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During counterinsurgency operations, government forces with superior firepower confront weaker low-signature insurgents.
Under what conditions should government (Blue) forces attack insurgent (Red) strongholds? How should the government
allocate its force across different strongholds when the insurgents’ threat to the Blue civilian population must be taken into
account? How should the government respond to “smart” insurgents who anticipate the government’s optimal plan of attack
and prepare accordingly? How do the results change when the government takes Red civilian casualties resulting from
attacks on insurgent strongholds into account? This article addresses these questions. Using Lanchester models modified
to account for imperfect intelligence, we formulate an optimal force allocation problem for the government and develop
a knapsack approximation that has tight error bounds. We also model a sequential force allocation game between the
insurgents and the government and solve for its equilibrium. When the government has perfect intelligence, in equilibrium
the insurgents concentrate their force in a single stronghold that the government either attacks or not depending upon the
resulting casualty count. Otherwise, under reasonable assumptions regarding the government’s behavior and intelligence
capabilities, it is optimal for the insurgents to “spread out” in a way that maximizes the number of soldiers required to win
all battles. If the government worries about Red civilian casualties, the insurgents have a strong incentive to blend in with
the Red civilian population, because this can prevent government attacks while allowing the insurgents to inflict casualties
on Blue civilians. Such strategic behavior makes it harder for the government to protect its citizens from insurgent attacks.
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1. Introduction and Motivation
Many recent military conflicts can be characterized as
asymmetric combat situations pitting government forces
against guerilla, insurgent, or terrorist organizations. In
Afghanistan, U.S. forces have been fighting the Taliban and
other fundamentalist groups for several years (Barno 2007);
in Iraq, coalition forces are confronting both Sunni and
Shiite insurgencies (Hoffman 2004, Cordesman and Davies
2007); and in Colombia, a mixture of armed leftist guer-
rilla groups and drug barons challenge the local government
with continuous violence (Rabasa and Chalk 2001). In the
summer of 2006, following the kidnapping of two Israeli
soldiers and missile attacks on northern Israel, the Israel
Defense Forces (IDF) launched an attack on the Hezbol-
lah in Southern Lebanon. Although the force ratio was in
favor of the Israelis by almost an order of magnitude, the
outcome of this war was, at best, mixed from the Israeli
perspective. There was no decisive victory (Blanford 2006,
Cordesman 2007, Shelah and Limor 2007). The Hezbol-
lah combatants, diffused and hidden in defensive positions
in several villages and small towns, were elusive targets
for the superior Israeli fire power. The IDF troops had the

military means and capabilities to effectively engage the
Hezbollah targets, but simply could not find most of them.
Although inflicting heavy casualties on Hezbollah, the IDF
forces were unsuccessful in capturing the villages, and this
failure to eliminate the guerrilla units resulted in a contin-
uous barrage of missiles on northern Israel. This example
reflects the key advantage of insurgent forces, namely, their
elusiveness and low-target signature, which facilitate effec-
tive “strike-and-hide” tactics.
To model specific battles between government (Blue)

troops and insurgents (Red), we employ Lanchester-style
models (Lanchester 1916), where individual battles are
described by sets of differential equations. Lanchester mod-
els have been used in the past to describe guerrilla warfare.
Deitchman (1962) presented the first such model, which
was followed by Schaffer (1968). The engagement dynam-
ics in these papers are asymmetric and involve a mixture
of precise (aimed) and imprecise (area) fire: Guerrillas can
observe the movement and location of government forces
and engage with aimed fire, whereas government forces
have limited situational awareness and therefore engage
with area fire. Aimed fire leads to the Lanchester Square
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Law, whereas area fire leads to the Lanchester Linear Law
(Morse and Kimball 1946).
There are very few models addressing the role of

intelligence in general combat, and none in the context
of guerrilla or counterinsurgency warfare. A first attempt
to incorporate the effect of situational awareness, com-
mand and control, and intelligence in a Lanchester model is
reported by Schreiber (1964), where these capabilities refer
to the ability to distinguish between surviving and killed
targets. The effect of intelligence on the distribution and
specific types of air-to-air, ground-to-air, and air-to ground
engagements is discussed in Allen (1993).
The Lanchester models in this paper extend Deitchman’s

(1962) approach in two ways. First, we incorporate an
explicit intelligence function that manifests the targeting
capabilities of government forces against the insurgents.
Second, we employ a damage function that accounts for
Blue civilian casualties inflicted by the insurgents in addi-
tion to government force battle casualties, and later extend
the analysis to include Red civilian casualties.
In this paper, we model government attacks on insur-

gent strongholds. We use the term stronghold for a vil-
lage or town in which armed insurgents are present. We
develop models for optimally allocating government forces
to attack insurgents dispersed in several strongholds to min-
imize the total number of casualties (Blue civilian and sol-
diers) caused by the insurgents. We also use game theory to
model “smart” insurgents who are able to anticipate opti-
mal government countertactics and deploy in a manner that
leads to worst-case results for the government, and extend
our results to incorporate the impact of collateral Red civil-
ian casualties on government decision making.
From the government’s standpoint, we make a distinc-

