Processing Magazine, 19:17-28

Landgrebe David A., 2003, Signal Theory
Methods in Multispectral Remote Sensing,
John Wiley & Sons, Inc., Hoboken, New
Jersey

Liu Weimin and Chang Chein-I, 2004, A
Nested Spatial Window-Based Approach to
Target Detection for Hyperspectral Imagery,
2004 IEEE International Geoscience and
Remote Sensing Symposium (IGARSS ‘04),
1:266-268

Manolakis D. and Marden D., 2002, Non
Gaussian Models for Hyperspectral
Algorithm Design and Assessment, IEEE
International Geoscience and Remote
Sensing Symposium, 2002 (IGARSS ‘02),
1:1664-1666

Page 37



Page 38

A COMPARISON OF MULTIVARIATE OUTLIER DETECTION METHODS

Manolakis D., Rossacci M., Cipar J.,
Lockwood R., Cooley T. and Jacobson J.,
2005, Statistical Characterization of Natural
Hyperspectral Backgrounds Using t-
Elliptically Contoured Distributions, SPIE
Conference on Algorithms and
Technologies for Multispectral,
Hyperspectral, and Ultraspectral Imagery
XI, 5806:56—65

Maronna Ricardo A. and Yohai Victor J., 1995,
The Behavior of the Stahel-Donoho Robust
Multivariate Estimator, Journal of the
American Statistical Association, 90:330-341

Pan Jian-Xin, Fung Wing-Kam and Fang Kai-
Tai, 2000, Multiple Outlier Detection in
Multivariate Data Using Projection Pursuit

Techniques, Journal of Statistical Planning
and Inference, 83:153-167

Reed Irving S. and Yu Xiaoli, 1990, Adaptive
Multiple-Band CFAR Detection of an
Optical Pattern with Unknown Spectral
Distribution, IEEE Proceedings on
Acoustics, Speech, and Signal Processing,
38:1760-1770

Richards John A. and Jia Xiuping, 1999,
Remote Sensing Digital Image Analysis: An
Introduction, 3" Ed., Springer-Verlag,
Berlin

Riley Ronald, Newsom Rob K. and Andrews
Aaron K, 2004, Anomaly Detection in Noisy
Hyperspectral Imagery, SPIE Conference on
Imaging Spectrometry X, 5546:159-170

Rocke David M. and Woodruff David L.,
1996, Identification of Outliers in
Multivariate Data, Journal of the American
Statistical Association, 91:1047-1061

Rosario Dalton S., 2004, Highly Effective
Logistic Regression Model for Signal
(Anomaly) Detection, IEEE International
Conference on Acoustics, Speech, and
Signal Processing (ICASSP ‘04), 1:817-820

Rousseeuw Peter J., 1983, Multivariate
Estimation with High Breakdown Point,
Fourth Pannonian Symposium on
Mathematical Statistics and Probability,

Rousseeuw Peter J. and Leroy Annick M.,
1987, Robust Regression and Outlier
Detection, John Wiley & Sons, Inc., New
York

Rousseeuw Peter J. and van Driessen Katrien,
1999, A Fast Algorithm for the Minimum
Covariance Determinant Estimator,
Technometrics, 41:212-223

Rousseeuw Peter J. and van Zomeren Bert C.,
1990, Unmasking Multivariate Outliers and
Leverage Points, Journal of the American
Statistical Association, 85:633-639

Schaum Alan P., 2004, Joint Subspace
Detection of Hyperspectral Targets,
Proceedings of the 2004 IEEE Aerospace
Conference, 3:1818-1824

Schaum Alan P., 2006, A Remedy for
Nonstationarity in Background Transition
Regions for Real Time Hyperspectral
Detection, Proceedings of the 2006 IEEE
Aerospace Conference,

Schaum Alan P. and Stocker Alan D., 1997,
The Stochastic Mixing Model, 1997
International Symposium on Spectral
Sensing Research,

Schweizer Susan M. and Moura Jose M.F., 2000,
Hyperspectral Imagery: Clutter Adaptation in
Anomaly Detection, IEEE Transactions on
Information Theory, 46:1855-1871

Schweizer Susan M. and Moura Jose M.F.,
2001, Efficient Detection in Hyperspectral
Imagery, IEEE Transactions on Image
Processing, 10:584-597

Smetek Timothy E. and Bauer Kenneth W.,
2007, Finding Hyperspectral Anomalies
Using Multivariate Outlier Detection,
Proceedings of the 2007 IEEE Aerospace
Conference (To Be Published),

Stahel W.A., 1981, Robuste Schatzungen:
Infinitesimale Optimalitat und Schatzungen
von Kovarianzmatrizen, PhD Thesis,
Zurich, Switzerland

Stein David W.]., Beaven Scott G., Hoff
Lawrence E., Winter Edwin M., Schaum
Alan P. and Stocker Alan D., 2002,
Anomaly Detection for Hyperspectral
Imagery, IEEE Signal Processing Magazine,
19:58-69

Viljoen H. and Venter J.H., 2002, Identifying
Multivariate Discordant Observations: A
Computer-Intensive Approach,
Computational Statistics & Data Analysis,
40:159-172

Military Operations Research, V13 N4 2008



A COMPARISON OF MULTIVARIATE OUTLIER DETECTION METHODS

West Jason E., Messinger David W., lentilucci
Emmett J., Kerekes John P. and Schott John
R., 2005, Matched Filter Stochastic
Background Characterization for
Hyperspectral Target Detection, SPIE
Conference on Algorithms and
Technologies for Multispectral,
Hyperspectral, and Ultraspectral Imagery
XI, 5806:1-12

DESCRIPTOR LIST

Combat Identification, Applied Statistics,
Hyperspectral Image Analysis, Anomaly De-

Military Operations Research, V13 N4 2008

tection, Outlier Detection, Multivariate Data
Analysis.

APPENDIX

This appendix contains the results from the
simulated data tests. Tables A-1 and A-2 sum-
marize the mean number of true-positives de-
tected using Gaussian and Multivariate t-dis-
tributed data, respectively. Similarly, Tables
A-3 and A-4 summarize the mean number of
false-positives detected using Gaussian and
Multivariate t-distributed data, respectively.
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Table A-1. Mean true-positives detected as a function of contamination level for Gaussian Data.

True-Positives by Method

Background/ Number . .
Outlier O.f Classical BACON FEMCD Juan-Prieto SDE-NTM
Outliers Mean SE. Mean SE. Mean S.E. Mean SE. Mean S.E.
Grass/Road 50 46.3 2.1 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0
(A.P. Hill)
100 12.1 2.8 100.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0
300 29 15 300.0 0.0 300.0 0.0 286.4 6.8 300.0 0.0
500 1.5 1.1 500.0 0.0 500.0 0.0 481.0 139  500.0 0.0
Grass/ 50 45.0 2.3 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0
Shadow
(A.P. Hill)
100 14.2 3.0 100.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0
300 4.4 1.8 300.0 0.0 300.0 0.0 2839 105 300.0 0.0
500 2.2 1.1 500.0 0.0 500.0 0.0 468.6 17.1  500.0 0.0
Dead Grass/ 50 45.3 2.0 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0
Shadow
(A.P. Hill)
100 15.7 2.7 100.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0
300 4.8 14 300.0 0.0 300.0 0.0 284.1 104  300.0 0.0
500 24 1.8 500.0 0.0 500.0 0.0 4714 15.7  500.0 0.0
Road/ 50 49.2 0.9 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0
Shadow
(A.P. Hill)
100 72.9 3.2 100.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0
300 68.4 5.3 300.0 0.0 300.0 0.0 75 411  300.0 0.0
500 434 5.4 500.0 0.0 500.0 0.0 219 845 500.0 0.0
Grass/ 50 11.7 3.1 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0
Asphalt
(D.C. Mall)
100 0.0 0.2 100.0 0.0 100.0 0.0 70.0 43.1  100.0 0.0
300 0.0 0.0 300.0 0.0 300.0 0.0 297.5 2.6 300.0 0.0
500 0.1 0.3 500.0 0.0 500.0 0.0 491.8 5.3  500.0 0.0
Grass/Water 50 0.0 0.0 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0
(D.C. Mall)
100 0.0 0.0 100.0 0.0 100.0 0.0 86.7 34.6 100.0 0.0
300 0.0 0.0 300.0 0.0 300.0 0.0 300.0 0.0 300.0 0.0
500 0.0 0.0 500.0 0.0 500.0 0.0 500.0 0.0 500.0 0.0
Asphalt/ 50 27.1 2.7 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0
Water
(D.C. Mall)
100 0.0 0.0 100.0 0.0 100.0 0.0 88.9 30.2 100.0 0.0
300 0.0 0.0 300.0 0.0 300.0 0.0 299.2 1.1 300.0 0.0
500 0.0 0.0 500.0 0.0 500.0 0.0 496.8 2.8  500.0 0.0
Gravel/ 50 20.5 2.6 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0
Asphalt
(D.C. Mall)
100 0.0 0.0 100.0 0.0 100.0 0.0 89.2 30.3 100.0 0.0
300 0.0 0.0 300.0 0.0 300.0 0.0 299.4 0.9 300.0 0.0
500 0.0 0.0 500.0 0.0 500.0 0.0 497.8 1.8  500.0 0.0
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Table A-2. Mean true-positives detected as a function of contamination level for Multivariate ¢-Data.

True-Positives by Method
Classical BACON FEMCD Juan-Prieto SDE-NTM

Background/ Outliers

Outlier Present
Mean SE. Mean SE. Mean S.E. Mean SE. Mean S.E.
Grass/Road 50 45.6 1.9 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0
(A.P. Hill)
100 12.4 2.3 100.0 0.0 100.0 0.0 49 189 100.0 0.0
300 5.8 1.6 300.0 0.0 300.0 0.0 286.4 5.8  300.0 0.0
500 4.1 2.0 500.0 0.0 500.0 0.0 4752 133 500.0 0.0
Grass/ 50 44.2 1.9 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0
Shadow
(A.P. Hill)
100 15.2 2.8 100.0 0.0 100.0 0.0 3.2 125 100.0 0.0
300 8.7 2.8 300.0 0.0 300.0 0.0 2785 11.8  300.0 0.0
500 8.2 24 500.0 0.0 500.0 0.0 465.0 234  500.0 0.0
Dead Grass/ 50 44.3 2.5 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0
Shadow
(A.P. Hill)
100 16.8 3.3 100.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0
300 8.7 24 300.0 0.0 300.0 0.0 282.4 8.7 300.0 0.0
500 7.6 2.5 500.0 0.0 500.0 0.0 468.6 174  500.0 0.0
Road/ 50 48.4 1.0 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0
Shadow
(A.P. Hill)
100 63.9 4.1 100.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0
300 67.6 5.8 300.0 0.0 300.0 0.0 322 838 300.0 0.0
500 59.3 4.0 500.0 0.2 500.0 0.0 85.8 174.8 500.0 0.0
Grass/ 50 9.7 2.2 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0
Asphalt
(D.C. Mall)
100 0.1 0.3 100.0 0.0 100.0 0.0 71.0 43.6 100.0 0.0
300 0.2 0.6 300.0 0.0 300.0 0.0 295.9 3.2 300.0 0.0
500 0.2 0.4 500.0 0.0 500.0 0.0 487.4 79  500.0 0.0
Grass/Water 50 0.0 0.0 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0
(D.C. Mall)
100 0.0 0.0 100.0 0.0 100.0 0.0 90.0 305 100.0 0.0
300 0.0 0.0 300.0 0.0 300.0 0.0 300.0 0.0 300.0 0.0
500 0.0 0.0 500.0 0.0 500.0 0.0 500.0 0.2  500.0 0.0
Asphalt/ 50 234 2.9 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0
Water
(D.C. Mall)
100 0.1 0.4 100.0 0.0 100.0 0.0 88.6 30.1 100.0 0.0
300 0.0 0.0 300.0 0.0 300.0 0.0 298.6 1.1 300.0 0.0
500 0.0 0.2 500.0 0.0 500.0 0.0 4934 3.6 500.0 0.0
Gravel/ 50 18.8 2.2 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0
Asphalt
(D.C. Mall)
100 0.0 0.0 100.0 0.0 100.0 0.0 822 374 100.0 0.0
300 0.0 0.0 300.0 0.0 300.0 0.0 298.7 1.9  300.0 0.0
500 0.0 0.0 500.0 0.0 500.0 0.0 495.9 3.1  500.0 0.0
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Table A-3. Mean false-positives detected as a function of contamination level for Gaussian Data.

False-Positives by Method
Classical BACON F.MCD Juan-Prieto SDE-NTM

Background/ Outliers

Outlier Present
Mean S.E. Mean S.E. Mean S.E. Mean S.E. Mean S.E.
Grass/Road 0 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.2
(A.P. Hill)
50 0.1 0.3 0.0 0.0 0.1 0.4 0.0 0.0 0.1 0.3
100 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.2
300 0.0 0.2 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0
500 0.2 0.5 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0
Grass/ 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
Shadow
(A.P. Hill)
50 0.0 0.0 0.0 0.0 0.2 0.4 0.0 0.0 0.1 0.3
100 0.0 0.2 0.0 0.0 0.1 0.3 0.0 0.0 0.1 0.3
300 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0
500 0.1 0.3 0.0 0.0 0.0 0.2 0.7 1.9 0.0 0.0
Dead Grass/ 0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0
Shadow
(A.P. Hill)
50 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.2
100 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2
300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
500 0.0 0.2 0.0 0.0 0.1 0.3 1.3 6.6 0.0 0.0
Road/ 0 0.0 0.2 0.0 0.0 0.1 0.3 0.0 0.0 0.1 0.3
Shadow
(A.P. Hill)
50 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2
100 0.0 0.0 0.0 0.0 0.2 0.5 0.0 0.0 0.1 0.3
300 0.0 0.0 0.0 0.0 0.1 0.3 1.5 4.8 0.0 0.2
500 0.1 0.3 0.0 0.0 0.2 0.6 8.8 25.9 0.0 0.2
Grass/ 0 0.1 0.3 0.0 0.0 0.2 04 0.0 0.0 0.1 0.3
Asphalt
(D.C. Mall)
50 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.2
100 0.0 0.0 0.0 0.0 0.1 0.3 2.6 5.7 0.0 0.0
300 0.2 0.5 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.2
500 0.2 0.6 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0
Grass/Water 0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0
(D.C. Mall)
50 0.0 0.2 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0
100 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0
300 0.3 0.5 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0
500 0.6 0.8 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0
Asphalt/ 0 0.1 0.3 0.0 0.0 0.2 04 0.0 0.0 0.1 0.3
Water
(D.C. Mall)
50 0.0 0.0 0.0 0.0 0.1 0.4 0.0 0.0 0.0 0.0
100 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2
300 0.1 0.3 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2
500 0.1 0.3 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0
Gravel/ 0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2
Asphalt
(D.C. Mall)
50 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2
100 0.1 0.3 0.0 0.0 0.1 0.3 0.0 0.2 0.1 0.3
300 0.2 04 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0
500 0.2 04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table A-4. Mean false-positives detected as a function of contamination level for Multivariate ¢-Data.

False-Positives by Method
Classical BACON F.MCD Juan-Prieto SDE-NTM

Background/ Outliers

Outlier Present
Mean S.E. Mean S.E. Mean S.E. Mean S.E. Mean S.E.
Grass/Road 0 14.8 35 0.0 0.0 394 6.5 0.0 0.0 27.9 4.6
(A.P. Hill)
50 10.6 2.8 0.0 0.0 38.7 7.3 0.0 0.0 25.2 5.3
100 10.9 3.5 0.1 0.3 37.1 6.7 1.0 3.1 23.9 6.2
300 11.1 3.0 0.0 0.2 30.4 5.9 0.0 0.0 14.6 34
500 14.1 3.3 0.0 0.0 28.5 5.3 0.0 0.0 11.6 3.9
Grass/ 0 14.6 3.4 0.0 0.2 40.5 7.2 0.0 0.0 26.8 5.1
Shadow
(A.P. Hill)
50 10.0 29 0.0 0.2 39.8 7.1 0.0 0.0 26.3 55
100 10.6 2.8 0.0 0.0 38.8 6.2 0.9 4.6 24.5 4.8
300 10.5 29 0.1 0.3 30.1 6.3 0.0 0.0 15.8 45
500 10.1 3.5 0.0 0.0 26.5 6.1 0.0 0.0 10.0 3.9
Dead Grass/ 0 144 3.4 0.0 0.0 41.3 8.0 0.0 0.0 28.0 6.3
Shadow
(A.P. Hill)
50 9.9 3.1 0.0 0.0 38.9 6.9 0.0 0.0 25.8 5.4
100 10.0 3.2 0.0 0.0 36.5 6.6 0.1 0.4 23.2 6.0
300 10.0 3.2 0.0 0.2 31.2 6.0 0.0 0.0 16.3 3.8
500 11.1 3.4 0.0 0.2 26.0 7.1 0.0 0.0 10.8 3.7
Road/ 0 14.2 3.1 0.0 0.2 41.6 6.0 0.0 0.0 27.9 5.6
Shadow
(A.P. Hill)
50 6.1 1.9 0.0 0.2 38.8 6.4 0.0 0.0 25.6 5.6
100 5.5 2.0 0.0 0.0 40.5 54 0.0 0.0 25.0 5.0
300 4.3 1.7 0.0 0.0 31.9 6.3 2.8 74 16.5 4.4
500 3.8 2.5 0.0 0.0 27.6 5.9 21.6 62.6 114 3.3
Grass/ 0 13.4 2.8 0.1 0.3 39.7 6.9 0.0 0.0 27.3 4.5
Asphalt
(D.C. Mall)
50 11.9 2.9 0.0 0.0 39.4 6.2 0.0 0.0 25.8 4.5
100 11.0 2.8 0.0 0.0 36.1 6.5 1.1 3.2 23.0 4.8
300 16.0 3.6 0.0 0.2 33.1 4.6 0.0 0.0 17.0 4.0
500 19.5 34 0.0 0.2 26.1 43 0.0 0.0 10.5 3.8
Grass/Water 0 14.2 3.1 0.0 0.0 37.2 6.0 0.0 0.0 25.7 4.6
(D.C. Mall)
50 10.7 29 0.0 0.0 36.6 6.1 0.0 0.0 23.7 4.3
100 12.9 3.0 0.0 0.0 35.4 5.5 0.0 0.0 22.8 4.8
300 17.4 2.3 0.0 0.0 31.0 5.3 0.0 0.0 159 3.1
500 25.2 5.2 0.0 0.0 27.3 6.8 0.0 0.0 10.3 4.2
Asphalt/ 0 14.0 3.3 0.0 0.2 40.3 5.6 0.0 0.0 26.9 4.8
Water
(D.C. Mall)
50 114 2.7 0.0 0.2 38.2 6.2 0.0 0.0 25.6 4.6
100 13.0 3.1 0.0 0.0 35.5 5.9 0.1 0.5 23.5 4.5
300 17.5 3.6 0.0 0.2 33.2 49 0.0 0.0 17.8 3.8
500 20.1 44 0.1 0.3 26.0 5.1 0.0 0.0 11.3 3.9
Gravel/ 0 14.5 3.3 0.1 0.3 39.3 5.6 0.0 0.0 27.2 4.8
Asphalt
(D.C. Mall)
50 10.7 3.0 0.0 0.0 38.3 6.1 0.0 0.0 24.7 5.4
100 11.8 3.3 0.0 0.0 34.6 6.4 0.1 0.6 22.2 6.0
300 16.1 3.2 0.0 0.2 32.1 6.8 0.0 0.0 16.5 4.4
500 21.0 3.5 0.0 0.2 26.7 5.1 0.0 0.0 104 35
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ABSTRACT

e consider two types of non-reac-
tive aerial sensors, which are sub-
ject to false-positive and false-

negative errors. The sensors search for
threat objects such as ballistic missile
launchers or improvised explosive devices.
The objects are located in a certain area of
interest, which is divided into a grid of
area-cells. The grid is defined such that
each area-cell may contain at most one ob-
ject. The objective of a sensor is to determine
if a certain area-cell is likely or unlikely to
contain an object. An area-cell is said to be
determined if the searcher can ascertain with
a given high probability these events. Since
definitive identification of a threat object,
and subsequent handling of that threat, are
done by limited number of available
ground combat units, the determination of
an area-cell can help field commanders bet-
ter allocate and direct these scarce re-
sources. We develop two models, one for
each type of sensor, that describe the search
process and maximize the expected num-
ber of determined area-cells.

INTRODUCTION

Advents in sensing, unmanned aerial
vehicles (UAVs), and satellite technologies
are expected to increase the military use of
aerial or space sensors for detecting threat
objects such as improvised explosive de-
vices or missile launchers. These advanced
technologies may generate powerful and
effective sensors, which necessitate opera-
tional concepts in order to facilitate their
efficient utilization. In this paper we ad-
dress operational concepts associated with
employing sensors in persistent search mis-
sions over an extended search area. Specif-
ically, we consider the problem of effi-
ciently allocating non-reactive sensors across
a search area of interest. The sensors are
non-reactive in the sense that the search
plan is set in advance, and it is not updated
in real time during the search process fol-
lowing new information (e.g., pre-pro-
grammed “send-and-forget” UAVs). The
details of the operational search setting are
given in Section 2.

The theory of optimal search has a his-
tory of principal importance in military op-
erations. The theory has fundamental ap-
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plications to anti-submarine warfare,
counter-mine warfare, and search and res-
cue operations. The books [6] and [10] are
classical references in this area; with [11] a
valuable recent reference. Discrete search
problems of the type addressed in this pa-
per are not new. Optimal whereabout
search, where we seek to maximize the
probability of determining which box con-
tains a certain object, is studied in [1] and
[5]. Chew [3] considers an optimal search
with stopping rule where all search out-
comes are independent, conditional on the
location of the searched object and the
search policy. Wegener [12] investigates a
search process where the search time of a
cell depends on the number of searches so
far. A minimum cost search problem is dis-
cussed in [8], where only one search mode
is considered and the sensor has perfect
specificity. The paper [9] deals with dis-
crete search with multiple sensors in order
to maximize the probability of successful
search of a single target during a specified
time period. Other discrete search prob-
lems are studied in [2, 7, 13]. However, all
of the aforementioned references assume
that the sensor has perfect specificity, that
is, there are no false positive detections.
Our models, which are based on [4], relax
this assumption.

The main contribution of this paper, in
addition to the relaxation of the perfect
specificity assumption, is the development
of two novel sensor models (smart and
dummy sensors; see Section 2), and their
application to a variety of scenarios. For the
scenarios examined, the results and analy-
sis indicate that,

o The level of initial intelligence regarding
the area of interest has a significant effect
on the optimal employment of the sen-
sors and on the expected number of de-
termined area-cells, and this effect is
quantified.

¢ The optimal employment of a sensor fol-
lows a greedy rule where search effort is
first invested in area-cells that are more
likely to be determined than others.

e The smart sensor significantly outper-
forms the dummy sensor in situations of
minimum uncertainty regarding the
presence or absence of the threat object.
In other situations the effect is not signif-
icant.
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e The effectiveness of a sensor is determined
by the relative values of its sensitivity and
specificity and not by the absolute values of
these parameters, except when either of
these two parameters is very small, in which
case sensor’s effectiveness is very sensitive to
the values of the other parameter.

The paper is organized as follows. In “Op-
erational Setting”we describe the operational
setting and in “Models” we formulate the mod-
els for the dummy and smart sensors. In “Re-
sults and Analysis” we analyze the models
with respect to various scenarios, and in “Con-
clusions” we discuss the conclusions of the pa-

per.

OPERATIONAL SETTING

Targets (e.g., missile launchers) are scat-
tered in an area of interest and the objective of
the field commander is to detect as many as
possible of them. The area of interest is divided
into a grid of area-cells such that each area-cell
may contain at most one target. A sensor is
assigned to search a certain area-cell for a cer-
tain time period during which it can make a
finite number of discrete observations or looks.
The result of each look is either a detect result or
a no detect result. The sensor is imperfect - it is
subject to false-positive and false-negative er-
rors - and therefore the sensor’s cues may be
erroneous. The information provided by the
sensor is used by the field commander to de-
cide on further tactical or operational actions.
Our goal is to help the field commander to
determine the best search plan such that the
information provided by the search results - his
awareness regarding which area-cells are likely
to contain targets and which area-cells are
likely to be empty - is maximized. This informa-
tional MOE is described next.

An area-cell is said to be determined if it can
be ascertained, with a given (high) probability,
whether it contains a target or not. Specifically,
given two probability thresholds, selected by
the commander and reflecting his attitude re-
garding uncertainty, an area-cell is determined
to be empty if the post-search probability that a
target is in that cell is lower than the lower
threshold. The area-cell is determined as con-

taining a target if that posterior probability is
higher than the higher threshold. The objective
is to maximize the expected number of area
cells that are determined. This type of informa-
tion - classifying area-cells as being very likely
or very unlikely to contain targets - can help
field commanders filter a sizable area of interest
down to only those area-cells that are likely to
contain a target, and therefore better focus their
operational effort.

The sensors we consider are non reactive;
the assignment of looks to area-cells is made in
advance and it does not change dynamically
following information (detection and no-detec-
tion results) obtained during the search. This
situation is applicable in particular to pre-pro-
grammed UAVs whose way-points and search
pattern cannot be modified during the search
mission.

We consider two types of sensors: dummy
and smart. The dummy sensor evaluates the de-
tection/no-detection results of a certain area-
cell only at the end of the search, after all as-
signed looks have been exhausted. Based on the
resulting posterior probability and the two
probability thresholds, the searcher decides at
that point if the area-cell is determined or not.
This sensor represents a batch handling of the
sensor data; the searcher examines the sensor’s
results and decides upon them only after the
search process is over. The smart sensor exam-
ines the detection/no-detection results and
computes the probability of a target continu-
ously during the search. If at any point during
the search this probability crosses either of the
two thresholds, the area-cell is determined be-
fore all the looks are exhausted.

MODELS

We start this section by describing the basic
framework shared by the two models. Specifi-
cally, we assume that one sensor is assigned an
area of interest to search, which is partitioned
into a grid of I area-cells. We assume that the
area of interest can be partitioned in such a way
that each area-cell i, fori = 1,2, ..., I, contains
at most one threat object. The sensor has a finite
number of L looks that it can apply to the
search. These looks are allocated to the various
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area-cells prior to the start of the search mis-
sion.

We suppose that there is some initial intel-
ligence about the presence of threat objects,
which is manifested by a prior probability. Let
6 = (6, ..., 0)) be the parameter that describes
the presence/absence of threat objects; that is,
0; = 1 if there is a threat object in area-cell 7, and
0, = 0 otherwise. The intelligence is captured by
the prior probability mass function of 6;,

ﬂ-gm = P(ez = 1)1

for i = 1, ..., I. Following a single look at an
area-cell, the sensor returns either a detection or
a no-detection signal. The sensor is characterized
by its sensitivity and specificity; for each area-
cell i we have

p: = P(sensor indicates detection|6; = 1),

which is called the sensitivity of the sensor. The
specificity of the sensor is 1 — ¢q;, where

g; = P(sensor indicates detection|6, = 0).

Although the p;’s and g;'s may depend on the
area-cell, we assume that they do not depend
on the number of looks. Without loss of gener-
ality we take p; > g;, because we can reverse the
cue if p; < g;. We explicitly assume that p; # g;,
for otherwise the sensor does not provide any
valuable information.

After the sensor looks at an area-cell, the
intelligence regarding the likelihood of a threat
object gets updated, and we obtain a posterior
probability. More specifically,

()

Pino)
pim® + qi(1 — @)
if w = sensor indicates detection
1- Pi)7T 50)
a- Pi)Wz(‘O) + (1 - ﬂi)(l - Wi(o))’
\ if @ = sensor indicates no-detection

M

In this way, for area-cell i we have a sequence
of posteriors 7", @, ..., adapted to the se-
quence of signals generated by the sensor in
that area-cell.
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We assume that the collection of look re-
sults are independent for a given area-cell; this
assumption asserts that there is not systematic
bias in the sensor. The results for different area-
cells may be dependent. As the number of looks
for a area-cell i increases, the posterior ap-
proaches 1 (if 6; = 1) or 0 (if 6; = 0). In reality,
one would stop looking when the posterior
becomes sulfficiently close to 1 or 0. This moti-
vates the introduction of two thresholds, which
are subjective measures set by an individual
involved in the search mission, such as the
watch officer in the tactical operations center,
or the field commander in charge of attacking
these threat objects. An area-cell is considered
to be determined if the posterior has crossed
either an upper threshold or a lower threshold.
If the posterior has crossed the upper threshold
B, then the conclusion is that the area-cell is
most likely to contain a threat object. Con-
versely, if the posterior has crossed the lower
threshold «, then the area-cell is most likely to
be clear. To make the problem non-trivial, we
assume throughout the paper that 0 = a < g =
1.

In most realistic situations, the number of
looks available is not large relative to the num-
ber of area-cells I and therefore an optimal re-
source (looks) allocation is needed. Specifically,
the decision variables for both the dummy and
smart sensor models are the number of looks
allocated to area-cell i, denoted by /;. The mea-
sure of effectiveness is the expected number of
area-cells determined with at most L looks. Ob-
serve that

E(# area-cells determined with [;,. . .,/; looks)

1

= > P(area-cells i determined in /; looks).
i=1

It follows that the optimization problem is to
choose [, .. ., I; that

I

maximize Y,P(area-cell i determined
i=1

in [;looks) (2)

subject to
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;=0 and integer fori=1,.. L

In order to solve this problem we need to find
P(area-cell i determined in [; looks) for the
dummy and smart sensors. This is the subject of
the next two subsections.

Remark 1 The objective function in Problem 2
is non-linear, and even not necessarily concave; see
Figure 3. Once P(area-cell i determined in I; looks) is
found for each number of looks 1, 2, . .., L, Problem
2 can be implemented and solved - we used GAMS
to illustrate the results in this paper.

Dummy Sensor

The dummy sensor is characterized by the
fact that in each area-cell the sensor checks its
status (i.e. posterior probability) only after the
allocated I looks are exhausted. If at that point
the posterior is larger than 8 or smaller than «
then the area-cell is declared determined. A
smarter sensor would watch the posterior con-
tinuously and determine the area-cell as soon
as the posterior crosses a threshold. Indeed, this
is the characterization of the smart sensor dis-
cussed in the next subsection.

Let D,; = number of detections in area-cell i.
Conditioning on ; we have

P =d) =y )t =)= x a0

(g et - grix - a0, @)

ford =0,1, ..., . When D; = d the dummy
posterior y{’(d) is given by, after some algebra,

Pi(d)
- pi(1 — p)ial®
- pi( = p)lEY + gi(1 - g) i — )
(4)

Next we ask: How many detections will cause
the dummy posterior to be outside either
threshold? In other words, for what values in
the range of D, do we have ’(d) = B or

P = a? Solving for d in Equation (4) we
obtain @ < Y{’(d) < B if and only if a; < d < b,

where
a 1-a" ool L4
log 11— a 777;0) + llog 1-»

10g<Pi(1__ ‘1;‘))
(1 Pi)q,-
(5)
and
—_ 0 —
log(ll_gﬁ 171_’(07;-[) + llog(i — Z:)
b 1Og(;of(l - q»)
1= p)gi
(6)
Hence

P(area-cell i not determined in I looks)
=P@;<D;<b) (7)

where the probability mass function of D; is
computed according to Equation (3). It is ben-
eficial to view the interval (a;, b;) as a no deter-
mination region. Naturally,

P(area-cell i determined in / looks)
=1 — P(area cell i not determined in I looks),

can then be employed in the optimization prob-
lem.

As an example of the dummy sensor
model, consider Figure 1. For [ = 1, it is impos-
sible to determine the area cell because the
posterior is always inside the thresholds; for [ =
2, having two detections cause the posterior to
be above B and so the area-cell is determined.
Observe, however, that the probability of deter-
mining the area-cell is less for [ = 3 (.47) than
for I = 2 (.48), because getting a no-detection
after two detections decreases the posterior and
pushes it back to within the thresholds.

Smart Sensor

The smart sensor monitors the posterior
continuously and therefore may determine an
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Figure 1. Probability transitions for the dummy
sensor model, for #® = 0.7,p = 0.8,4 =03, a = 0.1,
and B = 0.9. Inside each node, the top number is the
posterior, and the number in brackets is the proba-
bility of arriving at the node; nodes with bold pos-
teriors occur when the area-cell is determined.

area-cell as soon as the posterior crosses a
threshold, before the looks allocated to that cell
are actually exhausted. The subsequent looks
are essentially redundant. Although there are
several approaches to compute the probability
of detection, a simple approach is to use dy-
namic programming. Define V; () as the prob-
ability of determining the presence, or absence,
of a threat object after [ looks in area-cell i,
given the current prior probability is ;. We
have the boundary conditions

Vi(m)=1,if m=Borm=aq,
elseif I =0
Vio(m) = 0.
For | = 1, the recursion is given by

Vi(m) = (pim; + q:(1

pimi
- Wi))vi,ll(piﬂ_i gy 771')) + (1 —p)m;
+ (1 —¢g)(1
(1- Pi)ﬂ'i
- m))Vi'l_l((l —p)mi+ (1 —qg)1 - 771‘))'

Given a prior 7" and I looks, we start the
above recursion with V; (m(?).
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Another (computationally faster) approach
to compute V; (m; ) is to notice that IT; = (7 :
k = 0) is a Markov chain defined on [0, 1]. Let
r=inflk = 0: 7 ¢ (a, B)} be the first look at
which the posterior crosses either threshold.
We have

Vi) =P(r=1). (8)

Let B = (B,,: @ <x,y < B) be the restriction
of the transition kernel of II; to (e, B). Then

P(r>1)= 3 B,

a<y<p

which together with Eq. (8) leads to V,.,,(wl(-o)).

An example of the smart sensor search pro-
cess is shown in Figure 2. In this example
B, s = .65 B;, = .35and val = 0 for all
other values of y. Also P(t > 2) = .52 and P(1 >
3) = .42. The difference between the dummy
and smart sensors is that the smart sensor de-
termines the area-cell when arriving at a node
whose posterior is outside the thresholds. So
while the probability that a dummy sensor de-
termines an area-cell after 3 looks is .37 (see
Figure 1) the smart sensor determines it with
probability .48 + .10 = .58.

RESULTS AND ANALYSIS

In this section we present the results and
their analysis for both the dummy and smart

Figure 2. Probability transitions for the smart sen-
sor model, for 7® = 0.7,p = 0.8, = 0.3, = 0.1, and
B = 0.9. Inside each node, the top number is the
posterior, and the number in brackets is the proba-
bility of arriving at the node; nodes with bold pos-
teriors occur when the area-cell is determined.
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sensor models. In the first subsection we dis-
cuss the single area-cell scenario, while in the
second subsection we optimize sensor employ-
ment in multiple area-cells.

Single area-cell Scenario

We analyze the effect of the model param-
eters on the probability of determining a single
area-cell, so the optimization problem (2) does
not come into play. To simplify notation, we
drop the subindex i in the discussion that fol-
lows in this subsection.

First, we consider the dummy sensor. From
the definition of a and b, it is easy to see that
they are linear functions of [ with positive slope
since p > ¢, and that the difference b — a is
constant in /. So, we have the following result
(see the Appendix for all proofs).

Proposition 1 The probability of determining
an area-cell approaches 1 as the number of looks
grows to infinity.

Observe that the number of integers that lie
in the open interval (a, b) is not necessarily
constant as a function of the number of looks /.
That is, on the sample paths where the dummy
posterior is outside the thresholds, a sensor
signal may push the dummy posterior back
into (a, B), thus increasing the probability of not
determining the area-cell. Looking at Equation
(7), this suggests that P(area-cell i determined
in [ looks) may not be monotonic in the number
of looks I. Indeed, for certain parameter set-
tings, increasing the number of looks actually
lowers the probability of determining an area-
cell. Figure 3 illustrates this situation: When the
number of looks goes from 3 to 4, the probabil-
ity of determining the area-cell decreases; the
same happens when going from 5 to 6 looks, 7
to 8 looks, etc. This phenomenon is demon-
strated also in Figure 1, as discussed above.
From the definition of 4 in (5) and of b in (6), it
follows that the cardinality of the open interval
(a, b) is generally not continuous in the model
parameters. Ultimately, this causes Figure 3 -
Figure 8 to be jagged for the dummy sensor.

An important issue is the effect of the prior
intelligence on the probability of determining
an area-cell. Note that the prior 7 is the mix-
ture parameter of the Binomial mixture in

Figure 3. Probability of determining an area-cell as
a function of number of looks, for @@ = 0.5, p =058,
g =02, 8=095 and o = 0.05.

Equation (3), and it appears in the definition of
a and b. When the number of looks is large, the
area-cell is determined with very high proba-
bility, regardless of the prior. Hence, for the
purpose of our analysis we assume that [ is not
too large and consider three ranges of 7©:

o 7 is close to the lower threshold . In this
case D D Bin(l, q) (where D means approxi-
mately distributed, and Bin(l, q) is a binomial
distribution with / looks and probability of de-
tection g). Also, a and b are in the highest part
of their range; that is, we determine the area-
cell for small values of D. But this is precisely
what happens when D D Bin(l, q) and q is not
too large: D is most likely to be a small num-
ber. Hence, when 7@ ~ « and g not too large,
the probability of determining the area-cell is
large.

o 7 is close to the upper threshold. In this
case D D Bin(l, p) so that D puts most of its
mass in the higher end of its range if p is
large. Also, a and b are in the low part of their
range, so that we determine the area-cell for
large values of D. Putting the last two obser-
vations together, we conclude that the prob-
ability of determining an area-cell is large
when 7 is close to 8 and p is large.

e 79 is not close to either threshold, p and g
are mid range. In this situation 7 is a mix-
ture of binomials, and since p and 4 are mid
range, D is most likely to take values in the
middle of its range. Also, a and b are in the
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middle part of their range. Putting these two
arguments together, we conclude that the
probability of determining an area-cell will
be small under these circumstances.

Figure 4 illustrates the above analysis.
Other than confirming our explanation of the
effect of the prior, Figure 4 is rather striking
because of its jumps; these are due to the
change in the number of integers that lie in the
interval (a, b) as we change the prior, a phe-
nomenon observed and discussed earlier.

Now we address the effect of sensitivity (p)
and specificity (1 — ¢). The basic question re-
garding the parameters p and g is: What is a
good dummy sensor with respect to these pa-
rameters? Naturally, p = 1 and q = 0 is the
perfect sensor, but this situation is unattainable
in practice. As Figure 5 suggests,

e it is the difference p — g that makes a sensor
better or worse, regardless of the absolute
values of the parameters; the probability of
determining an area-cell increases with p —
q.

o for low values of p, the probability of deter-
mining an area-cell is very sensitive to g; that
is, a small increase in g causes the probability

of determining an area-cell to decrease sig-
nificantly. The reason for this behavior is that
(a, b) expands to include all the integers in [0,
I] as g gets closer to p small.

o for high values of g, the probability of deter-
mining the area-cell is very sensitive to p. As
p moves from g to 1, the no determination
region (a, b) moves away from [0, ], thus
causing the area-cell to be determined.

Regarding the smart sensor, the following
proposition summarizes some of its properties.

Proposition 2 The smart sensor has a deter-
mination probability that is non-decreasing, ap-
proaches one as the number of looks increases, and is
not smaller than the determination probability of the
dummy sensor for the same number of looks.