tion between high- and low-level intelligence. Reconnais-
sance, satellite/aerial imagery, informants, and experience
from past battles regarding likely weaponry, force sizes, and
topography are all viable approaches to gaining high-level
intelligence regarding the allocation of insurgent forces and
their capabilities; thus, we grant the government perfect
high-level intelligence. Low-level intelligence governing the
precise locations of insurgent fighters within strongholds is
modeled via the introduction of intelligence functions that
dictate the probability of successfully neutralizing insur-
gents given that they are fired upon. From the insurgents’
standpoint, government preparations and troop movements
are often directly observed; thus, we grant the insurgents
perfect intelligence at both high and low levels. Even if the
insurgents cannot ascertain everything regarding the deploy-
ment of government troops, modeling insurgent behavior
as stemming from perfect high- and low-level intelligence
presents a worst-case scenario for the government, which is
what we are after.
We show that if the government has perfect low-level

intelligence, in equilibrium the insurgents concentrate all
of their force in a single stronghold that the government
either attacks or not depending upon the resulting casualty

count. Otherwise, under reasonable assumptions regard-
ing the government’s low-level intelligence capabilities and
behavior, it is optimal for the insurgents to “spread out”
and induce government attacks on multiple strongholds to
maximize the battle and Blue civilian casualties the insur-
gents can inflict. In addition, if the government worries
about collateral Red civilian casualties, the insurgents have
a strong incentive to blend in with the Red civilian pop-
ulation because this can prevent government attacks while
allowing the insurgents to inflict Blue civilian casualties.
Not surprisingly, improved intelligence and greater total
force are the main levers by which the government can
reduce total casualties.
This paper is organized proceeds as follows: In the next

section, we develop the intelligence-dependent Lanchester
model and define the associated damage function. In §3, we
consider the force allocation problem when the government
knows how many insurgents are present in each stronghold,
but does not know insurgents’ locations within strongholds
with certainty. We develop an easy-to-implement knapsack
allocation policy for the government, illustrate this model
in a symmetric case that yields closed-form solutions for
insight, and consider a more realistic “Towns and Vil-
lages” example based on the 2006 Lebanon war. In §4, we
study a sequential game that ensues when the insurgents
anticipate government actions and plan accordingly. We
show that if the government follows the knapsack policy
of §3, the insurgents can prepare by allocating their fight-
ers across strongholds to maximize the number of sol-
diers required to win all battles, and inducing the gov-
ernment to select a poor knapsack sequence. We illustrate
this game by building on our earlier example. Section 5
introduces Red civilian casualties caused by government
attacks on insurgent strongholds under the assumptions that
although the government seeks to avoid such casualties,
the insurgents do not care. We show how these assump-
tions change our earlier results, and in particular show that
when the government seeks to avoid Red civilian casual-
ties associated with attacks on insurgent strongholds, the
insurgents have an incentive to blend in with the civilian
population. Section 6 presents concluding remarks. Math-
ematical proofs are given in the electronic companion,
which is part of the online version that can be found at
http://or.journal.informs.org/.

2. Lanchester Battles and
Damage Function

Consider a government force of size x0 that engages a
stronghold held by y0 insurgents. The insurgents have per-
fect information regarding the location and movement of
the government force and therefore engage with aimed
fire. The effectiveness of the government force, however,
is limited by the intelligence governing the precise loca-
tions of insurgents within the stronghold. Let x�t� and y�t�
denote the surviving number of government soldiers and
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the insurgents, respectively, at time t. We model this situ-
ation using Lanchester-style equations modified to account
for the asymmetric nature of counterinsurgency operations.
Specifically,

dx�t�

dt
=−�y�t� (1)

and

dy�t�

dt
=−�x�t�p�y�t�� (2)

where � and � are the attrition rates of insurgents and sol-
diers, respectively. The intelligence function p�y� models
the per-shot probability of targeting an insurgent. This func-
tion depends on the degree of intelligence the soldiers pos-
sess regarding insurgent deployment as well as the number
of surviving insurgents at the time of fire. We will discuss
a specific form of p�y� later on, but first we present more
general results.
We presume for simplicity that the battle ends when one

side eliminates all those on the other.1 The analysis pro-
ceeds in standard fashion by noting that


�t�= �

2
x2�t�−�

∫ y�t�

0

u

p�u�
du (3)

equals a constant with respect to time, say 
, for from
(1)–(2),

d
�t�

dt
= �x�t�

dx�t�

dt
−�

y�t�

p�y�t��

dy�t�

dt
= 0� (4)

Equation (3) thus defines a trajectory in the x y phase plane
relating the two dynamic variables x�t� and y�t� to each
other at all times. Equation (3) must also hold at time 0,
which implies that


�0�≡ 
= �

2
x2
0 −�

∫ y0

0

u

p�u�
du� (5)

The government soldiers are victorious if the insurgents
are vanquished leaving a positive number of surviving gov-
ernment troops. This can only occur if 
 > 0, and from
Equation (5), this criterion for government victory over the
insurgents is equivalent to

x0 >

√
2�
�

∫ y0

0

u

p�u�
du≡ B (6)

where B is the victory threshold—the minimum number
of soldiers needed to defeat the y0 insurgents. Via Equa-
tions (3)–(5), when the government wins the surviving
number of soldiers, xs satisfies

�

2
x2

s − 0= 
= �

2
�x2

0 −B2� (7)

which yields

xs =
√

x2
0 −B2 (8)

while x0 − xs soldiers fall in the battle.