Figure 3 illustrates the last proposition. We
explain the observation that the probability of
determining an area-cell remains constant
when going from 3 to 4 looks, from 5 to 6 looks,
etc, by the fact that for the parameters settings
of Figure 3, on any sample path where the
posterior is within (e, 8) prior to looking at the
area-cell, the posterior remains within («, B)
regardless of the sensor signal (detection or
no-detection). Like in the dummy sensor case, a

Figure 4. Probability of determining an area-cell as a function of the initial prior, for I = 11, p = 0.6, g = 0.4,

B =109, and a = 0.1.
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Figure 5. Contour plot of the probability of determining an area-cell for the dummy sensor, as a function of
the sensitivity and specificity, for I = 11, #» = .8, 8 = 0.9, and « = 0.1.

determination probability that is not every-
where differentiable causes Figure 3 - Figure 8
to be non-smooth for the smart sensor as well.

The effect of prior intelligence on the smart
sensor is illustrated in Figure 4, with the fol-
lowing interpretation:

e As 7 gets close to either threshold, the
probability of determining the area-cell ap-
proaches 1. That is, when 7® ~ o and « is
small, according to Equation (1), 7 (no-
detection) =~ 0 (so we cross the lower thresh-
old) with probability equal to P(no-detection
signal) =1 — g,sothat P(r=1) =~ 1 — g, if we
get a detection in the first look, the same
analysis shows that P(r = 2) = g(1 — g).
Proceeding in that fashion we see that
P(area-cell determined for / small) ~ 1 when
7 ~ qand a ~ 0.

e The analysis for the upper threshold S is
analogous when 7» ~ Band B ~ 1, and we
have P(area-cell determined for / small) ~ 1.

e A remarkable feature of Figure 4 is that the
smart sensor significantly outperforms the
dummy sensor when the prior 7 is close to
either threshold. The reason for this behavior
is that the dummy sensor only checks the

value of the posterior when all the looks
have been exhausted, by which time it is
possible that ¥ is within the thresholds. In
the next section we discuss how this phe-
nomenon carries over to the multiple area-
cell situation.

The effect of sensitivity and specificity with
respect to the smart sensor (see Figure 6) is
similar to the dummy sensor: The difference
p — q is the important measure concerning sen-
sor performance, and the probability of deter-
mining an area-cell increases with p — ¢. Like in
the dummy sensor model, the probability of
determining the area-cell is very sensitive to g
when p is small, and very sensitive to p when g
is large.

Multiple area-cells Scenario

When there is more than one area-cell, we
solve Problem (2) to obtain an efficient alloca-
tion of looks. Evidently, the effectiveness of the
sensors increases with the number of looks,
because the uncertainty regarding the presence
or absence of threat objects in each area-cell is
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Figure 6. Contour plot of the probability of deter-
mining an area-cell for the smart sensor, as a func-
tion of the sensitivity and apecificity, for | = 70 =38,
B =109, and a = 0.1

revealed as we increase the number of looks. In
view of Propositions 1 and 2, for any fractional
allocation *I; = t,L, "I, = t,L ..., "l; = ;L such th
at all the t’s are positive and t; + ... + {; =1,
we have

E(#area-cells determined with [;,. . .,[; looks) — 1,

as L — o. Since the optimal allocation is no
worse than the [, .. ., [; allocation, we have

Proposition 3 Suppose that I,*(L), . . ., I*(L) is
an optimal solution to Problem (2) when there are L
looks available. Then, for both the dummy and smart
sensor models,

E(# area-cells determined with
I,*(L),. . .,I;*(L) looks) — I,

as L — o,

In words, Proposition 3 states that the ex-
pected number of area-cells determined under
an optimal allocation of looks approaches the
total number of area-cells, as the number of
looks available grows. Also, since the smart
sensor cannot be worse than the dummy sen-
sor, the expected number of area-cells deter-
mined by the smart sensor is never smaller than
the expected number of area-cells determined
by the dummy sensor. This observation and
Proposition 3 are demonstrated in Figure 7,
where I = 6 and all area-cells have the same
prior, sensitivity and specificity probabilities.

Military Operations Research, V13 N4 2008

Figure 7. Expected number of area-cells deter-
mined as a function of the number of looks, for I = 6,
L=30,7”=08p=08g=028=09 and « =
0.1.

For L = 7 we have that the dummy and smart
sensor models yield the same result, this is
because each of the 6 area-cells gets no more
than 2 looks, and P(area-cell determined) is the
same for both sensors in this situation (cf. Fig-
ure 3). As the number of looks available in-
creases, the smart sensor has a larger number of
area-cells determined than the dummy sensor,
in accordance with Proposition 2.

Next we examine the effect of the prior,
sensitivity and specificity probabilities (7', p;
and 1 — g, respectively) on the the optimal
allocation of looks. The question is: What area
cells get a large (or small) number of looks at
optimality? Due to the high dimensionality of
the problem, it is impossible to run a full fac-
torial experiment. Therefore, we settle with
solving Problem (2) under various representa-
tive scenarios that capture the main effects of
the above parameters.

Concerning the effect of the prior (see Fig-
ure 8), we have the same conclusion as for the
single area-cell scenario, namely: The priors
close to the thresholds o and B lead to larger
expected number of area-cells determined, and
the smart sensor significantly improves on the
dummy sensor in situations of good prior in-
telligence. Figure 8 shows these properties for
I = 6 area-cells when the priors of all area-cells
shift together from the lower threshold to the
upper threshold. We solved the optimization
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Figure 8. Expected number of area-cells deter-
mined as a function of the initial prior, forI = 6, L =
30, 7@ =08,p =08,4=02,8=09,and a = 0.1.

problem (2) under several other representative
configurations, with all the results supporting
the above conclusions.

Table 1 summarizes the results of a more
detailed analysis. For each one of the two sensors
we consider two levels of effectiveness, mani-
fested by the sensitivity and specificity of the
sensor, and two configurations of prior probabil-
ities. A relatively ineffective sensor has p = .6 and
q = 4 for all area-cells, while for a relatively
effective sensor these parameters are .7 and .3,
respectively. For each sensor and each level of
effectiveness we consider two spatial configura-
tions of the prior probabilities: (1) Uniform Worse-
Case configuration where 7\ = 5,i =1,...,6,
and (2) Mixed configuration where the prior is
close to the upper threshold for two area-cells, the
prior is far from both thresholds for two area-

ENSORS

cells, and the prior is close to the lower threshold
for two area-cells. For each sensor, level of effec-
tiveness and spatial prior configuration, Table 1
presents the optimal allocation and the maximum
expected number of determined area-cells.

The take-away of Table 1 is:

e When the sensors are relatively ineffective,
and and the prior configuration is uniform
(7750) =05,i=1,...,6), both the dummy and
smart sensors allocate all the looks to just
two area-cells. This happens because in this
situation it takes a large number of looks to
make the probability of determining an area-
cell lift above its zero-value floor. If the prior
configuration is mixed, there are four area-
cells with prior probabilities close to a
threshold. Hence, the model allocates the
looks in a greedy fashion so as to determine
these four area-cells. In accordance to our
single area-cell analysis, the smart sensor sig-
nificantly outperforms the dummy sensor.

e When the sensors are relatively effective and
the prior configuration is uniform, both the
smart and dummy sensors uniformly allocate
the looks among the 6 area-cells. This occurs
because it takes a small number of looks to
have the initial shoot up in the probability of
determining an area-cell. Observe that the ex-
pected number of determined cells shows a
remarkable increase from the ineffective-sen-
sor uniform-prior situation; we will have more
to say about this issue when we analyze the
effect of the p, g configuration.

e When the sensors are effective and the prior
has a mixed spatial configuration, it takes a
few looks to determine the area-cells whose

Table 1. Effect of the prior for L = 30,1 =6, « = 0.1, and g = 0.9

Effect of the prior

P q Spatial Configuration E(# det.) L I, Iy I Is Ig Sensor
p=.64g=.4 a9 =(5,.5,.5 .5 5,.5 0.7705 16 14 0 0 0 0 smart
0.6447 16 14 0 0 0 0 dummy
79 =(8,.8,.5 .5 2.2 2.4488 8 8 0 0 8 6 smart
1.9936 10 8 0 0 6 6 dummy
p=74q=23 a9=(52525.5.5.5) 3.6186 5 5 5 5 5 5  smart
3.3540 5 5 5 5 5 5 dummy
a9 =(8,.8,.5 .5 2 .2) 4.6857 3 3 9 9 3 3 smart
4.2253 5 5 9 9 1 1 dummy
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prior is close to a threshold. Hence, the op-
timal allocation specifies a large number of
looks for the cells whose prior is far from
either threshold.

Regarding the sensitivity and specificity of
the sensors, in all the scenarios we assume a
worse-case prior 7@ = 0.5 for all area cells i =
1, ..., 6, and consider two general cases of
sensing situations - relatively effective and rel-
atively ineffective. We consider three types of
spatial configurations of these sensing capabil-
ities over the 6 area-cells. Recall that a sensor
becomes more effective as p; — g, increases (see
Figures 5 and 6). Thus, in the effective case we
assume that the average value of p; — ¢; (de-
noted as p — ¢) is 0.7, while in the ineffective case
this average difference is 0.2. The three spatial
configurations are: (1) Mixed - Three area-cells
with relatively large difference and three with
relatively small difference, (e.g., p; = 9,4, = .1,
i=1,2,3p =.84g=.8i=4,5,6),(2) Uniform
- All six area-cells have the same difference
(eg,pi=94g=21i=1,...,6),(3) Monotonic
- the sensitivity is monotonic decreasing, the
specificity is monotonic increasing but p; — g;
remains constant for every i =1, ..., 6.

Table 2 summarizes the results of the opti-
mization models for both sensors. From this
table we can draw the following conclusions:

e For an effective sensor (p — § = 0.7) almost
all the area-cells are determined. While the
smart sensor is obviously better, the differ-

ence in the expected number of determined
area-cells between the two sensors is 5% or
less. Also, the spatial configuration has only
a small effect on that measure.

e For the ineffective sensor (p — § = 0.2) the
performance of the sensors is quite poor (one
or two determined area cells) and it depends
on the spatial configuration. Both sensors per-
form best when the spatial configuration is
mixed, and worst when it is uniform. The dif-
ference in the expected number of determined
area-cells between these two spatial configura-
tions is about 100% for both sensors.

¢ The optimal allocation of looks depends both
on the effectiveness of the sensor and the
spatial configuration of its effectiveness
across the area-cells, but not on the type of
sensor (smart or dummy). When the sensor
is effective, looks are spread out more or less
evenly across the area-cells, unless the sensi-
tivity and specificity are high (e.g., .9 each),
in which case one look will suffice. When the
sensor is ineffective (p — § = 0.2), then the
search effort is concentrated in a few area-
cells, which are most likely to become deter-
mined after a considerable number of looks
(e.g., 11 looks in the mixed case). The other
area cells are ignored.

CONCLUSIONS

In this paper we developed two bayesian-
oriented models that describe the performance

Table 2. Sensitivity and specificity effects for L = 30, I = 6, 7» = 0.5, « = 0.1, and 8 = 0.9

Effect of sensitivity and specificity

p-q Spatial Configuration E (# det.) I I, Iy Iy Is lg Sensor
0.7 r=10(9.9.9 28,38, .8 5.9757 1 1 1 9 8 10 smart
g=1(1,.1,.1,2, 2, .2) 5.8818 1 1 1 10 8 8 dummy
p=1(9,9.9.9.9.9 5.9255 5 5 5 5 5 5 smart
g=1(2,2,2,2,2,2) 5.6277 5 5 5 5 5 5 dummy
p = (96, 91, .86, .81, .76, .71) 5.9598 5 5 8 5 5 2 smart
q = (.26, .21, .16, .11, .06.01) 5.7693 6 5 6 5 6 2 dummy
0.2 p=1(8.38,.85.5.5 2.0485 11 11 8 0 0 0 smart
qg=1(55 54 4 4 1.6179 11 11 8 0 0 0 dummy
p=1(8..8.8.8.8 0.9845 15 15 0 0 0 0 smart
qg=(6,.6,.6,.6,.6,.6) 0.8334 15 15 0 0 0 0 dummy
p = (.96, .86, .76, .66, .56, .46) 1.3654 10 13 0 0 0 7 smart
q = (.76, .66, .56, .46, .36, .26) 1.2320 10 13 0 0 0 7 dummy
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of two types of imperfect sensors - dummy and
smart - and presented optimal employment
schemes for these sensors in a variety of sce-
narios. We have shown and quantified the ad-
vantage of he smart sensor over the dummy
one, which underscores the importance of con-
tinuous monitoring of sensor data, in particular
in the presence of prior intelligence. We have
demonstrated the importance of this prior in-
telligence on the effectiveness of the search; on
the optimal employment of the sensors and on
the expected number of determined area-cells.
The optimal employment of sensors is greedy in
the sense that search efforts must be allocated
to area-cells where they can produce definitive
information in the form of determined area-
cells. Finally, we demonstrated that for realistic
sensing capabilities, the effectiveness of a sen-
sor is determined by the relation between its
sensitivity and specificity, rather than the abso-
lute values of these parameters.

The models developed in this paper may be
extended to other types of sensors - in particu-
lar reactive sensors that may facilitate dynamic
employment during the search mission.

APPENDIX

Proof of Proposition 1. Since we focus on
just one area-cell, we drop the subindex i from
the notation. Consider a collection of random
variables that describes the number of detec-
tions, indexed by the number of looks: Dy, . . .,
D,. We wish to show that

P(D,; € (a(l),b(1))) =0
as | — . Since
P(D; € (a(l),b(1))) = E[P(D; € (a(l),b(1))|6)],

it suffices to show that both P(D;, € (a(l),
b(1))|6 = 1) and P(D, € (a(l), b(1))|6 = 0) converge
to 0 as | — . Observe that, by the indepen-
dence of looks assumption, the Central Limit
Theorem implies

P(# € (uv)| 6= 1) > P(Z € (u,0))
V(1 = p)

as | — », where Z is a normally distributed
random variable with mean 0 and variance 1.

Hence

Pal) < Dy < b(1)]o = 1) = p[ 2 b
(a(l) <D, < ()| =1)= (\,m
Dl—lp b(l)—lp )
] =1 %O,
<\/lp(1_p)<\f/lp(1_P) i

as | — o, since I~ Y/2b(l) — 1" /2a(l) = 0 as | — .
Analogously, it is possible to show that

P(a(l) < D,<b(l)|6 =0)—0,
as | — «. Hence we conclude that
P(D,¢(a(l),b(1))) =1 )

as | — o @

Proof of Proposition 2. We now argue that
the smart sensor cannot be worse than the
dummy sensor. Because P(7 = ) is non-decreas-
ing in [, Equation (8) shows that Vl-/,(wl-(o)) is
non-decreasing in / too. Moreover,

P(area-cell i determined in / looks by dummy

sensor)

= > P(area-cell i determined in / looks by
k=0

dummy sensor|r = k) P(7 = k)

1
= > P(area-cell i determined in I looks by
k=0

dummy sensor|r=k)P(r=k)

!
= >P(r=k)
k=0

= Vi,l(ﬂ'z('o))-

The above shows that the smart sensor cannot
do worse than the dummy sensor. This, to-
gether with Equation (9) shows that

P(area-cell i determined in / looks by

smart sensor) — 1

as | —> . ®
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ABSTRACT

new measure based upon an ac-
Ator’s reachability to other individu-
als within the network is presented
as an improved means to study adversarial,
clandestine networks. This measure was
initially motivated by (1) characteristics of
existing power and status measures and (2)
the requirement to quickly estimate the im-
portance of actors within networks whose
data is obtained via distant and error-prone
methods. Related measures are reviewed
and the underlying assumptions and theo-
retical bases are presented. The measure is
then applied to exemplar networks and an-
alyzed. MATLAB code is available upon
request from the corresponding author.

INTRODUCTION

There exist a number of centrality mea-
sures that rely upon the structural charac-
teristics of a social network to assess the
importance of its actors (cf. Wasserman and
Faust, 1994). The majority of social network
analysis (SNA) measures perform calcula-
tions upon the mathematical representation
of the sociogram, the sociomatrix, referred to
by (X). The sociomatrix is a two-way, nu-
merical matrix, “indexed by the sending
actors (the rows) and the receiving actors
(the columns) ...,” which is equivalent to
the adjacency matrix of a graph (Wasser-
man and Faust, 1994, pg. 77).

In the context of evaluating clandestine
networks, efficiently calculated measures
that perform well despite limited informa-
tion are of increasing interest, particularly
to counter-terrorism efforts. The measure
developed in this paper was specifically
designed to serve as a 'screening’ tool to
identify individuals within such a network
who may potentially serve important roles
in achieving organizational objectives.
Consequently, those actors are deemed of
interest, serving as candidates for increased
intelligence, surveillance, and analysis re-
sources. As in all operations, military or
otherwise, measures are critical.

In the context of typical network anal-
yses, determining and examining the na-
ture of such roles is often predicated upon
network composition and analytical objec-
tives. For example, network data that cap-
tures directed relationships (e.g., who

Military Operations Research, V13 N4 2008

works for whom, familial relationship, etc.)
invokes the notions of prestige and power.
A prestigious actor is “one who is the object
of extensive ties” (Wasserman and Faust,
1994, pg. 174). Alternatively, a powerful
actor is one that “influences the behavior
(either overtly or covertly) of others in ac-
cordance with his own intentions,” imply-
ing a focus upon measuring ‘ties emanated’
(Goldhamer and Shils, 1939, pg. 171). Sym-
metric, or undirected, network data (e.g.,
friendships, telephone calls, etc.) simply
fall within the study of, and have a variety
of accompanying measures to assess, actor
centrality (cf. Wasserman and Faust, 1994,
Chp. 5). The measure presented is easily
applied to all three of these categories of
actor role analyses (prestige, power, and
centrality) and assumes that actor impor-
tance is positively correlated with an ac-
tor’s position, taking into account the cate-
gory under examination.

We propose the use of a new SNA mea-
sure-reach-based assessment of position
(RBAP). RBAP was initially motivated by
the concepts underlying the status measure
of Katz (1953). It is argued that subtle the-
oretical changes, and the resulting compu-
tational modifications, to Katz’s measure
provide a more suitable approach to ana-
lyzing clandestine networks heavily reliant
upon secrecy for their operational success
(cf. Post, 2005; Baker and Faulkner, 1993).
Note that applying Katz’s measure to the
transpose of the sociomatrix also permits
the study of power relations. The same ap-
proach may also be taken when applying
RBAP, providing flexibility in the types of
analyses that may be performed (cf.
Valente and Foreman, 1998).

Lastly, RBAP shares the concept of influ-
ence attenuation as a function of path length
as seen in Katz (1953) and related eigenvalue-
based centrality measures (Bonacich, 1987;
Bonacich and Lloyd, 2001, pg. 195). Differ-
ences in and rationale behind the implemen-
tation of attenuation in RBAP are presented,
as well as a novel use of this factor to further
facilitate the process of screening individuals.

Screening actors of interest given as-
sumptions of the flow (e.g., directed or un-
directed), the analytical context (e.g., pres-
tige, power, or centrality), and attenuation
may be based simply upon an individual’s
RBAP score relative to all other actors, as
accomplished in traditional applications of
SNA measures. However, comparing the
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changes in scores as a result of varying the
attenuation factor offers an additional opportu-
nity to identify actors of interest by assessing
their position within any of the analytic catego-
ries, from both a local and a global perspective.

The following sections briefly review re-
lated works, present the assumptions, theory,
and underlying mathematical model of RBAP,
and conclude with some examples. Note that
the actors of interest for the exemplar networks
may be obvious. However, the size of some
real-world terrorist networks will likely not af-
ford the analyst this luxury and will often re-
quire computational methods to aid experts
and decision makers (cf. MIPT, 2006). Conse-
quently, measures that can be calculated effi-
ciently, such as RBAP, are vital to enabling the
analysis of large and ever changing networks.

BACKGROUND

Given a dichotomous (e.g., 0-1) represen-
tation of a clandestine network, RBAP seeks to
identify actors that are able to reach others
(power), be reached by others (status), or con-
trol influence among all other actors (centrality)
within the network as efficiently as possible.
This invokes a common underlying assumption
prevalent in many SNA measures-that influ-
ence or information propagates through a net-
work via shortest, or geodesic, paths. The geo-
desic path is defined as “the (not necessarily
unique) shortest path through the network
from one vertex to another” (Newman, 2003,
pg- 173). The definition implies that there could
be multiple shortest paths of a given distance
between any two actors, a phenomena lever-
aged in RBAP as well as the classic between-
ness centrality measure (Wasserman and Faust,
1994, pg. 188-91).