Suppose that if the soldiers are not victorious, or if
the government chooses not to attack the stronghold, the
insurgents cause k civilian casualties. For example, as in
the Second Lebanon War between Hezbollah and Israel, the
stronghold could be the source of missiles fired upon the
general population that would cause damage equivalent
to losing k civilian lives. Or, the stronghold could be a
base from which insurgents initiate an improvised explo-
sive device (IED), suicide bombing, or other attacks tar-
geting civilians. Whether it is worthwhile to attack the
insurgents no longer depends solely upon whether or not
victory can be achieved but also on the total number of
casualties—civilians and soldiers. We recognize that the
damage insurgents can inflict is not strictly binary depend-
ing upon whether their stronghold freely operates or is
destroyed, but given that the potential for harming civilians
is so much greater in the first situation than the second,
we treat insurgent-inflicted civilian casualties as the fixed
constant k if a stronghold is not conquered, and zero other-
wise. With equivalent valuation of civilians and soldiers,2

and utilizing (8), the damage function representing the total
number of casualties as a function of the size of the gov-
ernment force x0 is given by

d�x0�=



k+ x0 x0 � B

x0 −
√

x2
0 −B2 x0 > B�

(9)

A plot of d�x0� with B = 100 and k = 50, 100, and 150
appears in Figure 1.
To ensure that fewer battle casualties result from a suc-

cessful attack on the insurgent stronghold than the number
of civilian casualties that would occur in the absence of
such an attack, that is, d�x0� < k the size of the attacking
force must be sufficiently large. This condition is satisfied
when

x0 >




k

2
+ B2

2k
 k � B

B k > B�

(10)

Figure 1. Damage function.
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Inequality (10) shows that the minimum size of the attack-
ing force required to ensure that d�x0� < k is a decreasing
function of k for k � B, and constant thereafter. This argues
against attacking insurgents where the benefits of success
are slim (k is small) even if the ability to succeed is appar-
ent (at least B soldiers can be deployed in the attack), for
absent overwhelming force, the number of soldiers lost in
combat could exceed the downstream casualties averted by
defeating the insurgents. Note that in Figure 1, the mini-
mum troops to be allocated equals 100 when k = 100 and
150, but 125 when k = 50 in accord with inequality (10).

3. Optimal Force Allocation
Suppose that the insurgents are dispersed in m strongholds,
where the ith stronghold is defended by yi insurgents, and
conquering it would avert ki civilian casualties. The govern-
ment has two decisions to make: which (if any) strongholds
to attack, and how many soldiers xi to allocate to each
stronghold i pursued. Whereas in regular warfare forces
operate in squads, companies etc., counterinsurgency oper-
ations require a more flexible force structure that can be
tailored to a specific threat. We therefore assume that xi

can assume any integer value. We also assume for simplic-
ity that all xis are determined simultaneously (the actual
attacks need not occur simultaneously, providing that nei-
ther the insurgents nor the government have any recourse
once the insurgent and government forces have been allo-
cated). In addition to the force sizes xi and yi, the bat-
tle conditions in the ith stronghold are determined by the
attrition rates �i and �i and by the intelligence function
pi�y�. Recall that the latter four parameters determine the
victory threshold Bi (Equation (6)). The government has a
total force of size f to allocate to battles in the various
strongholds. To keep the notation simple, without loss of
generality, we assume for the remainder of this article that

k1
B1

�
k2
B2

� · · ·� km

Bm

� (11)

As a step towards determining the optimal force allo-
cation, we initially assume that the set of strongholds to
be engaged, V , is given, and that f is sufficiently large to
defeat all insurgent strongholds in that set (we will relax
these assumptions shortly). Because all strongholds in V
are defeated, there are no civilian casualties emanating from
those strongholds; thus, minimizing the total number of
casualties is equivalent to maximizing the number of sur-
viving soldiers. The latter is determined from Equation (8)
for each battle, which leads to the following optimization
problem:

max
x

∑
i∈V

√
x2

i −B2
i (12)

s.t.
∑
i∈V

xi = f  xi � 0� (13)

The solution to this problem, which is easily found by plac-
ing a Lagrange multiplier on the total force constraint and
differentiating, is given by

x∗
i =

Bi∑
j∈V Bj

f for i ∈ V � (14)

Equation (14) shows that given a set of strongholds to
engage, the optimal allocation of soldiers is proportional to
Bi; the higher the victory threshold, the greater the number
of soldiers allocated to that battle. In particular, the higher
the quality of tactical intelligence in a certain stronghold,
the fewer soldiers are allocated. We have thus reduced the
problem to determining the set V . To do so, let the binary
variables Vi = 1 if stronghold i is attacked, Vi = 0 other-
wise, and consider the following optimization problem:

min
V x

m∑
i=1

ki�1−Vi�+
m∑

i=1

(
xi −

√
x2

i −B2
i

)
Vi (15)

s.t. xi

m∑
j=1

BjVj = BifVi for i = 12 � � � m (16)

Vi ∈ �01� for i = 12 � � � m� (17)

The objective function (15) is the total damage (see (9))
across all battles. Constraint (16) ensures that if the
ith stronghold is attacked, then the number of soldiers
allocated to that battle will follow (14), whereas if the
ith stronghold is not attacked, then no soldiers are allocated
there. The constraint set being compact ensures that there
exists (at least) an optimal solution, V ∗ = �V ∗

1  � � �  V ∗
m�.

Because
∑m

i=1 ki is a constant, the preceding objective
function can be framed in terms of maximizing casual-
ties averted,

∑m
i=1�ki − xi +

√
x2

i −B2
i � Vi. Enforcing Equa-

tion (14) leads, after elementary algebra, to the equivalent
optimization problem:

max
V

m∑
i=1

kiVi − f +
√

f 2 −
( m∑

i=1
BiVi

)2

(18)

s.t.
m∑

j=1
BjVj � f  (19)

Vi ∈ �01� for i = 12 � � � m� (20)

3.1. Knapsack Approximation to
Optimal Force Allocation

Although the formulation (15)–(17) above can be employed
to determine optimal force allocations in any particular
instance, we can develop greater insight with an approxi-
mation that yields analytical results. In the optimal solution,
soldiers are allocated to battles within the optimal set V
in accordance with Equation (14); here we develop a fast
method for approximating the optimal battle set.
Let

K = f∑
j∈V Bj

(21)
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and write

x∗
i =




KBi i ∈ V 

0 i 	 V �
(22)

K is the multiple of the minimum number of soldiers nec-
essary to conquer any stronghold in the optimal solution
within the battle set V (see Equation (14)). Consider the
following integer knapsack conditional on K (assume that
the problem is feasible; shortly we will restrict K to a set
of values that guarantees feasibility):

max
V

m∑
i=1

{
ki −KBi +

√
�KBi�

2 −B2
i

}
Vi (23)

s.t. K
m∑

i=1
BiVi = f  (24)

Vi ∈ �01� for i = 12 � � � m� (25)

The objective function (23) is derived from (15), (21),
and (22), and it represents the total casualties averted by
attacking the insurgents. Constraint (24) defines the relation
between K and the Vi variables.
Rather than solving (23)–(25) exactly, we approximate

as follows: Consider the ratio

ri =
ki −KBi +

√
�KBi�

2 −B2
i

KBi

= ki

KBi

− 1+
√

K2 − 1
K

 (26)

and note that ri > rj if and only if ki/Bi > kj/Bj . For
a given K, an approximate solution to problem (23)–(25)
is found simply by rank ordering the targets from largest
to smallest ri, and choosing the first j∗�K� battles in this
ordering to fight, where j∗�K� is the largest value of j such
that

∑j∗�K�
i=1 KBi � f within the ranking (shortly we will see

that the government will always use all available force if
one or more strongholds are attacked). The optimal force
allocations for this conditional (on K) knapsack are simply

x∗
i �K�=

{
KBi i � j∗�K�

0 i > j∗�K��
(27)

(We will only consider values of K such that (27) is true.)
To find the optimal value of K, we will only consider

values of K that exhaust the force with equality because
the entire force will be expended in the optimal solution.
Let Kj correspond to that value of K that would allocate
soldiers to the first j battles within the knapsack ranking.
From the force allocation constraint, we have

Kj =
f∑j

h=1 Bh

for j = 12 � � � m (28)

with K0 ≡ 0. When K =Kj , Equation (27) becomes

x∗
i �Kj�=




Bi∑j
h=1 Bh

f  i � j

0 i > j

(29)

with x∗
i �0� = K0Bi = 0 (so no strongholds are attacked

when K =K0 = 0).
Now, revisit Equation (23) after replacing m by j , K by

Kj (using Equation (28)), and setting Vi = 1 i = 12 � � �  j
to obtain

max
0�j�j+

j∑
i=1

ki − f +
√√√

f 2 −
( j∑

i=1
Bi

)2

 (30)

where j+ is the largest value of j such that
∑j

i=1 Bi � f , and
j = 0 corresponds to the decision not to fight any battles
(in which case no casualties are averted). This problem is
easily solved by enumeration over j . Let j∗ ∈ �01 � � �  j+�
be the smallest number that maximizes (30). The knapsack-
optimal allocation is given by

x∗
i =




Bi∑j∗
h=1 Bh

f  i � j∗

0 i > j∗�

(31)