From an interpersonal communications
point of view, flow via the shortest path may
minimize the likelihood and impact of errors or
misperceptions that often plague human inter-
action. However, as several authors have con-
tended, communication or influence between
individuals within a clandestine network may
not necessarily flow along the shortest path. For
example, regarding the impetus behind their
centrality measure that accounts for all possible

paths between any two individuals, Stephen-
son and Zelen (1989) point out, “it is quite
possible that information will take a more cir-
cuitous route either by random communication
or may be intentionally channeled through
many intermediaries in order to ‘hide’ or
‘shield” information in a way not captured by
geodesic paths” (Stephenson and Zelen, 1989,
pg- 3).

Other works suggest that when an organi-
zation is faced with tradeoffs between effi-
ciency and concealment, the subsequent net-
work structure evolves in a manner that may be
contrary to classical sociological expectations
(Krebs, 2002; Baker and Faulkner, 1993, pg.
856). However, communication may still follow
the shortest path relative to the secretive net-
work, despite the fact that such a path could be
shorter if the network were operating and
evolving freely without recourse. If secure com-
munications are required, it is assumed that
longer communication chains offer more op-
portunity for interception of message traffic
and concomitant operational risk, as well as
increased chances for losses in information or
influence. Hence, communication among paths
other than the geodesics is potentially contrary
to the organizational goals of secrecy (e.g., Post,
2005, Chapter 2).

Related Measures. The following sections
discuss related measures that led to the devel-
opment of RBAP by leveraging lessons learned
and techniques of interest. These measures in-
clude the status index of Katz (1953) and the
closely related centrality measures for asym-
metric relations developed by Bonacich (1987),
Bonacich and Lloyd (2001), as well as the radi-
ality and integration measures proposed by
Valente and Foreman (1998). For a more com-
prehensive comparison between the related
measures, the reader is referred to Wasserman
and Faust (1994, pg. 198-219) and Borgatti and
Everett (2006).

a. Katz Status. Katz developed a measure
for the status of individuals, in the context of a
popularity contest, based not only upon how
many people choose the ‘most popular” indi-
vidual but also accounting for who is doing the
choosing. Katz suggested that this recursive
measure may also be “used to study influence,

Military Operations Research, V13 N4 2008



transmission of information, etc” (Katz, 1953,
pg- 39).

Katz notes that the column sums of the
sociomatrix, X, referred to by him as the choice
matrix, pertains to the number of people that
‘choose’ that individual. Further, noting that
the elements of the powers of the sociomatrix,
given by X?, provides the number of directed
walks of length p from node i to node j, he
posited that this equates to the indirect p-step
(p = 1) choices of a given individual by the
group (Katz, 1953; Wasserman and Faust,
1994).

All possible walks may be accounted for by
raising the sociomatrix to the power of infinity.
An additional assumption that longer walks
were less effective or influential than shorter
ones required an attenuation factor a € [0,1].
Accepting these constructs, Katz’s objective
was to find the column sums of the matrix T,
defined by

T=aX+X+ X+ -+ X+
(1)

Given the computational limitations of the
early 1950s, Katz cleverly sought to take advan-
tage of the geometric series, defined as

! 1 2
i/r</ ()

which negated the need to explicitly calculate
the infinite powers of matrices (Katz, 1953, pg.
41-42). Consequently, assuming the replace-
ment of r with aX results in convergence, Katz’s
status index, s, for a network of N individuals is
easily calculated by

aX
(IXN) — 1AXN)T — (1XN)
s 1 T=1 [I — aX]

= 1PN I - aX)' 1. (3)

The conventional status index, simply the
column sums of X, was divided by (N — 1) as a
normalization procedure. Katz took a similar
approach, dividing the elements of s by the
value, m=(N — 1)!la®™ Pe!/* which accommo-
dated the underlying construct of Katz’s new
technique (Katz, 1953, pg. 42). Figure 1 illus-
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Figure 1. Choice Matrix (Katz, 1953, pg. 40).

trates the network analyzed by Katz, consisting
of actors A through F.

The original status vector, one element for
each of the six actors, is s = [0.4 0.2 0.2 0.6 0.2
0.8]; essentially, actors with higher numbers of
ties received, or high in-degree, such as F, D,
and A in descending order, dominate with re-
gards to earlier measures ascertaining actor sta-
tus. Alternatively, the status vector using Katz’s
measure, with an attenuation factor of o = 0.5,
is s = [0.47 0.04 0.04 0.41 0.22 0.45].

Using Katz’s measure, actor A now scores
higher than actor F, albeit slightly. Despite the
relatively low in-degree of actor A, his status is
highest because both of the actors with the
highest in-degree, actors F and D, choose actor
A. The change in status for actors B, C and E
from being equivalent using the original status
measure to E differing from B and C using
Katz’s measure is accounted for in a similar
fashion (Katz, 1953, pg. 42). Note that Katz’s
measure may also be used to estimate actor
power simply by analyzing the transpose of the
sociomatrix, X’.

b. Eigenvector-Based Measures. The under-
lying premise of eigenvector centrality is sum-
marized as,

Being chosen by a popular individual should
add more to one’s popularity. Being nomi-
nated as powerful by someone seen by others
as powerful should contribute more to one’s
perceived power. Having power over someone
who in turn has power over others makes one
more powerful (Bonacich and Lloyd, 2001, pg.
192).

Conceptually, this approach is closely re-
lated to Katz’s measure; mathematically, this
measure is described by
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S; = X1i51 + X2iS» +e X0iSns (4)

where an entry in the adjacency matrix, x; € X,
implies that actor i contributes to j’s status and
s; € S denotes the status of individual i (Bonac-
ich and Lloyd, 2001, pg. 192-3). In order to
determine solutions to this system, the general-
ized form

AS; = X1;81 + X282+ + X, (5)

is commonly known and solved as the eigen-
value problem (Bonacich and Lloyd, 2001, pg.
193).

As expected, network structure plays an
important role in the results of this analysis
method. However, there are unique cases
where the numerical results may not capture
the more intuitive understanding of centrality.
For example, all actors within each of the hy-
pothetical, directed networks shown in Figure 2
have zero status due to “. .. positions that re-
ceive no choices have no status and contribute
nothing to any other position’s status” (Bonac-
ich and Lloyd, 2001, pg. 139).

To deal with this conceptual and mathe-
matical issue, Bonacich and Lloyd proposed
‘a-centrality” that allows “every individual
some status that does not depend on his or her
connection to others” (Bonacich and Lloyd,
2001, pg. 193). With the vector of exogenous
sources of status, e, and a parameter reflecting
the “. . . relative importance of endogenous ver-
sus exogenous factors in the determination of

Figure 2. Notional Networks (Bonacich and Lloyd,
2001, pg. 192).

centrality” (i.e., @), the matrix solution for sta-
tus is given by

s=aXste=>s=(I—aX)le. (6)

Note that Katz’s model (Equation 3) is sim-
ilar to this approach and simply differs by a
constant of one when e is a vector of ones
(Bonacich and Lloyd, 2001, pg. 194). Although
the theoretical development, range, and magni-
tude of e are not discussed, other than being a
vector of ones in their example, the new ap-
proach both permits analysis of asymmetric re-
lationships and is equivalent to the original
formulation in Equation 4 as « approaches the
inverse of the largest eigenvalue, Anax |
(Bonacich and Lloyd, 2001, pg. 196-7).

c. Geodesic Measures. Valente and Fore-
man (1998) developed a dual-purpose measure
based upon a reverse geodesic distance ap-
proach. Given that the measures of interest are
integration (“can be reached by many others
rapidly”) and radiality (“the degree to which an
individual’s relations reach out into the net-
work”), the measure is dual-purpose in that the
input is either the adjacency matrix or its trans-
pose, respectively (Valente and Foreman, 1998,
pg- 90). The integration measure for a given
actor k is formally defined as

>.RD;,
j#k
I(k) = N_1’ (7)

where RDj is the reverse geodesic distance,
computed by subtracting the geodesic distance
between j to k from 1 plus the network diame-
ter, D, which is defined as the longest, shortest-
path distance between nodes in a network
(Wasserman and Faust, 1994, pg. 112; Valente
and Foreman, 1998, pg. 92). To calculate radi-
ality, the same measure is simply applied to the
transpose of the adjacency matrix (Valente and
Foreman, 1998, pg. 93).

Note that there is no attenuation factor as-
sociated with longer geodesic paths. In addi-
tion, RDj, cannot accommodate multiple in-
stances of geodesic paths between any two
given actors. Consequently, radiality may not
truly capture “the degree to which an individ-
ual’s relations reach out into the network” if
multiple shortest paths implies more potential
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for the exertion of influence or power (Valente
and Foreman, 1998, pg. 90).

Lastly, a reach-based measure of centrality
that “counts the number of nodes each node
can reach in k or less steps” is offered by Bor-
gatti et al. (2002). This too can be applied to
directed and undirected networks. However,
this particular measure does not accommodate
multiple shortest paths and, from the documen-
tation available, the method of attenuation, if
any, is not immediately apparent.

A couple points of contention exist: the
characteristics of the flow captured or assumed
by the related measures and, the somewhat
arbitrary choice and allowed range of the “at-
tenuation” factor. What differentiates RBAP
from previously developed measures of power
is (1) the use of multiple instances of shortest
paths; (2) the process of accounting for any
available options to the actors regarding alter-
native shortest paths; and, (3) uncoupling the
concept of ‘attenuation” from conditions neces-
sary for a system solution.

Flow Characteristics. The length of a walk,
trail, path, or chain is determined simply by
summing the lengths of each of its arcs. A trail
is “a walk in which all of the lines are distinct,
though some nodes may be included more than
once” (Wasserman and Faust, 1994, pg. 107). A
path is defined as “a walk in which all nodes
and (consequently) all lines are distinct” (Was-
serman and Faust, 1994, pg. 105). Additionally,
given a digraph, the term path implies that the
direction of the arcs within the path also follow
the direction of the path, otherwise it is a chain
(Bazaraa et al., 1990, pg. 422). Paths within a
dichotomous network are of primary interest in
RBAP. The goal of RBAP is to characterize the
relative position of members within a clandes-
tine network by assessing possible transmission
paths that may promulgate information or in-
fluence via interpersonal communication.

Recall the use of powers of the sociomatrix
by Katz and the related eigenvalue-based mea-
sures developed by Bonacich (1987) and Bonac-
ich and Lloyd (2001). The elements within the
powers of the sociomatrix capture a variety of
directed edge sequences that may not necessar-
ily be conducive to operations security. In ad-
dition, the length of these sequences within
these measures extends to infinity. This ‘infi-
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nite’ amount of communication exchanges be-
tween individuals is also counter to a clandes-
tine network’s operational security objectives.
This suggests that a more direct, geodesic-
based approach is more appropriate. Note that
for any connected network the longest geodesic
with edge lengths of one is bounded above by
(N —1).

Leenders previously pointed out that the
information contained within the powers of the
sociomatrix is often misunderstood or misper-
ceived, depending upon the operative defini-
tion of ‘'walk” (Leenders, 2002, pg. 32). Using
the network definitions discussed above, Deo
offers a more precise definition of the content of
the powers of the sociomatrix, which is sum-
marized in the following theorem.

Theorem 2.1.  The (i, j)th entry in X? equals
the number of different, directed edge se-
quences of p edges from the ith vertex to the jth.
(Deo, 1974, pg. 222)

Deo also noted that these sequences fall
into three categories:

(1) Directed paths from i to j: those directed
edge sequences in which no vertex is tra-
versed more than once;

(2) Directed walks from i to j: those directed
edge sequences in which a vertex may be
traversed more than once, but no edge is
traversed more than once; and,

(8) Those directed edge sequences in which an
edge may also be traversed more than once
(Deo, 1974, pg. 222).

Observe that the second and third catego-
ries of information flow are likely detrimental
to the security goals of a clandestine network.
For example, using Figure 1 with p = 4, a
possible directed edge sequence of length four
between A to D could include A-F-A-F-D. If the
network of interest is trying to maintain secre-
tive communications, the banter between A and
F may be unlikely or at least unwise (Post, 2005,
Chapter 2). Although the measure developed
by Katz is easy to implement, this measure
captures network behavior that goes beyond
the circuitous paths posited by Stephenson and
Zelen (1989).

Therefore, RBAP seeks to assess actor posi-
tion, in any of the analytical categories, by mea-
suring the propagation of network phenomena
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via efficient information channels offered by
geodesic paths. Further, unlike the radiality,
integration, and previous reach-based mea-
sures, RBAP also accounts for multiple options,
if any, available to actors in a given context (i.e.,
multiple shortest paths).

Attenuation. The somewhat arbitrary na-
ture of the ‘attenuation’ factor, particularly in
Katz’s measure, has been noted in previous
works (Clark, 2005; Borgatti and Everett, 2006).
Conceptually, the value of « is likened to the
‘attenuation’ of a signal or influence as a func-
tion of distance traveled, which presumably
ranges between complete attenuation, a = 0,
and no attenuation, o = 1.

For his status measure, Katz suggests «
E[(2QAmax) Y Amax '] (Katz, 1953, pg. 42). Using
the same example discussed by Katz, the larg-
est eigenvalue of X for the network correspond-
ing to Figure 1 is 1.68; this implies o €[0.298,
0.595]. Hence, this approach and its underlying
assumptions restrict the ‘attenuation’ space
within which the analyst may work from the
onset. Depending upon network structure,
analysis may be accomplished outside this rec-
ommended range. However, acceptable values
of a are ultimately required for the underlying
geometric series to converge, thereby providing

a meaningful result. Otherwise, nonsensical re-
sults may occur, despite the fact that « still falls
within the reasonable analytical range between
0 and 1.

Interestingly, even within the recom-
mended range the most ‘central” actor is depen-
dent upon the value of a. Figure 3 depicts the
results of Katz’s measure as applied to the no-
tional network in Figure 1, with « varied across
the range recommended by Katz. The graph
captures the rank order of the status for each of
the six actors, with the values 6 and 1 indicating
the highest-and lowest-ranking status scores re-
spectively. Interestingly, two crossover points
exist, resulting in actors A and D exchanging
status rankings at « ~ 0.36 and actors A and F
exchanging status rankings at o ~ 0.48. Such
phenomena are clearly of interest; however, un-
less the network-dependent ranges impinged
upon « are normalized, interpretation of such
effects is untenable. Similar observations may
be made for the eigenvalue-based measures.

From these previous efforts, an opportu-
nity clearly exists to (1) enhance the measure-
ment concepts developed by Katz (1953),
Valente and Foreman (1998), Bonacich (1987)
and Bonacich and Lloyd (2001); and, (2) sepa-
rate the concept of “attenuation” from the con-

Figure 3. Change in status with attenuation.
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ditions required for system solution. These
changes offer a means to more closely capture
the network phenomena inherent to clandes-
tine networks, as well as improve upon the
analytical basis for assumptions dealing with
its attenuation as it flows through the network;
hence, these comprise the underlying motiva-
tions for the RBAP measure.

ASSUMPTIONS AND DEVELOPMENT

Recall that the shortest path between any
two individuals of a connected network with N
individuals ranges between 1 and (N — 1).
Deo’s theorem is extended via Corollary 3.1 to
enumerate the number of all pair-wise shortest
paths, simply by raising the adjacency matrix to
powers ranging from 1 to (N — 1). Note also
that this RBAP approach assumes a dichoto-
mous representation of the network, thereby
relegating the distance of existing interpersonal
relationships to 1. Although this clearly cannot
accurately represent the heterogeneous nature
of interpersonal relationships, the screening na-
ture of RBAP also assumes that very limited
information about the actors and their interac-
tions is available.

Corollary 3.1.  Given an adjacency matrix X,
as it is raised to the pth power,p =1,..., (N —
1), the first non-zero, (i,j)th element in X?, i # j,
yields the number of shortest paths of length p
from i to j.

Proof. Let x; denote the (i,j)th element in
XP. For each (i,j)th element in X?, i # j, if xg-> 0,
and xi-‘j =0fork=1,. .. (p — 1), this implies that
no directed edge sequences of length 1, .. ., (p —
1) exist. Therefore, the shortest path between i
and j must be of length p. This further implies
that the value x}; must also fall in the first

Table 1. RBAP Definitions
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category stated by Deo, which is the number of
directed, shortest paths from i to j.

Use of Corollary 3.1 facilitates the enumer-
ation of shortest paths and their lengths be-
tween all actors. The definitions in Table 1
serve as the basis for RBAP. One other under-
lying assumption of this measure is that the
highest level of power is obtained when an
actor can reach all other actors within one step.
Similar arguments are made for status (e.g., can
be reached by all others) and centrality (e.g., is
adjacent to all others). Consequently, the num-
bers provided in the matrices (R,) must be
normalized to avoid actors with numerous but
indirect paths to all others from scoring higher
than actors that, in the case of power, can reach
all other (N — 1) actors within one step. This is
accomplished with the variable r(k),.

For example, consider the network in Fig-
ure 4. Actor i, reaches three other actors via a
shortest path of length 1. Therefore, in order to
reach any other actor, j, the maximum number
of shortest paths of length 2 is bounded above
by r(i); = 3. If the three dashed paths existed in
the network, the value of R> (i,j), the number of
shortest paths from i to j of length 2, would be
3. This value and all other values in the ith row
of R, are normalized by dividing by r(i); = 3.

Suppose further that from node i, two new
nodes were reached via a shortest path of
length 2 (nodes d and e in Figure 5). Therefore,
to reach any node j via a shortest path of length
3, there are at most 3 X 2 = 6 possibilities, given
by the paths (i—a—d—j), (i—a—e—j), i—b—d—j),
(i—b—e—j), (i—c—d—j), and (i—c—e—j). Conse-
quently, this requires that the value R, (i,j), as
well as all other values in the ith row of R,s, be
divided by r(i); X r(i), = 6. To facilitate this
calculation, the matrix satisfying the conditions

o An attenuation factor, with a similar, penalizing purpose to that used in Katz (1953);
however, for RBAP there is no restriction other than a € [0, 1]

Ry (N X N) matrix that stores the number of shortest paths of length [ from any two
given actors where the criteria of Corollary 3.1 are satisfied

r(k), The number of other actors reached by actor k via a shortest path of length [

I, (N X N) diagonal matrix where, Vr(m), > 0, r,(m,m) = r(m),”' for m = 1,..., N; zero
otherwise

Military Operations Research, V13 N4 2008
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Figure 4. Paths to j given r(i); = 3.

of Corollary 3.1 is pre-multiplied by the matrix
1, defined in Table 1.

An ‘attenuation’ factor, « € [0, 1], not
unlike those seen in related works, represents
the diminishing effectiveness of communica-
tion or influence as a function of path length.
However, unlike the works of Katz (1953) or
Bonacich and Lloyd (2001), calculating the
RBAP measure is not predicated upon find-
ing a specific value for a. This offers some
analytical freedom, as « can take on any value
within its range without negating the mea-
sure’s results. Of course, deciding the specific
value to assign to « is a clear opportunity for
further sociological research. However, as
demonstrated in the example analysis, there
are potential benefits to performing what is
essentially sensitivity analysis on actor RBAP
scores across the range of a.

In addition, the attenuation is assumed to
only apply to indirect contact (i.e., when the
shortest path between two individuals is
greater than 1). Therefore, RBAP simply re-
duces to degree centrality (simple, in-, or out-
degree depending upon the data and appli-
cation) when « = 0 and is bounded above by
the total number of other nodes that can be
reached from any given node when o« = 1.
Consequently, the endpoints of this new
range now provide a consistent and meaning-
ful interpretation, with @« = 0 and o = 1
measuring actor position from a local and
global perspective, respectively. Letting 1 be
an (N X 1) vector of ones, the (N X 1) RBAP
measure is defined as

RBAP = [RX + arlez + azrlrzRXS

N-2
+ ..+ aN_Z( nl']) Rfol]l- (8)

=1

A MATLAB program provides a sensitivity
analysis procedure that applies RBAP to the
full range of «. Given the known conditions or
interpretations at either end, the varying as-
sumptions regarding the losses (or lack thereof)
of communication or influence as a function of
path length are easily investigated.