Let us consider the error incurred by the knapsack approx-
imation. Clearly,

m∑
i=1

kiV
∗
i − f +

√
f 2 −

( m∑
i=1

BiV
∗
i

)2

�

j∗∑
i=1

ki − f +
√√√

f 2 −
( j∗∑

i=1
Bi

)2

if j∗ > 0, and

m∑
i=1

kiV
∗
i − f +

√
f 2 −

( m∑
i=1

BiV
∗
i

)2

� 0

if j∗ = 0. We can upper bound the left-hand side above by
its integer relaxation:

max
U∈�f

m∑
i=1

kiUi − f +
√

f 2 −
( m∑

i=1
BiUi

)2

�

m∑
i=1

kiV
∗
i − f +

√
f 2 −

( m∑
i=1

BiV
∗
i

)2



where �f = �Ui ∈ �01 !
∑m

i=1 BiUi � f �. Let U ∗ =
�U ∗

1  � � � U ∗
m� be a solution to the integer relaxation prob-

lem. The next proposition relates U ∗ to the knapsack
approximation solution (all proofs appear in the online
appendix).
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Proposition 1. Suppose that inequality (11) holds. Then,
(i) If f < B1�1 + �B1/k1�

2�1/2, then U ∗
1 ∈ �01� and

U ∗
i = 0 for i = 2 � � � m. Also, j∗ equals 0 or 1.
(ii) If �

∑"
i=1 Bi��1 + �B"+1/k"+1�2�1/2 < f < �

∑"+1
i=1 Bi�·

�1 + �B"+1/k"+1�2�1/2 for some " ∈ �1 � � � m − 1�, then
U ∗

i = 1 for i = 1 � � �  ", U ∗
"+1 ∈ �01�, and U ∗

i = 0 for i =
" + 2 � � � m. Also, j∗ equals " or " + 1.
(iii) If �

∑"
i=1 Bi��1 + �B"/k"�

2�1/2 � f � �
∑"

i=1 Bi� ·
�1 + �B"+1/k"+1�2�1/2 for some " ∈ �1 � � � m − 1�, then
U ∗

i = 1 for i = 1 � � �  ", U ∗
i = 0 for i = " + 1 � � � m, and

j∗ = ".
(iv) If the force level f is sufficiently large, f �

�
∑m

i=1 Bi��1+ �Bm/km�2�1/2, then U ∗
i = 1 for i = 1 � � � m,

and j∗ =m.

Recall that the solution to problem (18)–(20) is sand-
wiched between its integer relaxation (above) and the knap-
sack approximation (below). Hence, in cases (iii) and (iv)
of Proposition 1, the number of casualties averted produced
by the knapsack approximation coincides with the optimal
number of casualties averted, obtained by solving problem
(18)–(20). In case (ii), Proposition 1 shows that the differ-
ence in number of casualties averted is bounded above:(

m∑
i=1

kiV
∗
i − f +

√
f 2 −

( m∑
i=1

BiV
∗
i

)2
)

−
(

j∗∑
i=1

ki − f +
√√√

f 2 −
( j∗∑

i=1
Bi

)2
)

�

(
m∑

i=1
kiU

∗
i − f +

√
f 2 −

( m∑
i=1

BiU
∗
i

)2
)

−
(

j∗∑
i=1

ki − f +
√√√

f 2 −
( j∗∑

i=1
Bi

)2
)

= k"+1U
∗
"+1 +

√
f 2 −

( "∑
i=1

Bi +B"+1U ∗
"+1

)2

−max

{√
f 2 −

( "∑
i=1

Bi

)2

 k"+1 +
√

f 2 −
("+1∑

i=1
Bi

)2
}

� k"+1�

The above argument remains valid for case (i) of Proposi-
tion 1, with " = 0. In conclusion, the number of casualties
averted obtained by the knapsack approximation may be
lower than the optimal number of casualties averted, but
the difference is smaller than k"+1.

3.2. Example 1: Symmetric Insurgents
�ki = k�Bi =B�

Consider the special case where ki = k and Bi = B for all
battles. Then, the objective in (30) becomes

max
j

jk− f +√f 2 − j2B2� (32)

Treating (32) as a continuous optimization problem, we
obtain that the optimal number of strongholds to attack is

j∗ =
√

k2

B2 + k2
f

B
 (33)

which is assured to be smaller than the maximum number
of battles that could be fought, j+ = f /B (ignoring inte-
grality). The optimal number of soldiers allocated per battle
fought equals

x∗ = f

j∗
=
√

B2 + k2

k2
B� (34)

Total casualties averted are found by substituting j∗ into
the objective function (32) and equal

casualties averted=
(√

B2 + k2

B2
− 1

)
f � (35)

These results accord with intuition: The optimal num-
ber of battles attenuates the maximum number of battles
that could be fought (f /B) by the factor

√
k2/�B2 + k2�.

If k is very large relative to B, this factor tends towards
one, and it is optimal to fight as many battles as possi-
ble to avert a large number of civilian casualties. If k is
very small relative to B, then it is not optimal to fight any
battles (j∗ → 0) because battle casualties would exceed the
downstream casualties averted.