To address the logical question of deter-
mining a specific setting for «, a proxy is pro-
posed. Such a proxy for a could include the
clustering coefficient of the network, denoted
¥(G), which is the average of the clustering
coefficients for each of the actors within a net-
work. The clustering coefficient for a given ac-
tor 7 is denoted v,(i). Given the number of
neighbors of i (denoted b;), the individual-spe-
cific clustering coefficient is the “ratio of actu-
ally existing connections between the b, neigh-
bors and the maximal number of such
connections possible (b — b;)” (Sporns, 2002,
pg. 178) (cf. Watts, 1999, pg. 32-3). Conse-
quently, higher clustering coefficients may im-
ply more cohesive and interactive groups and
therefore lower communication or influences
losses, corresponding to higher values of a.

Although not a necessary condition to per-
form the calculations, application of this proce-
dure assumes that the network of interest is
connected. Considering that this measure is
reach-based, the centrality calculated for iso-
lates-actors with no or very few links to other
individuals-is zero, as expected (Brass, 1995,

Figure 5. Paths to j given r(i); = 3 and (i), = 2.
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pg. 46). If the graph is comprised of more than
one component, all output will be relative to
the specific components and not to the network
in total. Subsequently, caution must be taken to
avoid misinterpretation of the output by un-
knowingly comparing results among two or
more components rather than across all actors,
particularly if the values are normalized. If the
graph is comprised of several components,
analysis should be accomplished on the specific
components of interest, rather than applying
this measure to a number of disconnected com-
ponents simultaneously.

Finally, since the RBAP value for any given
actor is bounded above by (N — 1) regardless of
a, actor RBAP scores may be normalized, yield-
ing a number between 0 and 1. This version of
the RBAP is given by

REACH-BASED ASSESSMENT OF POSITION

ified by Katz (1953). This permits a comparison
between Katz’s status results and the prestige
(as opposed to power) use of RBAP. With o =
0.5, the Katz and RBAP status rankings are
shown in the first two rows of Table 2.

Observing that there are similarities, and
differences, between the two approaches, a
more equitable comparison between the two
methods was attempted. Recall that in Equa-
tion 1, Katz allowed infinite path lengths. As
aforementioned, considering that the context of
interest is the measurement of influence or
communication among clandestine networks,
this may be an unrealistic assumption. Instead,
suppose the path length limit of (N — 1) used
by RBAP was imposed upon Katz’s measure
while still normalizing by the original defini-
tion of m. Let this adjusted measure be defined
as

RBAP' = LBAP 9
CN-T ®) N-1
_ 1(1XN) Iy
Without normalization, the interpretation Sagj = 1 ) EO‘X‘ (10)

of RBAP is the number of other actors that can
be effectively communicated with, persuaded,
influenced, and so forth, ranging in value be-
tween the number of an actor’s immediate con-
tacts to all other individuals within the network
(N — 1). With normalization, the interpretation
is similar, but is in the context of percent of the
other (N — 1) actors. Consequently, the output
can be tailored to meet the needs of decision
makers, who may prefer percentages versus
having to compare RBAP scores against the
value (N — 1). Some examples are now offered
to discuss the resulting nature of RBAP, using
the non-normalized version.

DISCUSSION

As an initial comparison, RBAP was ap-
plied to the transpose of the choice matrix spec-

Table 2. Katz and RBAP Comparison (a = 0.5).

=1

The results, shown in the third row of in
Table 2, offer an improved comparison to
RBAP. The differences are essentially due to the
Katz’s inclusion of directed edge sequences
other than shortest paths. However, given the
underlying differences between the measures,
perfect correlation between RBAP and any
other existing, path-based measure was not one
of the research objectives.

Applying the sensitivity analysis procedure
for RBAP to all three hypothetical networks
discussed by Bonacich and Lloyd (2001) (see
Figure 2) yields the results shown in Figure 6
which are as expected. For example, from the
perspective of radiality or power, actors 1 and 2
in Network 1 are more effective than all others
in reaching out to the remaining actors.
Whereas, actor 5 has no outward connections

Rank (Value)

Method High Low
Katz A (0.47) F (0.45) D (0.41) E (0.22) B and C tie (0.04)
RBAP F (4.25) D (3.50) A (3.25) E (2.37) B and C tie (1.00)
Katz (adj) F (0.25) A (0.24) D (0.22) E (0.11) B and C tie (0.04)

Military Operations Research, V13 N4 2008
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Figure 6. RBAP applied to Bonacich and Lloyd (2001) networks.

and therefore has no capacity to influence oth-
ers.

Note that the original purpose for RBAP
was to determine the individuals who are po-
tentially the most influential or powerful, given
limited information about the network’s mem-
bers and their interconnections. However, the
flexibility of RBAP permits the analysis of any
analytical category (power, status, and central-
ity) which is determined simply by the nature
of the data input.

A logical concern regarding the implemen-
tation of RBAP is that of computational effi-
ciency. From Equation 8, the time required for
calculation is dominated by the term, Ry,
which is worst-case O(N®). Since the measure
calculations are complete when all actors have
been reached, the worst-case times required for
evaluating a given network are predicated
upon the network’s diameter. To quantify this
effect, RBAP was applied to a number of line
graphs (as shown in Figure 7), ranging in size
from N = 10. .. 1330, so that the measure must
continue to the largest diameter possible, (N —
1). (Note that the limit of 1300 nodes was due to
memory limitations; all tests were performed
on a 3.4 GHz Pentium 4 with 1GB RAM run-
ning Windows XP Pro).

Figure 7. Line graph of size N.

The performance in seconds is compared to
N in Figure 8. The solid line in Figure 8 repre-
sents a polynomial of degree three fit to the
data; this can be used as a rough estimate of the
worst-case time required to compute the RBAP
measure given a network of size N. Noting that
(1) the polynomial is increasing substantially
with N and (2) that the size of clandestine net-
works, particularly terrorist networks, can be
much larger than 1330 individuals, worst-case
run times may be prohibitive. Unfortunately,
this limitation is also shared by other social
network analysis approaches, which use O(N°)
algorithms to determine related measures such
as all-pairs shortest paths and reachability (e.g.,
Cyram, 2004).

However, the line graph represents an ex-
treme, and unlikely, topology of a social net-
work, even if the members are engaged in clan-
destine activity. As an example, the trusted
prior contacts of the 9-11 hijacker network an-
alyzed by Krebs had 19 (known) individuals;
the diameter of this network, based upon the
relationships ascertained from open source
data, was 9 (Krebs, 2002, pg. 46). The relation-
ship between population size and network di-
ameter has been of interest since Milgram
traced correspondence paths, wherein the fa-
mous ‘six degrees of separation” between osten-
sibly distant and unconnected actors was ob-
served (Milgram, 1967). Such a ‘six-degree’
graph would yield a variation of the polyno-
mial in Figure 8 but would result in dramati-
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Figure 8. Network Size (N) versus RBAP runtime.

cally reduced computational requirements.
Several works have popularized this phenom-
enon, termed the ‘small-world” property (Bara-
basi, 2002; Buchanan, 2002; Watts, 1999).
Numerous connections between real-
world, emergent networks and small-world
network behavior have been made. Examples
include Internet connections, cellular metabo-
lism, Hollywood movie-stars, protein regula-
tory networks within cells, research collabora-
tions, social networks, and sexual relationships
(Buchanan, 2002; Barabéasi and Bonabeau, 2003,
pg. 54). As a result of the small-world property,
“their diameter is O(log N) instead of O(N)”
(Eppstein and Wang, 2004, pg. 40). Similar find-
ings have been made in analyzing networks
evolving via preferential-attachment mecha-
nisms described by Barabdsi and Albert (1999)
(Liben-Nowell, 2005, pg. 16-8). In addition,
more recent research by Leskovec et al. (2005)
has shown diameter to actually decrease with
increased network size. These observations
translate directly to corresponding savings in
RBAP computational performance. Figure 9
summarizes the run time required to perform
the RBAP measure for networks ranging from
100 to 1400 nodes with varying diameters as
opposed to the worst-case diameter of (N — 1).

Military Operations Research, V13 N4 2008

As expected, if D is much less than N, then the
computation time required is significantly re-
duced. For example, the 1300-actor network
with D = 1299 required 1344.9 seconds to com-
plete. A comparable 1300-actor network with
D = 30 required 38.8 seconds. Therefore, in lieu
of real-world, large, terrorist network data sets,
initial experimental results suggest that this is a
promising approach with regards to computa-
tional efficiency.

Of course, the equivalence between social
networks and network data gathered to char-
acterize actors and relationships enmeshed
within clandestine activity remains an open
question. The object of study is still comprised
of people with links indicating some form of
interaction. Fortunately, previous authors have
addressed some of the issues that often plague
the application of social network analysis tech-
niques to clandestine networks. For example,
several efforts have studied the implications of
network sampling upon classic centrality mea-
sures using social network data (Costenbader
and Valente, 2003) and random networks (Bor-
gatti et al., 2006); the former concluding that the
stability of measures is dependent upon net-
work topology, and the latter indicating stabil-
ity, using random graphs, is somewhat predict-
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Figure 9. Impact of Diameter upon RBAP runtime.

able, particularly for denser networks. In 2003; Thomason et al., 2004, to name a few)
addition, there is increasing interest in applying Consequently, for this paper we assume that
social network analysis techniques to terrorist clandestine networks are indeed social in na-
organizations (cf. Krebs, 2002; Carpenter et al., ture and will ultimately exhibit the small-world

2002; Carley et al., 2002; Fellman and Wright, property such that the network diameter will

Figure 10. RBAP and Katz Network.
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Figure 11. Trusted Prior Contacts (Krebs, 2002, pg. 46).

indeed be much less than the number of actors
within it. Since the practical computational
bounds of RBAP are heavily dependent upon
network diameter, this property alone will con-
tribute to improved performance, given 'rea-
sonably-sized” networks.

Given that the underlying motivation for
RBAP is to provide a means to identify poten-
tial actors within an adversarial network that
exhibit greater amounts of power or influence
among the others (i.e., leaders, potential lead-
ers, coordinators, liaisons, etc.), an analysis of
the hijacker network presented by Krebs (2002)
is of interest. Of course, one must always con-
sider that the adversarial network is constantly
trying to either avoid detection or steer our
resources in their favor (cf. Sparrow, 1991; Xu
and Hsinchun, 2004; Baumes et al., 2004).

Military Operations Research, V13 N4 2008

EXAMPLES

We first highlight the usefulness of the sen-
sitivity analysis code developed for this re-
search by applying it to the Katz network
shown in Figure 1. The results in Figure 10
show similar behavior to Katz’s measure in that
the most influential individual is dependent
upon the level of attenuation selected.

However, for RBAP all values of « provide
valid results, given that the attenuation level is
justified by careful analysis of the network as a
whole. Note that for this application, « = 0
reverts RBAP to simple out-degree centrality;
whereas, at « = 1, the RBAP scores are
bounded above by the number of reachable
actors. The most influential actors, B and C, are
able to reach all other actors but have limited

Page 71



Page 72

REACH-BASED ASSESSMENT OF POSITION

Figure 12. RBAP and Hijacker Network.

options or alternative geodesic paths to do so.
Such topological consequences are captured by
r, which explains the resulting scores being less
than (N — 1 = 5) for these actors.

In addition to providing the traditional
type of information to a decision maker, the
sensitivity analysis approach also offers a
means to quickly screen actors, identifying
those that are potentially of interest, based
upon their network positions within a local and
global perspective.

Turning now to the 9-11 hijacker network
studied by Krebs (2002), this screening tech-
nique is demonstrated. This data comprises the
network of trusted, prior contacts among the
hijackers, extracted from open source informa-
tion by Krebs; the network is shown in Figure
11. To facilitate analysis an identifying number,
shown in parenthesis by each hijacker’s name,
was added. Note also that the resulting graph is

undirected; therefore, applying RBAP to this
data is in the context of centrality or radiality
rather than power or influence.

An initial look at the rank orderings based
upon RBAP scores and varying levels of « are
provided in Figure 12; higher RBAP scores re-
sult in higher rankings, ranging from low (1) to
high (19) for this network.

As observed with the Katz data, determin-
ing the most central individuals according to
the RBAP measure is predicated upon the
amount of attenuation assumed. Mohammed
Atta (actor 5), the purported ring leader, is
initially tied with seven other individuals, all
having a degree of 3, for rank 9. However, as «
is increased to 1, meaning less attenuation with
longer paths, Atta’s rank goes down substan-
tially; this effect is illustrated in Figure 13.
Crossovers such as these may reveal individu-
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Figure 13. Mohammed Atta (5) RBAP Rankings.

als that are strategically connected from a local
perspective, but effectively cut off from the re-
mainder of the network from a global perspec-
tive. Such an individual could serve as a cell or
team coordinator practicing good operational
security techniques.

Other interesting results from Figure 12 are
those actors who remain low (or high) regard-
less of the level of a as well as those who start
low at « = 0 and move up with increasing a.
Consider actors 1 and 2—Suqami and Wail
Alshehri—whose RBAP measures tend to stay
relatively low over the range of o; this effect is
highlighted in Figure 14. These terrorists are
not only in the periphery of the network, but
they are both connected via actor 3, Waleed
Alshehri, who is also somewhat isolated from
the network and whose RBAP measure exhibits
similar behavior to that of Atta (decreasing
with ).

In contrast, two other apparently isolated
actors, A. Alghamdi (12) and S. Alhazmi (16),

Military Operations Research, V13 N4 2008

are connected directly to two of the most cen-
tral actors (11 and 15) from a betweenness,
information centrality, eigenvector, and Katz
perspective (Verified by Cyram, 2004). Conse-
quently, despite the low degree of actors (12)
and (16), they are connected directly to the core
of the network which significantly improves
their corresponding RBAP scores as the impact
of attenuation is diminished (see Figure 15).
Note also that the most central actors, H.
Alghamdi (11) and N. Alhazmi (15) not only
begin with a high rank (due to their high de-
gree) but maintain their relatively high ranking
throughout the range of «, as seen in Figure 16.
Clearly, the size of the sample network
lends itself to inferences of actor roles by in-
spection. As networks grow in size and con-
nectedness, potential targets or individuals of
interest are frequently not intuitively obvious.
Considering this, RBAP may be used to search
for actors with similar patterns as those high-
lighted within this analysis. Thus, a new mea-
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Figure 14. Low-Scoring Peripheral Actors, Suqami (1) & Wail (2).

sure is added to the SNA arsenal, assisting the
warfighter in finding the proverbial needle in a
haystack, and supporting the prosecution of
adversarial networks.

CONCLUSIONS AND
RECOMMENDATIONS

The measure presented shares some as-
pects of other walk-and geodesic-based ap-
proaches to gaining insight into an actor’s po-
tential for influence or power based upon their
position within a given network. However,
RBAP provides more analytic freedom regard-
ing the common assumption of attenuation as a
function of distance between individuals. The
small-world property often inherent to social
networks provides a degree of computational
efficiency to the measure. Consequently, as-
suming that the network of interest is reason-
ably sized (e.g., 3000 actors or fewer) this mea-

sure should be responsive to changing
information (an estimate solely based upon
memory limitations of the hardware used for
this research).

The intended purpose for RBAP is to facil-
itate the investigation of adversarial non-coop-
erative networks, particularly if the network
consists of large number of actors. Actors of
interest may be identified by consistently high
(or low) RBAP scores as well as those that
improve or decrease significantly with a corre-
sponding change in «. Those individuals that
are identified through this process can then be
subject to increased intelligence scrutiny, either
to improve the accuracy of the network data, or
to set the stage to affect the organization for
political purposes.

Such political endeavors often involve per-
suading an organization to change their posi-
tion on a given issue, to modify their inherent
approach used to achieve their goals, or to even
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Figure 15. Well-Connected Peripheral Actors, Alghamdi (12) & Alhamzi (16).

disband entirely. Given that an adequate
amount of information regarding the individu-
als and their associated relationships has been
obtained, courses of action to achieve these po-
litical endeavors could include persuading the
entire organization from within. For example,
assuming the clandestine network is adver-
sarial, one must first determine those individ-
uals that are accessible. Among this set, those
with higher RBAP scores, and who are conse-
quently more effective at reaching or influenc-
ing others, would make attractive participants
of collusion.

Although « has been specified as a scalar to
this point, a possible extension of this measure
could incorporate a matrix of individual-spe-
cific attenuation factors. Therefore each indi-
vidual i would be assigned an attenuation fac-
tor, a;. The scalar « in Equation 8 would simply
be replaced by the (N X N) diagonal matrix
where A(ii) = «;, zero otherwise. A possible
means to estimate these values could be de-
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rived via a decision analytic model using the
five bases for power—attraction, expert, re-
ward, coercive, and legitimate—specified by
(French, 1956, pg. 183-5) or individual charac-
teristics such as charisma, appearance, and so
forth. This data could then be used to gain
insight into the effort required to discredit (or
support) a specific individual, thereby dimin-
ishing (or increasing) their relative power or
influence within the network. Holding all other
individual’s attenuation factors constant, sensi-
tivity analysis of the attenuation factor of the
individual of interest would yield the concom-
itant change in power structure based upon the
RBAP scores.

In addition, it is important to note that
RBAP is not solely relegated to the study of
networks comprised of individuals and rela-
tions. Relationships and interactions among in-
dividuals, among organizations, among re-
sources, or among a mix of such ‘networked’
elements may also be analyzed using RBAP, as
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Figure 16. Central Actors, H. Alghamdi (11) & Alhamzi (15).

long as meaningful constructs quantifying their
relationships can be identified (cf. Carley et al,,
2002).

Other future research activities should in-
vestigate improvements in quantifying the ro-
bustness of RBAP to missing or incorrect data.
The use of random networks (i.e., random
graphs) to study other social network phenom-
ena (and their representative measures) has
been attempted, but with mixed results (cf.
Newman et al., 2002; Newman, 2003; Borgatti et
al., 2006; Watts, 1999). Robustness of classical
network centrality measures given data errors
such as “. .. edge deletion, node deletion, edge
addition, and node addition” has been ex-
plored by (Borgatti et al., 2006). Unfortunately,
the underlying graphs used in their experi-
ments were random in nature, as opposed to a
more representative small-world network to-
pology (Newman et al., 2002, pg. 2571). None-
theless, the authors concluded that responses to
error were ultimately a function of error type

and network density (Borgatti et al., 2006). Al-
though similar findings using ‘real” and exper-
imental network data are provided in Bolland
(1988), the redundant nature of the data may
have biased the experimental results. The sen-
sitivity of other, more general, network mea-
sures such as global efficiency, critical path
length, density, diameter, and radius of scale-
free graphs has also been explored by Barabasi
and Bonabeau (2003) and Thomason et al
(2004). Whether these conclusions map to more
appropriate network topologies remains to be
seen and, based upon the analysis of network
disruption as seen in Albert et al. (2000), is
likely heavily dependent upon where the miss-
ing data lies within the network. Fortunately,
RBAP may be quickly recalculated in the event
that changes to existing data or new inputs
occur.