3.3. Example 2: Insurgents in Towns and Villages

Consider an attack on a town where y insurgents grouped in
cells of c insurgents per cell are dispersed among l distinct
sites (houses, buildings) within the town. There are y/c
different cells spread amongst the l sites; thus, the proba-
bility that a randomly selected structure contains insurgents
is equal to �y/c�/l = y/n, where n= cl.
This example is based on general and partial data

regarding the 2006 war between Israel and Hezbollah in
Southern Lebanon. A typical village in southern Lebanon
(e.g. Maroun-A Ras, Yaroun) contains 100–200 houses
and buildings, whereas within a small town (e.g., Bint
Jbail, Tyre), 800–1,500 structures are typical (Google
Earth 2008). We consider attacking up to five insurgent
strongholds (three villages and two towns) where initially
the insurgents operate in cells of size c = 10. Left to their
own devices, insurgents in the ith stronghold are capable
of inflicting ki civilian casualties. The data regarding these
five strongholds are summarized in Table 1.
Next, we specify the intelligence function p�y�. Absent

intelligence, the soldiers fire at random (area fire); thus,
only a fraction y/n of their fire is effective. In this (worst)
case, p�y� = y/n, and from (2) we obtain the Deitchman
model with

B =
√
2�ny

�
(36)
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Table 1. Insurgency data: Towns and villages.

Insurgent Insurgents Civilian
Stronghold (i) locations (ni) (yi) casualties (ki)

Town 1 8000 200 200
Town 2 10000 300 200
Village 1 2000 100 50
Village 2 1500 100 50
Village 3 1000 50 20

(Deichtman 1962). At the other extreme, if the soldiers
have perfect intelligence, then p�y�= 1 and one obtains the
Lanchester direct-fire model with

B =
√

�

�
y� (37)

Note that the constant imperfect intelligence function
p�y�= p < 1 can always be modeled as perfect intelligence
with p�y� = 1 by reducing the government’s effective fire
rate from � to �p. Because it is always possible to fire
at random, we assume that y/n � p�y� � 1. As an inter-
mediate formulation, we use a linear function (Kress and
Szechtman 2009)

p�y�=&+ �1−&�
y

n
� (38)

This function has an intuitive interpretation: The soldiers
know the location of a fraction & of the insurgents and
therefore engage them by direct fire, whereas the remain-
ing fraction �1 − &�, whose locations are not known,
are engaged by area fire. Note that & = 0 replicates the
Deichtman model whereas & = 1 replicates the original
Lanchester model. Via Equation (6), the threshold value B
for this linear intelligence function is given by

B =
√

2�n

��1−&�

[
y− n&

�1−&�
log
(

�1−&�y

&n
+ 1

)]
� (39)

We assume that the effectiveness ratio �/� equals 0.5 for
all five strongholds attacked, which means that the (nomi-
nal) attrition rate of the insurgents (by the soldiers) is twice
the attrition rate of the soldiers. Table 2 reports the maximal
casualties averted and optimal soldiers allocations to the five
different battles as a function of the intelligence parameter
& when the total government force is constrained to f =
2000 (about two brigades). Note that for any value of &,
ranking the strongholds from largest to smallest ratio of k/B
yields the ordering: Town 1, Town 2, Village 2, Village 1,
and Village 3. In this example, the knapsack approximation
of Equations (30)–(31) yields the optimal solution to model
(15)–(17). When & = 0 (no tactical intelligence) the opti-
mal strategy is attack Town 1 with full force while forfeiting
Town 2 and the villages to the insurgents; this serves to pre-
vent only 12 soldiers and civilian casualties in total, but is
the best result possible. As & increases, and tactical intelli-
gence improves, the government is able to engage more of

Table 2. Intelligence-dependent optimal force alloca-
tions and casualties averted.

Casualties
& averted Town 1 Town 2 Village 1 Village 2 Village 3

0.00 12�14 2000�00 0�00 0�00 0�00 0�00
0.05 121�94 2000�00 0�00 0�00 0�00 0�00
0.10 155�94 2000�00 0�00 0�00 0�00 0�00
0.15 201�52 804�02 1195�98 0�00 0�00 0�00
0.20 248�80 802�93 1197�07 0�00 0�00 0�00
0.25 277�85 802�25 1197�75 0�00 0�00 0�00
0.30 302�06 671�19 1003�07 0�00 325�74 0�00
0.35 324�85 575�31 860�41 283�48 280�80 0�00
0.40 346�34 574�60 859�82 283�89 281�69 0�00
0.45 363�12 574�03 859�34 284�22 282�41 0�00
0.50 377�73 535�49 801�93 265�59 264�19 132�80
0.55 390�52 535�11 801�59 265�78 264�62 132�89
0.60 401�20 534�79 801�31 265�94 264�99 132�97
0.65 410�25 534�51 801�06 266�08 265�31 133�04
0.70 418�02 534�28 800�85 266�20 265�58 133�10
0.75 424�76 534�07 800�66 266�30 265�82 133�15
0.80 430�66 533�89 800�50 266�39 266�03 133�20
0.85 435�87 533�72 800�35 266�47 266�21 133�24
0.90 440�51 533�58 800�22 266�54 266�38 133�27
0.95 444�67 533�45 800�11 266�61 266�53 133�30
1.00 448�41 533�33 800�00 266�67 266�67 133�33

the insurgent strongholds; indeed, once & reaches 0.5, all
strongholds are attacked. The results also indicate an aston-
ishing initial return in casualties averted to intelligence—
simply knowing where 5% of the insurgents are enables
a tenfold increase in the number of casualties prevented
compared to no intelligence (from 12 to 122). Diminish-
ing returns set in thereafter, showing that although minimal
intelligence is greatly preferred to none, perfect intelligence
only leads to a 10% improvement in casualties averted com-
pared to “reasonable” intelligence (e.g., &= 0�65).
Figure 2 reports the maximal number of casualties

averted and optimal force allocations across the five insur-
gent strongholds. We vary the overall size of the attacking
force f from 0 to 2,000, while holding all other param-
eters constant at their earlier values and fixing & = 0�5.
Figure 2 shows the scalloping, piecewise-concave nature of
the optimal casualties averted function while reporting the
split of the total force in proportion to those Bis in the opti-
mal battle set V . The sharpest growth in casualties averted
occurs when 199� f � 546 and only Town 1 is attacked.
At small total force levels (73 � f � 145) only Vil-
lage 3 is attacked (for f � 72, no strongholds are attacked
because launching any strikes would increase total casual-
ties beyond

∑
i ki = 520), whereas for 146� f � 198, only

Village 2 is attacked. The knapsack approximation pro-
duces optimal results for all values of f � 670, but for
smaller values of f the optimal decisions resulting from the
original force allocation model (15)–(17) depart from the
knapsack values. For example, the knapsack approximation
does not recommend any attacks until f = 200 at which
point Town 1 is attacked, whereas for 547� f � 669, when
the optimal decision is to attack Town 1 and Village 2,
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Figure 2. Optimal force allocation and
casualties averted.
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the knapsack approximation recommends attacking only
Town 1 or Towns 1 and 2, depending upon the value of f .
The largest percentage error in the total number of casual-
ties between the optimal and knapsack results equals 4.9%
when f = 198 (the optimal strategy is to attack Village 2,
but the knapsack recommends abstaining from any attacks,
forgoing the opportunity to avert 24 casualties).

4. Sequential Force Allocation Game
So far, we have assumed that only the government faces
the force allocation problem. However, if the insurgents
knew about the government’s situation, then they would
allocate their resources (human and materiel) to inflict the
largest possible amount of damage. Given the hesitance of
governments to respond to insurgents unless provoked, we
will model this situation as a sequential game with perfect
information where the insurgents first position their fighters
and materiel to inflict maximal battle and civilian casualties
on the government, after which the government allocates
its force to minimize the damage caused by the insurgents.
Although one could model this situation as a simultaneous
game, and although in reality the insurgents do not know
all of the government’s problem parameters (intelligence
function, attrition coefficients, etc.), a zero-sum sequential
game provides a worst-case scenario for the government.
Suppose that the insurgents have a total of ' fighters,

which results in the force levels y= �y1 � � �  ym� belonging
to the simplex �' = �y� 0(

∑m
i=1 yi � '�. Also, suppose

that the insurgents may inflict at most ) civilian casual-
ties, meaning that k = �k1 � � �  km� belongs to the sim-
plex �) = �k� 0(

∑m
i=1 ki � )�. Faced with an insurgency

spread according to certain y and k, the government allo-
cates its forces following Equation (14) and decides where
to fight by solving problem (15)–(17), leading to *�yk�
casualties in total. Thus, the insurgents’ problem is to

max
y k

*�yk� (40)

s.t. y ∈�' (41)

k ∈�)� (42)

Clearly, y and k are such that
∑m

i=1 yi = ' and
∑m

i=1 ki = ),
because the insurgent’s objective is making things worse for
the government. Also, ki > 0 if and only if yi > 0. Indeed,
ki > 0 and yi = 0 cannot be optimal because the kis would
be destroyed by the soldiers at zero cost, and ki = 0 and
yi > 0 cannot be optimal because the government would
never attack such a stronghold. Note that because the sol-
diers can always choose not to engage the insurgents, it
follows that *�yk� � ) for any feasible allocation of y
and k. Moreover, if f �

∑m
i=1 Bi�yi� for any feasible y, then

*�yk�� maxy∈�'

∑m
i=1 Bi�yi�.

The standard approach to solving problem (40)–(42) is
to introduce a constraint for each feasible configuration of
engagement variables V1 � � �  Vm. Unfortunately, there are
2m nonlinear constraints and the constraint set may not be
convex, which makes it impossible to obtain an analytical
solution without imposing more structure on the problem.
With this in mind, we observe that a drawback of con-

straint (41) is that an allocation of insurgents y matters
insofar as it impinges on the victory thresholds B1 � � � Bm

(cf. Equation (6)). This suggests that a more natural way
to express constraint (41) is via a constraint on the vic-
tory thresholds B. Letting + ∈ Rm be the set mapped by
B1�y1� � � � Bm�ym� for all y ∈�' , we have the following
result.