From a counter-terrorism perspective, the
RBAP measure offers another means to gain
insight into adversarial, clandestine networks
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such as al Qaeda, Ansar al Islam, and the many
others that threaten the existence of peace
throughout the globe. Due to the secretive na-
ture inherent to these organizations, methods
that provide useful information despite limited
or uncertain data are of interest. From a social
networks perspective, this measure is not in-
tended to be a direct competitor to the numer-
ous, classical measures in existence, but a com-
plement to enhance the study of network data.
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INTRODUCTION

The previous paper in this series
(Speight & Rowland, 2006) set out a generic
structure for the rural infantry battle and
provided details of a model of the approach
phase of such a battle. This model was
closely aligned to the evidence gathered
from a series of instrumented peacetime
exercises featuring trained troops in realis-
tic tactical settings. However, there is a
world of difference between the physical
and psychological environments encoun-
tered in even the most realistic of trials and
those that are normally faced by soldiers in
genuine combat. The paper just referred to
lists several factors that will have a major
impact on infantry battle outcomes. Yet
Rowland (1987, 2006) and Rowland & Ri-
chardson (1997) have shown that, even
when the effects of such influences are al-
lowed for, historical analysis reveals a se-
vere degradation in combat performance
compared to that achieved in trials. For
infantrymen in the defence the kill rates
achieved in trials are something like a fac-
tor of ten down on those that could be
expected based on range results. Further
analysis by these two authors suggests that
the rates actually achieved in wartime con-
ditions are a further factor of ten down on
those achieved in trials. Doubtless combat
models based on idealised portrayals of
peacetime performance may serve many
useful purposes. However, if military OR is
to list combat validity as one of its aspira-
tions, in the sense of describing or predict-
ing the probable outcome of genuine bat-
tles, then analysts will need to understand
the way in which performance degrades in
these conditions. They must then face up to
the challenge of representing this degrada-
tion in a convincing fashion in their battle
models. It is often suggested that, if models
are used only as a means of comparison,
then such comparisons will not be affected
if these effects are excluded in all the alter-
natives being compared. Obviously,
though, the indicated ranking of alterna-
tives may be changed if the latter are dif-
ferentially affected by combat degradation.

This paper is concerned with military
effectiveness in dismounted infantry com-
bat, both at the level of individual behav-
iour and also at that of collective perfor-
mance. It does not attempt to take account
of additional factors, such as surprise, artil-
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lery bombardment, the influence of any ar-
mour/anti-armour weapons that may be
present, or the like. These could, of course,
have a major impact on any engagements
where they are involved. However, until
the major behavioural issues are properly
dealt with in modelling terms it will not be
possible to allow for these additional fac-
tors in a satisfactory manner.

This, then, is a modest first step to-
wards the goal of incorporating behav-
ioural factors in a resolved infantry combat
model. Even so, the amount of effort in-
volved has been considerable, relying on
several interacting and contributing work
packages, substantial in their own right,
that cannot be incorporated in a single ar-
ticle. First among these has been the con-
struction of a model that represents a styl-
ised infantry assault in peacetime
conditions, based on instrumented tactical
trials using trained soldiers (Speight &
Rowland, 2006). This has included the
means used to produce statistically accu-
rate representations of key terrain features
noted at the trial sites. Next has come the
evidence that, compared to such peacetime
performance, that actually achieved in his-
torical battles has been appreciably de-
graded (Rowland, 1987, 2006 and Rowland
& Richardson, 1997). Lastly, we have relied
on accounts, by some directly involved in
live combat, of the behavioural patterns
that may be responsible for this degrada-
tion (Rowland & Speight, 2007). The ideal
for the present article would be to make it
completely self-contained. However, these
sources and the details they contain are all
integral parts of one continuing effort, and
will be mentioned as required.

Figure 1 sets out in schematic form the
approach taken in this paper. The boxes
above the dotted line are concerned with
the basic model just referred to. The boxes
below the dotted line are concerned with its
adaptation to combat conditions. Targets
are acquired according to the logic previ-
ously devised and, other things being
equal, these acquisitions will lead to firings
against the targets concerned. The level of
what we have termed Combat Anxiety in
each soldier will be a function of this in-
coming fire. The response to this level of
anxiety will depend on each soldier’s Warf-
ighting Resolve. This postulated individual
attribute is based on the results of historical
analysis (Rowland & Speight, 2007) and is
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Figure 1. The figure sets out in schematic form the research approach that that will described in greater detail

in this paper.

associated with military rank. The degree to
which a soldier participates in the battle, and
the extent to which his firing accuracy is af-
fected, is thus a function both of the incoming
fire and the Warfighting Resolve of the individ-
ual concerned. This in turn will affect the char-
acteristics of each side’s returned fire.

We are not aware of other initiatives closely
akin to the present one in the area of infantry
combat modelling so, as already mentioned, we
see this very much as a first step. As such we
believe that the actual results that we quote are
not so important as the patterns that they fol-
low, as compared to those revealed by histori-
cal analysis. It also seems important to provide
descriptions of the underlying modelling ap-
proaches used, as well as some that were re-
jected, and the considerations that led to these
choices. Once this has been accomplished we
should stand a better chance of improving on
the present logic and, most importantly, of di-

recting our search for such additional data as
might put all future initiatives on a sounder
footing.

MODELLING CONCEPTS AND THEIR
LINKS TO HISTORICAL ANALYSIS

A central thread running through the
present initiative is that of individual differ-
ences in the willingness or ability of soldiers to
make an active contribution in battle. Many
experienced military observers have noted
these differences. Early attempts at description
and quantification were produced by such as
Wigram (1943) and, especially, by the pioneer-
ing efforts of Marshall (1967). The work de-
scribed by Rowland & Speight (2007) was
based on the records of many other military
personnel who, during their direct participa-
tion in front line combat, made a careful note of
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the patterns of behaviour that they had ob-
served. The main thrust of the paper just men-
tioned was to collate this evidence and then
devise a descriptive framework, linking the lat-
ter to the work of others that had also stressed
individual differences in various aspects of bat-
tlefield behaviour. Clearly, a set of descriptive
data, even if it is complete, does not in itself
constitute a model. The task for the model
builder is to fill in the gaps, assemble the addi-
tional information needed for the task, and then
construct a coherent dynamic logic that will
explain the observed phenomena and, hope-
fully, predict future combat performance. In the
present case it will be apparent that, despite the
efforts of those who have striven to collect suit-
able data, many gaps remain. In what follows
we shall indicate clearly where, in the absence
of hard evidence, we have had to resort to
subjective judgement.

Warfighting Resolve

It is postulated that the tendency to exhibit
a pattern of conduct in combat that can best be
described as heroic is a stable individual at-
tribute which, for present purposes, we shall
describe as a combatant’s Warfighting Resolve.
Where a given individual stands on the dimen-
sion of Warfighting Resolve will determine in
large part his likely behaviour pattern during
front line action. Table 1 is a copy of Table 4 in
Rowland & Speight (2007), but with the final
column, headed Estimation method, replaced

MODELLING THE RURAL INFANTRY BATTLE

by one listing shorthand descriptors suitable
for modelling purposes. (The three letter code
following each descriptor will be used in table
headings.) The groups A to F can be thought of
as occupying different intervals along the
Warfighting Resolve dimension, with Group A
having the least resolve and Group F the most.
The demarcation points between successive
groups may be considered as fixed thresholds.
However, the expected number of soldiers ly-
ing between these successive increasing thresh-
olds (shown as mean proportions in column 2)
should be taken as estimates for British troops
only. In other armies the distribution of values
along the Warfighting Resolve dimension may
be different.

At this stage three points should be empha-
sised. Firstly, the described level of combat per-
formance strictly applies to attacking troops
during the advance and to the same troops in
hasty defence. However, having assumed that
the Warfighting Resolve of an individual is an
enduring characteristic, it is also assumed that
somewhat analogous patterns of behaviour (yet
to be described) will be exhibited by that same
individual in defence. Secondly, the Groups D
and E weapon use descriptors (not effective
and sub-optimal) have not been defined by the
original military observers, let alone quantified.
Thirdly, for all groups, especially in the case
just highlighted, behavioural patterns must
both be specified in unequivocal terms and
linked to objective model features.

Table 1. Behaviour patterns for groups with different levels of Warfighting Resolve

Group P Mean. Level of combat performance Shorthand descriptor
roportion

A 7% Avoids combat Non participant (NPA)

B 7% Present until contact, but then does not Freeze at contact (FAC)
fire or advance

C 36% Continues after contact, but subsequently Freeze during advance (FDA)
halts and does not fire

D 37% Maintains advance to end, but no effective Passive follower (PAF)
weapon use

E 11% Full participation in combat, but weapon use Active follower (ACF)
sub-optimal

F 2% Heroic performance - full participation & fully Hero (HRO)

effective weapon use

Military Operations Research, V13 N4 2008
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The distribution of Warfighting
Resolve as a function of rank and
of force effectiveness

From the material summarised in Rowland
& Speight (2007) it seems quite clear that the
incidence of the different categories of combat
behaviour listed in Table 1 may be expected to
vary as a function of rank. Those highest up the
promotion ladder are the most likely to exhibit
a pattern of behaviour that can be classed as
heroic. At the same time, although incidences
of non participant behaviour at these elevated
levels might be very rare, cases of this kind
certainly have occurred in the past. These
considerations have led us to suppose that
Warfighting Resolve must be a distributed at-
tribute, but that the parameters of this un-
known distribution (or family of distributions)
must differ as a function of rank. It seems rea-
sonable to suppose that the location of any
distribution will shift towards the heroic end of
the scale as rank increases. We have investi-
gated two main approaches to account for, or
describe, this shift. As will be made clear in the
section that follows, any approach of this kind
will have to accommodate the possibility that
different forces may differ in terms of their
Warfighting Resolve.

We first examined a version of the ap-
proach used in the all-too-familiar statistical
routines for the analysis of variance. A model of
this kind supposes that the distribution of
Warfighting Resolve can be described by an
overall mean; a set of constants, one for each
rank; plus a random within-rank component.
The model may be extended to different armies
by replacing the overall mean with a set of
means, one for each army being considered. A
first assumption would be that the within-rank
components would all be normally distributed
with equal variance. Fitting this model to the
historical data is reasonably straightforward.
Assuming the within-rank distributions to be
standard normal, one must first find a set of
rank means, plus a heroic behaviour threshold,
that will yield the historically observed propor-
tion of heroes as a function of rank. One must
then find the set of threshold values for the
other categories of combat behaviour that yield

the overall (all ranks included) proportions of
such behaviour.

It will be obvious to readers of the present
article that, with this many parameters being
adjusted, the fit to the historically observed
gallantry award and behaviour category fig-
ures will be perfect. A model of this kind will
only have value if one is prepared to rely on it
for extrapolation. One use might be to give an
indication of the likely proportions of behav-
iour other than heroic within each rank. An-
other might be to predict the likely behaviour
patterns for forces that may be more, or less,
effective than those that have yielded one’s his-
torical data. In this latter context the behav-
ioural model as just described did not give
wholly convincing answers. It was felt that an
exceptionally effective force, with a greatly
raised proportion of heroes, would also be ex-
pected to have a greatly increased proportion of
active followers, the category next in line for
combat resolve. However, to obtain an increase
that was anything like commensurate with the
increase in heroes seemed to require the normal
distribution to be replaced with one that was
positively skewed. Although different alterna-
tive distributions were examined, they brought
in their train such complications as a require-
ment for extra arbitrary parameters, as well as,
in many cases, a somewhat strained logic to
account for the different rank means. These
considerations led us eventually to an alterna-
tive approach.

The different rank constants mentioned
above presumably evolve due to the various
effects of initial screening, selection and subse-
quent promotion. The second approach we de-
vised in order to account for the observed phe-
nomena made overt reference to these
processes. Informal evidence, and objective in-
vestigations such as the FIGHTER 1 study con-
ducted by the US (Egbert et al, 1957 and Harri-
son et al, 1953), suggest that before the event
one cannot forecast with absolute confidence
how an individual will perform in live combat.
Initial screening, selection and promotion can-
not therefore be conducted directly in terms of
Warfighting Resolve, but rather in terms of
some complex military attribute that is imper-
fectly correlated with it. We shall call this di-
mension judged military aptitude. We also as-
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sume that the different ranks will occupy
different contiguous intervals along this apti-
tude dimension, the highest ranks occupying
the top end of the spectrum and the lowest the
bottom end. We have assumed that Warfight-
ing Resolve is normally distributed. Just as in
the last approach, the evidence suggests to us
that, within the serving military population, the
distribution of judged military aptitude is not
normal, but rather is positively skewed. To a
first approximation though, since judged mili-
tary aptitude only has an indirect bearing on
Warfighting Resolve, the upper tail of the nor-
mal distribution may be regarded as an ade-
quate representation of this skewed distribu-
tion. Using this approximation we can compute
the proportion of those with a given rank likely
to exhibit a given combat behaviour pattern via
one of the many published algorithms dealing
with the bivariate normal distribution surface.
Although not yielding a perfect fit to the ob-
served data, this second approach calls for
many fewer fitted parameters. Once having se-
lected an arbitrary truncation point along the
judged military aptitude dimension, plus a cor-
relation coefficient between this dimension and
that of Warfighting Resolve that results in the
observed overall proportion of heroes, the rest
falls automatically into place. The effectiveness
of the force as a whole can be altered by adjust-
ing the assumed truncation point on the nor-
mally distributed judged military aptitude di-
mension.

The effectiveness of different forces

It has been emphasised above that the ex-
pected proportion of soldiers exhibiting the dif-
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ferent behaviour patterns set out in Table 1 are
estimates for British forces only. If we accept
these as a set of benchmark values it seems
reasonable to suppose that there may be forces
which habitually show a higher, or some a
lower, degree of collective resolve. For instance,
Gurkha infantry have achieved an enviable rep-
utation for skill and prowess in infantry battle,
and Rowland (2006) has given a summary of
some objective historical analysis that supports
this view. He mentions that some, such as
Caplan (1995), believe that this reputation has
been based on Western perception rather than
reality. However, Rowland has shown that the
Gurkhas outscore their British counterparts by
a factor of 1.6:1, not only in terms of gallantry
awards but also in terms of the number of
casualties inflicted on attackers per defending
soldier. This comparison is important, because
British Army Gurkhas are organised and
trained in similar fashion to their UK comrades-
in-arms. Gallantry awards are also made on the
same basis in both native British and British
Gurkha regiments.

Because of their importance in this con-
text the comparison between the performance
of British and Gurkha troops is set out in
more detail in Table 2. The first line sets out
the number of gallantry awards per soldier
killed in action (KIA) in World War II. The
results are quoted on a per KIA basis in order
to control for exposure to danger. The next
line gives the number of casualties inflicted
on the enemy per defending soldier, as estab-
lished by historical analysis. The figures
quoted are for World War I and World War II
defensive engagements in open country at an
attacker:defender force ratio of 1:1. They are

Table 2. Comparisons of British and Gurkha infantry gallantry awards and combat performance

Criterion

British infantry

Gurkha infantry British:Gurkha ratio

Gallantry awards in WW2

Awards per KIA 0.105 0.168 1:1.60
Defensive infantry combat WW1 & WW2
Attack casualties per defender 0.23 0.37 1:1.62
Insurgent guerrilla warfare, Malaya 1953

& 1954
Kills per platoon contact 0.63 & 0.65 1.00 & 1.02 1:1.59
Guerrillas eliminated per battalion 22.8 & 16.0 32.7 & 28.1 1:1.59
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based on 19 Gurkha battles and very many
more British battles. The significance of the
quoted difference is less than 1%. The last two
lines give results, quoted by Coates (1992),
pertaining to the insurgent guerilla campaign
in Malaya in 1953/54. The first of these lists
the number of kills per patrol contact for the
two years in question. The last shows the
number of insurgents eliminated (both killed
and captured, mainly the former) per battal-
ion per year. It will be seen that the ratio both
of awards and of all three performance mea-
sures hover around the 1:1.6 mark.

Just as the Gurkhas appear to have
achieved higher levels of performance than
the British benchmark, so it seems reasonable
to suppose that yet other forces may be ex-
pected to perform at a lower standard. Hart-
ley & Helmbold (1995) in their analysis of the
Inchon-Seoul campaign showed that, al-
though the average numbers of US and N
Korean personnel involved were very similar,
US forces inflicted more than five times as
many casualties on their opponents than did
the N Koreans. These figures are garnered
from US sources only and there may also be
biases due to weapon lethality. Nevertheless,
the size of this ratio does suggest that N
Korean forces were significantly less effective
than their US opponents.

The present authors would not claim to
be expert on matters pertaining to military
morale, sociology or performance. In this pa-
per, therefore, we shall not speculate on the
causal factors that might underlie such appar-
ent differences in force effectiveness. We sim-
ply observe that they seem to be an inescap-
able feature of military history. In what
follows we assume that differences in force
effectiveness can be represented in rough-
and-ready fashion by differences in the as-
sumed selection:rejection ratio on the judged
military aptitude dimension, resulting in turn
in a higher or lower average on the dimension
of Warfighting Resolve. Since the rank struc-
ture is determined principally by the organi-
sational demands of the force, these differ-
ences will be reflected to a greater or lesser
extent at each rank level.

The effects of armour/anti-armour
weapons and of artillery
bombardment

The results of historical analysis concerning
the suppressive effects on infantry of armour/
anti-armour weapons and following artillery
bombardment have been given in Rowland
(1987). Although there is no need to repeat the
details here a point worth making is that both
of these types of suppression seem to be mul-
tiplicative in their effects. They appear to affect
both hero and non-hero alike. In the case of
artillery bombardment we should emphasise
that the neutralising effect is transitory, al-
though the rate of decay is not well established.
So long as an infantry attack follows the prepa-
ratory artillery bombardment with minimal de-
lay its effectiveness will be maintained. The fact
that the temporal density of bombardment is as
important as the spatial density suggests a pro-
cess of intermittent renewal and decay. Anec-
dotal evidence suggests that this same feature
may also hold true for direct fire artillery bom-
bardment by, for example, opposing armour. In
what follows we shall likewise assume a re-
newal and decay process for the suppressive
effects of small arms fire.

MODEL REALISATION

Speight & Rowland (2006) have given an
account of a model of the attack phase of an
infantry engagement, together with details of
its construction and validation against the out-
comes of instrumented tactical trials using
trained soldiers. The present investigation
made use of this model, embellished with ad-
ditional features, as detailed below, required
for the representation of live combat effects.
One such feature was an additional attribute
for each soldier represented in it: his heroic
status, as detailed in the last column of Table 1.
The model is a time stepped stochastic simula-
tion in which attacking infantrymen, grouped
in sections, advance towards a defence consist-
ing of riflemen placed in trenches. Although the
terrain is flat, it can be represented as open,
mixed or close. For close terrain the spatial
density of obscuring objects, as well as the cu-
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mulative distribution of their cross-sections, ap-
proximates statistically those of the engage-
ment sites classified as close after detailed
analysis of the terrain plots obtained during the
KINGS RIDE series of field trials. In mixed
terrain the spatial density of objects is only half
that of close terrain. Open terrain has a com-
plete absence of obscuring objects During each
time step the model cycles through the follow-
ing calculations: attacker movement; line of
sight determinations; troop actions and status
changes; followed by a test for completion.
Each soldier included in the model can be in
one of the following states: searching for tar-
gets; checking a target that has been detected;
aiming; firing; reloading; recovering from a
non-lethal wounding; or killed. Defenders are
all considered to be immobile, but attackers can
either be mobile or, if they have been rendered
so by non-lethal wounding, immobile. The
model keeps track of every round fired, its
trajectory and, if the latter should encounter an
opposing rifleman, the consequences of that
impact. This study employed only eight man
sections in attack, each with a standard 30 me-
tre frontage and a 12 metre gap between adja-
cent sections. The advance commenced approx-
imately 350 metres from a line of 4 man
trenches and ended some 50 metres from this
line. The trenches were spread evenly (but with
some random variation) across the attack front-
age, with a minimum spacing of 10 metres be-
tween adjacent trenches. In order to align the
results with those stemming from historical
analysis the output measure in this investiga-
tion is casualties (defined as those killed plus
those immobilised by wounding). This is in
contrast to Speight & Rowland (2006), where
the results were quoted in terms of kills only.

The sampling of Warfighting
Resolve

In the “benchmark case, with effectiveness
similar to that of British troops, a force compo-
sition along the judged military aptitude di-
mension was assumed equivalent to a trunca-
tion point of 0.935 on the standard normal
distribution. (It will be recalled, though, that
this is an arbitrary figure. It should not be taken
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to imply that 82.5% of the population as a
whole has been rejected, or that the distribution
to the left of the truncation point is approxi-
mately normal.) The correlation coefficient be-
tween judged military aptitude and Warfight-
ing Resolve (i.e., the slope of the linear
regression line) was assumed to be 0.725.
(These truncation point and correlation values
were arrived at via an informal procedure op-
timising the fit demonstrated in Table 3 below.
However, so long as these two parameters were
varied jointly, it was found that the obtained fit
was not very sensitive to the exact values cho-
sen.) Figure 2 illustrates graphically the effects
of the assumed selection and promotion
scheme in terms of expected combat behaviour.
The vertical scale corresponds to numbers
within the force. The different ranks are strung
out along the judged military aptitude dimen-
sion. Since the latter is positively correlated
with that of Warfighting Resolve, increasing
proportions of each rank fall above the thresh-
olds of more effective combat behaviour as one
progresses towards the higher ranks. This sim-
ple scheme yields the expected incidence of
heroic behaviour as a function of rank shown in
the first column of Table 3. Also shown in the
second column is the actual pattern of gallantry
awards uncovered by the research reported in
Rowland & Speight (2007). Here the last line
represents the expected proportion in an infan-
try company overall, given the manning com-
plement usually found during World War 1II
(but it should be noted that this number has
been rounded up to two figure accuracy in
Table 3 of the just-quoted paper). The overall fit

Table 3. Model predictions of proportions
attaining heroic status compared to proportions
yielded by historical research (Rowland & Speight,
2006)

Rank Model Historical
analysis
Captain, Major 0.226 0.300
Lieutenant 0.099 0.060
Senior NCO 0.059 0.060
Junior NCO 0.026 0.025
Private 0.005 0.005
Overall 0.0177 0.0177
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Figure 2. The figure illustrates the effects of initial screening, selection and promotion along the judged
military aptitude dimension and its impact on standing along the Warfighting Resolve dimension (and hence
on the likelihood of different combat behaviour patterns as a function of rank).

and that for non-commissioned ranks is re-
markably good. However, this scheme does
overestimate the figure for Lieutenants and un-
derestimate that for Captains and Majors. It
will be noted, though, that in practice the com-
missioned officers are subject to a different in-
duction process than that for other ranks, al-
most certainly with more complex criteria for
selection and promotion. As will shortly be
made clear, for the purposes of the present
investigation this anomaly is not thought to be
crucial.

For completeness the values implicit in Fig-
ure 2 are given in numerical form in Table 4. It
will be recalled that both the judged military
aptitude and Warfighting Resolve dimensions
are assumed to be distributed in standard nor-
mal fashion. The first line of figures (in italics)
shows the threshold values pertaining to the
listed behaviour category on the normally dis-
tributed Warfighting Resolve scale. Thus, if an
individual has a personal Warfighting Resolve
rating of more than 1.928 but less than 2.725 he
would be held to be an Active Follower. Simi-

Table 4. Model predictions of the proportions within each behaviour category as a function of rank

(Behaviour category codes are given in Table 1.)

HRO ACF PAF FDA FAC NPA

Behaviour 2.725 1.928 1.055 0.249 —0.042 —9.999 Rank
Threshold Threshold

Captain, Major 0.226 0.414 0.304 0.053 0.002 0.001 2.713
Lieutenant 0.099 0.348 0.423 0.119 0.008 0.003 2.394
Senior NCO 0.059 0.283 0.462 0.174 0.014 0.007 2.170
Junior NCO 0.026 0.187 0.464 0.278 0.032 0.021 1.695
Private 0.005 0.069 0.343 0.408 0.086 0.089 0.934
Overall 0.018 0.112 0.370 0.360 0.070 0.070
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larly, the last column (also in italics) gives the
assumed rank thresholds (for a British force) on
the judged military aptitude scale. Assuming a
half-company size force in attack and defence,
we did compute a handful of results in which
the different ranks were distributed within sec-
tions and trenches in a pattern that might be
expected based on command and control con-
siderations. Command and control functions
are not, of course, properly represented in this
simple model. Nevertheless, the judicious
placement of those more likely to exhibit effec-
tive combat behaviour patterns did increase at-
trition on both sides to a certain extent. How-
ever, the effect compared to those linked to all
the other factors under investigation was very
small. In order to investigate effects due to
force ratio and sizes, therefore, we have ig-
nored rank and have simply sampled the
Warfighting Resolve status of each individual
according to the proportions to be expected
within an infantry company.

Force effectiveness variations

In addition to our benchmark set of re-
sults we have computed model predictions
for two different force compositions, one with
higher average Warfighting Resolve levels
and one with lesser. For ease of reference we
have labelled our benchmark force B, the
more effective force B+ and the less effective
one B—. The assumed truncation points on
the judged military aptitude dimension were
held to be 0.934 for B, 1.275 for B+ and 0.523
for B—. Each force followed the same
Warfighting Resolve sampling logic, given
the different initial selection rates. The B+
selection assumptions yielded an assumed
proportion of heroes a factor of 1.6 larger
than that in the B force, as determined histor-
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ically for Gurkha gallantry awards (see
above). The B— assumptions were entirely
arbitrary, chosen simply to yield a nominally
less effective force than the other two. The
expected overall proportions within the dif-
ferent behaviour categories for these three
forces are shown in Table 5. There is a slight
complication: if the B+ forces are meant to
represent Gurkhas. British Gurkhas have nor-
mally had British, rather than Gurkha, offic-
ers. The logic employed to generate the fig-
ures shown in Table 5 implies that these, too,
were a selected elite, with greater average
Warfighting Resolve than the officers in
purely British regiments. In what follows we
shall use the figures shown in Table 5 when-
ever we simulate engagements involving B+
troops. However, we shall return to this point
in our final discussion.

Model response as a function of
Warfighting Resolve categories

Table 1 gives a description of various levels
of behaviour that we have categorised under
the heading of Warfighting Resolve. We have
already pointed out that some of the descrip-
tors, such as sub-optimal or ineffective weapon
use, are somewhat lacking in precision. In all
cases, though, these forms of behaviour will
have to be tied down as definite rules of model
response. As a prelude we shall need to con-
sider the phenomenon of anxiety, both prior to
and during an engagement.

It is natural to suppose that all troops will
feel some measure of anxiety at the imminent
prospect of battle. In a sense it is meaningless to
ask whether one soldier feels more anxious
than another: anxiety is an internal state that
cannot be measured directly. What can be as-

Table 5. Overall proportions within each behaviour category for forces of different combat effectiveness

HRO ACF PAF FDA FAC NPA

Force effectiveness
B— 0.011 0.074 0.299 0.390 0.099 0.128
B 0.018 0.112 0.370 0.360 0.070 0.070
B+ 0.029 0.159 0.420 0.308 0.047 0.038
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sessed, and what does matter, are differences in
the overt behavioural signs of anxiety includ-
ing, especially, whether that man will perform
his military functions in a satisfactory manner.
Historical analysis suggests that, for the small
minority of non participants, what we shall call
pre-combat anxiety will be sufficient cause for
them to absent themselves from the forward
area of the battlefield. In what follows we shall
first consider the combat features (as portrayed
in the model) that may raise the level of anxiety
during an engagement, and then the individual
responses of those with different degrees of
Warfighting Resolve to these raised anxiety lev-
els.

Once the force makes contact with the
enemy and comes under fire we shall assume
that the underlying layer of pre-combat anx-
iety is overlaid with an additional layer of
what we shall call combat anxiety. There is
little available evidence to suggest just what
characteristics of the opposing fire do most to
affect the internal state of the troops on the
ground. One extreme position would be to
suppose that it is not the fire as such that
gives rise to anxiety, but simply the knowl-
edge that the enemy is present and active.
However, this would be to fly in the face of
the evidence collected by Cawkill (1997) from
veterans with front line infantry experience.
They suggested that they were indeed sup-
pressed by enemy fire, although there were
marked individual differences in the length
of time that they were suppressed. If in this
model one were to give no weight at all to the
density of the opposing fire then this would
produce an effect that many will regard as
anomalous. The model assumes that a greater
proportion of effective troops will place
themselves in positions where they are vul-
nerable and fully exposed to opposing fire
than will be the case with less effective
troops. If the density of attacking fire has
absolutely no psychological effect then the
result will be that defenders will kill more of
the attackers, on average, if they are faced
with effective troops than with ineffective
ones.

A common approach to the modelling of
artillery suppression is to start by assessing by
some means or other a region of effect for in-

dividual shells or rounds. These assessments
can then be linked to estimates of the probabil-
ity that an individual will be within such a
region at a given instant, plus rates of fire and
rules for the aggregation and decay of individ-
ual effects. Although much of the emphasis in
the past has been placed on indirect artillery,
some attempt has been made in peacetime con-
ditions to assess the likely region of effect for
both artillery and small arms fire. In the 1970’s
the US Army Combat Development Experi-
mentation Command (CDEC) conducted a
lengthy series of suppression trials under the
headings of SASE (Small Arms Suppression
Evaluation) and SUPEX (Suppression Experi-
ment, Phases I to III). The method was basically
to place volunteer observers using periscopes
in protected positions, asking them to lower
these periscopes when they felt the latter were
vulnerable to rounds or charges at various off-
sets. Without attempting to summarise the con-
siderable data that resulted, the indications
were that small arms rounds (either singly or in
bursts) would have to pass very close indeed
(appreciably less than 10 metres) to have a sig-
nificant effect. We found that a Combat Anxiety
sub-model based on the single or cumulative
effects of individual rounds, each with a very
small region of effect, had a very one-sided
impact. Attackers, with their difficulties of tar-
get acquisition, have low firing rates. In com-
parison the weight of fire from the defenders is
very considerable. Thus, while attacker anxiety
levels are raised to high levels, those of the
defenders are relatively little affected. If there is
indeed a relationship between anxiety and fir-
ing rates, then there will be a feedback loop that
will increase this disparity. This does not
square with the observations of Marshall
(1967), who found that non-participation was
affected relatively little by the strength of the
opposing fire.

We have come to the conclusion that, when
soldiers are facing aimed small arms fire in live
combat, the region of effect may well be larger
than that yielded by such peacetime experi-
ments. The peacetime experiments may still
yield valuable information concerning the rela-
tive detectability of rounds of different calibre.
However, when a soldier detects an individual
passing round what is important is that it pro-
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vides evidence that the enemy is firing at the
group of which he is a member. The shot in
question may not have hit the man who has
detected it, but his anxiety will be raised by the
thought that he may be the intended target for
the next round fired. With these thoughts in
mind we have adopted the following approach
for our modelling representation of combat
anxiety.

Combat Anxiety (CA). At the start of an en-
gagement it is assumed that all involved
have CA values of zero. Immediately follow-
ing an opposing round passing within a miss
distance of 50 metres or less the CA of the
individual concerned will increase to a value
of unity. Thereafter, assuming that no other
round passes within this miss distance, this
level of CA will decay exponentially at a rate
corresponding to a half life of 60 seconds.
However, if a further round should pass
within 50 metres the level of CA will revert
to unity.

This definition of Combat Anxiety still
favours the defence, in the sense that average
CA levels will be less at all stages than those of
the attackers. However, the effect is more bal-
anced than would have been the case if we
adopted a measure that relied on the number of
rounds passing within a short distance of any
individual.

We come now to the question of response
to a given CA level so measured. We assume
that this will be affected by an individual’s
standing in terms of Warfighting Resolve.
Those with the three lowest categories of
Warfighting Resolve are assumed either to
avoid raised CA levels, or to respond to
raised CA levels, by failing to participate in
the battle in any meaningful way. Heroes are
assumed to be immune to the effects of raised
CA levels. For the two remaining categories,
those dubbed active or passive followers, we
have tried to strike a balance between the
evidence produced by Marshall (1967) of fail-
ure to fire, and the evidence seen on film or
TV of hasty and inaccurate fire in dangerous
situations. We have postulated increasingly
inaccurate fire as CA levels are raised, until a
point is reached, in the case of passive follow-
ers, where firing ceases all together. In order
to incorporate these ideas in our model we
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have added an additional pair of attributes
for each soldier: his Warfighting Resolve cat-
egory and his current CA level. Each soldier
can also be in an additional state: if he is
concealed he is invisible to the enemy, cannot
be killed and does not participate in the battle
in any meaningful way. Table 6 now sets out
the model representations of the more quali-
tative behaviour patterns listed in Table 1.

We should highlight two of the behav-
ioural characteristics that the suppression
model just outlined brings in its wake. Firstly,
it should be noted that the CA thresholds for
a given behavioural effect are all lower for
passive followers than they are for active fol-
lowers. The exponential decay characteristics
assumed for Combat Anxiety thus ensure that
for a given battle event this level of suppres-
sion will last longer for the passive followers
than it will for active followers. This is in line
with the individual differences in length of
suppression noted by Cawkill (1997). A sec-
ond feature worth emphasising stems from
the heavier weight of fire produced by the
defenders (who have a comparatively simple
target acquisition task) compared to that pro-
duced by the attackers. As a result, with this
depiction of small arms suppression, very
few of the attacking passive followers are
firing at all by the time they are within a
hundred metres or so from the line of defen-
sive trenches. At the same point in the en-
gagement a goodly proportion of the defend-
ing counterparts are still firing, albeit with
reduced accuracy.

RESULTS

For the main experiment the model was
run for B+, B and B— troops in defence and
attack; in open, mixed and close terrain; and
for all combinations of n = 3, 4, ... 12 eight-
man attacking sections and m = 4,5, ... 15
four-man defending trenches. For each of
these 3X3X3X10X12 conditions the model
was run 1,000 times. The Warfighting Resolve
of each attacker and defender was sampled at
the start of each battle run. For purposes of
comparison the model was also run with all
heroes in both attack and defence in the
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Table 6. Model behaviour as a function of Warfighting Resolve category

Warfighting Resolve category

Model behaviour

NPA Non participant
FAC Freeze at contact

Moves to status concealed at commencement of each battle run.
Neither attackers or defenders search for targets. Attackers assume

prone position on first occasion CA > 0, defenders move to status

concealed.
FDA Freeze during advance

Neither attackers or defenders search for targets. Attackers assume

prone position on first occasion round passes within 5m, defenders
move to status concealed. (Note that this is substantially less than the
50m miss distance that will cause FAC troops to freeze.)

PAF Passive follower

Both attackers and defenders cease searching for targets when CA >

0.25 and recommence if CA < 0.25. Aiming accuracy is a function
of CA: 0.25 > CA > 0.1 dispersion is X 2.5 normal; 0.1 > CA >
0.05 dispersion is X 2.0 normal; 0.05 > CA > 0.01 dispersion is X
1.5 normal; CA < 0.01 dispersion is normal.

ACF Active follower

Both attackers and defenders search for targets at all times. Aiming

accuracy is a function of CA: CA > 0.9 dispersion is X 2.5 normal.
0.9 > CA > 0.8 dispersion is X 2.0 normal. 0.8 > CA > 0.6
dispersion is X 1.5 normal. CA < 0.6 dispersion is normal.

HRO Hero

Both attackers and defenders search for targets at all times. Aiming

accuracy is unaffected by CA

3X10X12 terrain/sections/trenches condi-
tions. Rather than attempting to summarise
all this material we shall quote selectively
from it in order to illustrate the main themes
that have emerged.

Comparison with the major
empirical results yielded by
historical analysis

A major result stemming from historical
analysis, not mentioned in either Rowland,
1987 or Rowland, 2006, is that defender losses
during the approach phase are normally very
small indeed - so small that they can, for pur-
poses of establishing comparisons, be ignored.
This finding is certainly mirrored in our model
outputs. For the largest battles that we have
studied (12 sections attacking 15 trenches) in
open terrain and with B+ troops in attack and
defence, there is on average less than one de-
fender killed per engagement. We should also
mention that, now that the effects of individual
differences are represented, results are very
variable indeed. Despite the large sample sizes

some random variability is still visible super-
imposed on the overall trends of the results.
Figure 3 presents the output of our model
in the terms that the historical analysis findings
are presented in Rowland (1987 & 2006): the
number of attacker casualties per defender as a
function of the number of attackers present per
defender. Each data point stems from 1,000 in-
dependent model runs. The results labelled as

Figure 3. Number of attacker casualties per de-
fender as a function of the attacker:defender ratio.
Each point is the average of 1,000 model runs.
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trials conditions are with both attacking and
defending troops all treated as heroes. The bot-
tom set of results, labelled as combat condi-
tions, samples both attackers and defenders ac-
cording to the Warfighting Resolve proportions
to be expected of benchmark (B) troops. The
two lines are those yielded by linear regression
analyses, with all the data being used for the
combat condition but only those corresponding
to attacker: defender ratios of 1:1 and higher for
the trials condition. Figure 4 shows, in bold, the
regression lines yielded by historical analysis
(Figure 4 in Rowland, 1987, and Figure 3.2 in
Rowland, 2006). Here the top line is derived
from the results obtained during the Kings Ride
II series of field trials. The bottom heavy line
(with 95% confidence limits also drawn in) is
obtained from the analysis of actions in the
Boer War and the US Civil War. Like our own
simulation results, machine guns did not fea-
ture in these two conflicts. Also included, once
again, are the regression lines (dotted) derived
from our own model outputs.

Dealing with the bottom set of results first,
little comment seems necessary. Given all the
factors likely to influence genuine historical
data, not represented in systematic fashion in
our model, the degree of correspondence is re-
markably close. While both the KINGS RIDE
relationship and that fitted to model trials out-

Figure 4. Comparison of model outputs with the
results stemming from historical analysis.
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puts show similar trends, the defensive perfor-
mance indicated by the former is appreciably
superior to that shown by the latter. However,
the live trial results are based on relatively few
actual exercises, employing laser simulators in-
tended to represent self-loading rifles, as well
as devices representing a very much more po-
tent light support weapon. Parallel trials in
which the troops fired genuine rifles with live
ammunition showed significant differences
compared to both these trials equipments, es-
pecially the light support weapon. The model
results incorporate our best estimate of the in-
ferior performance to be expected with genuine
rifles.

Rowland (1987 & 2006) quotes an historical
average of 0.23 attacker casualties per defender
when force ratios are at parity. The value pre-
dicted by the model is 0.26. Obviously, the lat-
ter figure reflects the set of parameter values
chosen on this occasion. If, for example, we had
increased the critical miss distance for inducing
Combat Anxiety from 50m to 100m, then the
figure produced by our model would have
been precisely 0.23. Although this close corre-
spondence is comforting, it is our opinion that
any feelings of triumph should remain muted
until useful progress has been made on the
various issues set out in our concluding re-
marks.

There is one further feature of Figure 3 that
is worth noting. If we look at the top set of data
points we may note that there is a clear sepa-
ration of kill rates in the three different terrain
conditions at higher attacker:defender force ra-
tios. This difference is far less marked in the
pseudo-combat conditions shown at the bottom
of the figure. It is possible that in real warfare
differences due to terrain clutter may shrink
into insignificance.

Effects due to force effectiveness

Taken over all the conditions covered by
the main experiment, attacker casualties im-
posed by B+ defenders exceeded those in-
flicted by B defenders by a factor of 1.21. The
equivalent figure for B— defenders was 0.77.
Given the modelling logic that has been de-
vised a failure to show a difference would cer-
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tainly have been extraordinary. However, it
will be recalled that the B+ logic was based on
the combat achievements of Gurkha troops re-
ported by Rowland (2006), and their kills per
defender were a factor of 1.6 greater than those
inflicted by their British comrades in arms. The
issues raised by this difference will be picked
up in the final discussion.

Figure 5 shows the casualties inflicted by
B— defenders when faced by B— and by B+
attackers, and Figure 6 shows the same thing
when B+ troops are in the defence. Since the
results that they produced were little different
we have averaged the outputs yielded by the
three different terrains. Taking the results in
Figure 3 first, it will be seen that the B— de-
fenders inflict greater casualties on less effec-
tive opponents than they do on the more effec-
tive attackers. Differences are small when there
are small numbers in opposition, but rise as the
number of attackers increases. B+ forces are
less affected in this way than are B— forces, and
it should be noted that for small numbers in
opposition the defence actually inflicts more
casualties when it is faced by more effective
troops. The trend is reversed as the number of
attackers increases. As has been noted previ-
ously, there are two competing mechanisms at
work here. B+ soldiers are more willing to
present themselves as vulnerable targets than
are their B— counterparts, and so target acqui-
sition is easier. However, they also produce

more suppressive fire. As the number of attack-
ers increases this last effect more than compen-
sates for the greater target availability. Whether
or not this suppression effect is regarded as
realistic is a matter for personal judgement. It
will be added as another topic for debate in the
final discussion.

The effects of terrain relief
(advance speed)

Rowland (2006) has reported some histori-
cal analysis concerning the effects of terrain
relief in infantry combat. It was noted that in
mountainous areas the defence appeared in
general to be more effective in terms of inflict-
ing casualties on the enemy. The present
model, with its representation of the battlefield
as a plane surface, is hardly suited to the exam-
ination of relief effects. However, the analysts
surmised that the major causal mechanism at
work here could be the effect that terrain relief
has in slowing the advance. As a rule of thumb,
casualties appeared to increase in inverse pro-
portion to the square root of the advance rate.
Thus an advance rate of, say, one tenth normal
would be expected to increase casualties by a
factor of \/10 = 3.16. Figure 4.17 in Rowland
(2006) illustrates the observed relationship.
Readers should note the appreciable scatter of

Figure 5. Number of B— and B+ attacker casualties inflicted by B— defenders as a function of numbers in

attack and in defence.
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Figure 6. Number of B— and B+ attacker casualties inflicted by B+ defenders as a function of numbers in

attack and in defence.

empirical results around the line defining the
theoretical relationship.

We decided to conduct a very limited
investigation (if only because of the greatly
increased running times involved) to see
whether our model produced outputs
roughly in line with the relationship yielded
by historical analysis. The model was run
with advance speeds reduced by a factor of
10, with B and B— troops both in the attack
and in the defence, in all three types of ter-

rain, with the numbers of attackers and de-
fenders given in Table 7. The table shows the
ratio of attackers killed at the reduced ad-
vance speed compared to that noted at nor-
mal speed (in each case taking the geometric
mean of the ratios achieved in the three dif-
ferent terrains). The average ratio in Table 7 is
3.13, compared to the figure of 3.16 yielded
by historical analysis. This correspondence is
comforting in confidence-building terms.
However, there is another useful by-product.

Table 7. Ratio of attacker casualties at one-tenth advance speed, compared to numbers of casualties when

advance speed is normal

Ratio of number of attackers killed

Attacking Number of Number of (reduced speed / normal speed)
Defending attackers defenders B B B— B—
B B— B B—
24 24 2.49 3.14 2.02 2.44
24 36 2.10 2.64 1.66 2.09
24 48 1.88 243 1.54 1.86
24 60 1.76 2.24 1.46 1.74
40 60 2.87 3.29 2.22 2.54
48 16 5.10 5.86 3.77 4.66
48 24 4.14 5.32 3.13 4.02
48 32 3.72 4.81 2.77 3.45
48 48 3.25 4.19 2.40 3.05
48 60 2.98 3.88 2.19 2.76
96 24 6.27 7.16 4.77 5.73
96 32 5.83 6.99 4.34 5.30
96 48 5.18 6.45 3.78 4.76
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The modelling exercise indicates that there
may be systematic effects that could help to
explain some of the variance in the empirical
results. The results suggest that the advan-
tage due to an elevated defence position may
increase as the attacker: defender odds
lengthen; as the size of the battle increases;
and/or if the combat effectiveness of the at-
tacker exceeds that of the defender. Con-
versely, the advantage may be less as the
numerical odds shorten; the size of the battle
decreases; and/or the attacker has relatively
low combat effectiveness. Thus, if a denotes
the ratio just defined, and r and b are the
numbers of attackers and defenders respec-
tively, then the following linear equation ac-
counts for 99.1% of the variance of the data
shown in Table 6:

y = 0.0854 + 0.455x; + 0.108x, + 0.217x;,4

where

y = In(@)
X, = In(r/b)
X, = In(rb)

1 for B/B — attackers/defenders,
x; = Ofor B/B or B — /B — attackers/defenders,
— 1 for B — /B attackers/defenders.

This illustrates the role that modelling may
play in suggesting hypotheses for further test,
and in indicating research avenues that could
be productive. We should also mention that, for
a small number of cases, we examined the effect
of reducing the distance at which attackers
were first exposed, and also of splitting the
battle into two equal halves. The idea was to
introduce in an artificial manner some of the
effects that might have resulted if undulating
relief had been included in the model. These
changes made little difference to the results.

CONCLUDING DISCUSSION

It will be obvious to all that, in the interests
of producing a reasonably compact model, we
have included within it some fairly artificial
constructs. By reducing the screening, selection

and promotion process to a single dimension
with sharp demarcation points we undoubt-
edly fail to do justice to its complexities. Few
would believe that the momentary level of anx-
iety in combat will depend solely on the miss
distance of the last enemy bullet. We could go
on. But the key question we must ask is
whether or not these artificial abstractions do a
sufficiently good job of recreating the major
interactions that occur in genuine combat. We
have been encouraged by what we have seen
when we have compared our outputs with the
patterns revealed by historical analysis. It
should be noted that the model construction
process was not driven by the historical casu-
alty findings. The guiding principle in design
was to include in our model representations of
the key mechanisms noted in realistic peace-
time trials, and then to overlay these with the
individual behavioural differences noted in ac-
tual combat. The comparison with the effects of
advance speed was added as an extra test of
model robustness. We have not attempted to
adjust any parameters in order to obtain a bet-
ter fit. There are some informal features of the
model which give us reason to hope that it is in
tune with combat realities. For instance, in
Cawkill’s (1997) questionnaire study experi-
enced soldiers were of the opinion that it is at
the start of the engagement where the desire to
take cover is normally at its height. With our
suppression logic the majority of those taking
cover do so at this point. We feel comfortable,
therefore, with what has been achieved at this
stage. We believe that the model as it stands
provides a better description than most of what
we may expect in war, and that it can provide
useful pointers to topics that now merit more
research and investigation.

For the two authors the development and
testing of this model has been a stimulating and
educational experience. We believe that the
processes of modelling and of historical analy-
sis have been complementary to one another.
While historical analysis has provided the basic
facts, modelling has suggested possible causal
mechanisms, directing attention to areas where
further knowledge or analysis is either needed
or could be profitable. On the basis of what we
have learned we would put forward the follow-
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ing topics for serious consideration by the mil-
itary OR community:

Limitations of the available historical combat data.
Even in the clinical environment of the com-
puting laboratory engagement results are ex-
tremely variable. Each of the data points in this
paper is based on 1,000 model runs but, even
so, trends are not completely regular. Re-
corded historical cases are far less numerous,
and each will be affected by real life influences
that, with the best will in the world, will never
be fully captured in our artificial models. We
also know from our attempts to reconcile dif-
ferent historical accounts of the same battle
that estimates of the number of casualties and
the number of assailants on each side can be
subject to error. These errors will be distinct
from any variability arising from the various
processes of war, and their effect will be to
distort the values of any functional relation-
ships that we attempt to derive from the his-
torical data (see, e.g., Cheng & Van Ness,
1999). Errors in estimating attacker casualties
and starting numbers will tend to reduce the
value of the slope parameter in any fitted lin-
ear regression equation. However, because
both casualties per defender and attacker:de-
fender ratio are divided by the same estimated
number of defenders, any errors in the latter
will have an opposite effect: the value of the
slope parameter will be inflated. If the number
of defenders is overestimated then this means
that both the calculated casualties per defender
and the attacker:defender ratio will both be too
low, and vice versa. High quality combat data
will collectively form the foundation for any
worthwhile advance in this area of combat
modelling, and the search for good historical
examples must be one of the most important
tasks that members of the military OR commu-
nity can undertake.

Providing a fuller account of the total infantry
engagement. We have concentrated here on the
approach phase of the rural infantry battle,
and have not moved on to the close quarter
battle that may follow. But, even if we were to
exclude the latter, our description of the ap-
proach phase is incomplete. Our simulation
stops short at a point 50 metres from the de-
fending trenches, where the nature of the bat-
tle will change and both sides start to prepare
for the hand-to-hand fighting that may ensue.
However, a proportion of all attacks will be
doomed to fail at or before this point, and
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when failure occurs some sort of withdrawal
will follow. During this phase it will be diffi-
cult for the would-be attacker to supply sup-
pressive fire. To the casualties incurred during
the advance must be added those that are in-
curred during any withdrawal. How all these
effects will balance out will not be certain until
the simulation is complete.

The way that the target acquisition process is
portrayed. As mentioned when the construction
of this model was first described (Speight &
Rowland, 2006), there is no unified theory of
visual search and detection. There is also a
dearth of good empirical data concerning
search tasks truly representative of that faced
by an infantryman in combat. It is certainly
possible that the visual lobe theory used in the
present model, and described briefly in the
reference above, wrongly estimates the reduc-
tion of acquisition times as the number of po-
tential targets increases.

Suppression by small arms fire. Although
Cawkill’s (1997) veterans have provided valu-
able evidence concerning the suppressive ef-
fects of small arms fire, the details of our por-
trayal have relied heavily on our own
subjective judgement. It is highly likely that
the judgement of different experts will vary in
this area. Obviously, any firm evidence con-
cerning the suppressive effects of enemy small
arms fire would be of great value in improving
the way that it is represented in our models.
Here we have restricted ourselves exclusively
to aimed fire. However, in most of the infantry
exchanges we see portrayed on our television
screens purely suppressive fire is much in ev-
idence. A better understanding of suppression
seems essential if we are to achieve a better
understanding of real battles.

The effect of infantry weapons other than the
rifle. In this investigation we have deliberately
restricted ourselves to one weapon type: the
self-loading rifle. The process of model devel-
opment seemed challenging enough without
adding any extra complexity. However, ever
since they assumed prominence in World War
I machine guns have had a major influence in
infantry battles. In the present version of our
model we have traced the trajectory of every
rifle round fired: if we attempted to do this for
machine guns we would obviously have a
more difficult task on our hands. But there are
also other, more important, challenges to be
faced with this weapon. Both Marshall (1967)
and Rowland (1987 & 2006) report that the
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combat degradation with these more potent
weapons appears to be less than with rifles. It
may be that commanders select for these re-
sponsibilities those that they judge will show
most resolve in battle, or that the firer is em-
boldened by the greater chance of inflicting
damage on the enemy. Many machine guns
are served by a two man crew, and this also
could be a factor in making them less suscep-
tible to combat degradation. There may be
other causes or combinations of causes. How-
ever, as things stand no model of infantry com-
bat will be complete until all the most impor-
tant infantry weapons are represented in a
convincing manner.

The synergistic effects of heroism and of super-
vision. In our survey of behaviour in combat
(Rowland & Speight, 2007) we acknowledged
the importance of direct supervision in main-
taining military effectiveness in battle, and yet
we acknowledged that we did not have the
evidence to construct an accurate portrayal of
its effects. Time and again, though, one sees
cases where meaningful participation in the
battle evaporates once the guiding influence of
supervision is removed. However, we have
come to suspect that informal example has just
as important role to play as has formal leader-
ship. Man is a social animal, and depends
greatly on the support and encouragement of
others. Witness the well-known tendency, re-
ported by Holmes (2003) and many others, for
troops to bunch when exposed to fire, even
though in rational terms this may make them
more vulnerable. In our simulation we found
that, compared to the performance of bench-
mark troops, the increase in casualties inflicted
by B+ defenders was only a factor of 1.21,
although the number of heroes was increased
by a factor of 1.6. Historical records suggest
that for Gurkhas, who were the template for
B+ troops, the factor for both casualties in-
flicted and gallantry awards was 1.6. All the
evidence that we have reviewed leads us to the
belief that the propensity for courage and re-
solve in battle is distributed in some way
among the serving population. Our own ef-
forts in the current investigation also convince
us that, if we simply stick to a linear model, it
would take a much more exotic distribution
mechanism than any that we have investigated
in order to yield a result in line with the his-
torical research. A better explanation would be
to accept that the effects of supervision and
heroism are non-linear. The example and di-
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rection provided by effective leaders and by
heroes serves to stiffen the resolve of others in
the force, and helps them to execute their mil-
itary tasks more effectively. Provisional re-
search results suggest that, both in infantry
and armoured warfare, the effectiveness of a
crew-served weapon reflects the performance
of the crew member with the highest level of
Warfighting Resolve (see, e.g., Rowland, 2006,
page 164). By the same token, a relative dearth
of heroes or of effective leadership may
weaken the whole force, and lead to a lower
level of overall effectiveness than would be
predicted by a simple linear model.

None of the issues set out above are easy to
tackle, but they do seem crucial if we are to
model combat performance in a truly convinc-
ing fashion. There are difficult modelling
choices to be made, and many of these may
affect the relationships found here. Finally,
though, we should emphasise that thus far we
have concentrated almost entirely on attrition
and the infliction of casualties. What matters in
the wider picture is not just what the casualty
level may be, but whether either side succeeds
or fails in its attacking or defensive mission. We
hope to turn to the issue of the likely outcome
of infantry engagements in a future paper.
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EDITORIAL POLICY

The title of our journal is Military Operations Research. We are interested in publishing
articles that describe operations research (OR) methodologies used in important military
applications. We specifically invite papers that are significant military OR applications. Of
particular interest are papers that present case studies showing innovative OR applications,
apply OR to major policy issues, introduce interesting new problem areas, highlight
educational issues, and document the history of military OR. Papers should be readable
with a level of mathematics appropriate for a master’s program in OR.

All submissions must include a statement of the major contribution. For applications
articles, authors are requested to submit a letter to the editor—exerpts to be published with
the paper—from a senior decision-maker (government or industry) stating the benefits
received from the analysis described in the paper.

To facilitate the review process, authors are requested to categorize their articles by
application area and OR method, as described in Table 1. Additional categories may be
added. (We use the MORS working groups as our applications areas and our list of
methodologies are those typically taught in most OR graduate programs.)

INSTRUCTIONS TO MILITARY OPERATIONS RESEARCH AUTHORS

The purpose of the “instructions to Military Operations Research authors” is to expedite
the review and publication process. If you have any questions, please contact Ms. Corrina
Witkowski, MORS Communications Manager (email: morsoffice@aol.com).

General
Authors should submit their manuscripts (3 copies) to:

Dr. Richard F. Deckro

Military Operations Research Society
1703 N. Beauregard St, Suite 450
Alexandria, VA 22311-1717

Alternatively, manuscripts may be submitted electronically in Microsoft Word or Adobe
Acrobat by emailing the manuscript and associated materials to richard.deckro@afit.edu
AND to corrina@mors.org.

Per the editorial policy, please provide:

authors statement of contribution (briefly describe the major contribution of the article)
letter from senior decision-maker (application articles only)

military OR application area(s)

OR methodology (ies)

Approval of Release

All submissions must be unclassified and be accompanied by release statements where
appropriate. By submitting a paper for review, an author certifies that the manuscript has
been cleared for publication, is not copyrighted, has not been accepted for publication in
any other publication, and is not under review elsewhere. All authors will be required to
sign a copyright agreement with MORS.
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EDITORIAL POLICY AND SUBMISSION OF PAPERS

Abbreviations and Acronyms

Abbreviations and acronyms (A&A) must be identified at their first appearance in the text. The
abbreviation or acronym should follow in parentheses the first appearance of the full name. To help
the general reader, authors should minimize their use of acronyms. If required, a list of acronyms can

be included as an appendix.

TABLE 1: APPLICATION AREAS & OR METHODS

Composite Group

APPLICATION AREA

OR METHODOLOGY

I. STRATEGIC &
DEFENSE

Strategic Operations

Nuclear Biological Chemical Defense
Arms Control & Proliferation

Air & Missile Defense

II. SPACE/C41SR

Operational Contribution of Space
Systems

Battle Management/Command and
Control

ISR and Intelligence Analysis
Information Operations/Information
Warfare

Countermeasures

Military Environmental Factors

Deterministic Operations Research
Dynamic Programming Inventory
Linear Programming

Multiobjective Optimization
Network Methods

Nonlinear Programming

III. JOINT
WARFARE

Unmanned Systems

Land & Expeditionary Warfare
Littoral Warfare/Regional Sea Control
Strike Warfare

Air Combat Analysis & Combat ID
Special Operations and Irregular
Warfare

Joint Campaign Analysis

IV. RESOURCES

Mobility & Transport of Forces
Logistics, Reliability, & Maintainability
Manpower & Personnel

Probabilistic Operations Research
Decision Analysis

Markov Processes

Reliability

Simulation

Stochastic Processes

Queuing Theory

V. READINESS &
TRAINING

Readiness

Analytical Support to Training
Casualty Estimation and Force Health
Protection

VI. ACQUISITION

Measures of Merit

Test & Evaluation
Analysis of Alternatives
Cost Analysis

Decision Analysis

Applied Statistics
Categorical Data Analysis

Forecasting/Time Series

Multivariate Analysis

Neural Networks

Nonparametric Statistics
Pattern Recognition
Response Surface Methodology

VI. ADVANCES
IN MILITARY OR

Modeling, Simulation, & Wargaming

Homeland Defense and Civil Support
Computing Advances in Military OR
Warfighter Performance and Social
Science Methods

Warfighting Experimentation

Others
Advanced Computing
Advanced Distributed Systems (DIS)

Cost Analysis
Wargaming

Length of Papers

Submissions will normally range from 10-30 pages (double spaced, 12 pitch, including illustra-
tions). Exceptions will be made for applications articles submitted with a senior decision-maker letter
signed by the Secretary of Defense.
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EDITORIAL POLICY AND SUBMISSION OF PAPERS

Format
The following format will be used for dividing the paper into sections and subsections:

TITLE OF SECTIONS
The major sections of the paper will be capitalized and be in bold type.

Title of Subsections
If required major sections may be divided into subsections. Each subsection title will be bold type
and be Title Case.

Title Subsection of a Subsection
If required subsections sections may be divided into subsections. Each subsection title will be
Title Case. Bold type will not be used.

Paper Electronic Submission with Figures, Graphs and Charts

After the article is accepted for publication, an electronic version of the manuscript must be
submitted in Microsoft Word or Acrobat. For each figure, graph, and chart, please include a
camera-ready copy on a separate page. The figures, graphs, and tables should be of sufficient size for
the reproduced letters and numbers to be legible. Each illustration must have a caption and a
number.

Mathematical and Symbolic Expressions
Authors should put mathematical and symbolic expressions in Microsoft Word or Acrobat
equations. Lengthy expressions should be avoided.

Footnotes

We do not use footnotes. Parenthetical material may be incorporated into a notes section at the
end of the text, before the acknowledgment and references sections. Notes are designated by a
superscript letter at the end of the sentence.

Acknowledgments
If used, this section will appear before the references.

References
References should be cited with the authors and year. For example, one of the first operations
research texts published with several good military examples (Morse & Kimball, 1951).

References should appear at the end of the paper. The references should be unnumbered and listed
in alphabetical order by the name of the first author. Please use the following format:

For journal references, give the author, year of publication, title, journal name, volume, number, and
pages—for example:

Harvey, R.G., Bauer, KW., and Litko, J.R. 1996. Constrained System Optimization and Capability
Based Analysis, Military Operations Research, Vol 2, No 4, 5-19.

For book references, give the author, year of publication, title, publisher, and pages—for example:
Morse, P.M., and G.E. Kimball. 1951. Methods of Operations Research. John Wiley, 44-65.

For references to working papers or dissertations cite the author, title, type of document, department,
university, and location, for example:

Rosenwein, M. 1986. Design and Application of Solution Methodologies to Optimize Problems in
Transportation Logistics. Ph.D. Dissertation. Department of Decision Sciences, University of Penn-
sylvania, Philadelphia.

Appendices
If used, this section will appear after the reference.
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