Proposition 2. If the threshold functions B1�y1� � � � 
Bm�ym� are concave, then the set + is convex.

From Equation (6), it easily follows (by taking the sec-
ond derivative of B�y�) that convex intelligence functions
p�y� lead to concave threshold functions B�y�; this includes
the linear intelligence function p�y� = &+ �1− &�y/n of
§3.3. Indeed, all the monomials p�y�= constant× y- with
- � 0 produce B�y� concave. Hence, for the rest of this
section we shall restrict our attention to convex sets + .
Looking at problem (40)–(42), the simplest scenario

occurs when pi�yi� = 1, that is, the government has per-
fect intelligence for all is. In this case, the Bi�·� functions
are linear, implying that there exists an extreme point—
a stronghold i∗—such that Bi∗�'� = maxy∈�'

∑
i Bi�yi�.

That is, the sum of the thresholds is largest when the insur-
gents concentrate all their forces ' in one stronghold, i∗.
In this case, there are several possible situations, depending
on the relative values of ), Bi∗�'�, and f . The results for
each case are summarized in the next proposition.

Proposition 3. Suppose that pi�yi� = 1 for all strong-
holds. Then, it is optimal for the insurgents to allocate all
their resources to stronghold i∗, meaning that yi∗ = ' and
ki∗ = ), and there exist three possibilities:
(i) If f � )� Bi∗�'� or )� f � Bi∗�'�, the government

engages the insurgents by setting xi∗ = f .
(ii) If f � Bi∗�'� � ), the government engages

the insurgents by setting xi∗ = f if and only if
f − �f 2 −B2

i∗�'��1/2 � ).
(iii) If Bi∗�'� > f , the government never engages the

insurgents.
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The practical implication of having pi�yi� = 1 is that
the insurgency is under direct government fire. In this sit-
uation, Proposition 3 asserts that the insurgents concen-
trate their forces and that, depending on the force level
f relative to ) and Bi∗�'�, the government engages the
insurgents (when battle casualties are lower than civil-
ian casualties prevented) or not. This conclusion is con-
sistent with the principle of force concentration, which
is derived from Lanchester’s Square Law (Morse and
Kimball 1946).

4.1. Knapsack Approximation Game

In §3, we argued that problem (30) provides a very good
approximation to the allocation problem (15)–(17) faced
by the government. This motivates analyzing the sequen-
tial zero-sum game that emerges when the insurgency allo-
cates its resources knowing that the government employs
the knapsack approximation (30) to deploy its forces.
Looking at problem (30), the insurgency minimizes casu-
alties averted:

min
y k

-�yk� (43)

s.t. y ∈�' (44)
m∑

i=1
ki = ) ki � 0 (45)

where

-�yk�= max
0�j�j+

j∑
i=1

ki − f +
(

f 2 −
( j∑

i=1
Bi�yi�

)2)1/2

�

For problem (43)–(45) to make sense, we need to write∑m
i=1 ki = ) instead of

∑m
i=1 ki � ) in (45), because other-

wise minyk -�yk�= 0 with k= 0.
Let j∗�yk� be the optimal value of j when viewed as a

function of �yk�, and recall that the rank-ordering assump-
tion, Equation (11), is in force. Because the set of feasible
allocations is compact, there exists an optimal solution for
the insurgency, �ỹ k̃�. To simplify the notation, we write
B̃i = Bi�ỹi�, Bi = Bi�yi�, for i = 1 � � � m.
To breach into problem (43)–(45), notice that because

the government may choose to bear the civilian casualties
without fighting (i.e., j = 0), we have -�yk� � 0. Thus,
any allocation �yk� that achieves this lower bound is opti-
mal for the insurgents. Also, the best the government can
do is to avert ) casualties at low soldiers’ casualties, so
that -�yk�� ).
Recall that the government selects the towns to engage

or not in decreasing order of the ratios ki/Bi. This suggests
that a judicious approach for the insurgency is to flatten the
ratios as much as possible. As the next proposition demon-
strates, there exist insurgent optimal solutions with ki/Bi

constant.

Proposition 4. Suppose that the government allocates its
forces by solving problem (30). Then, -�ỹ k̃� = -�ỹ k̂�,
where

k̂i = )
B̃i∑m

j=1 B̃j



and the ratios k̂i/B̃i = )/
∑m

j=1 B̃j are constant.

Hence, because we can restrict attention to solu-
tions �yk� with constant ratios ki/Bi, problem (43)–(45)
becomes

min
y

max
0�j�j+

)

∑j
i=1 Bi∑m
i=1 Bi

− f +
(

f 2 −
( j∑

i=1
Bi

)2)1/2

(46)

s.t.
m∑

i=1
yi = ' yi � 0� (47)

It is easier to tackle (46)–(47) by considering the govern-
ment’s problem conditioned on

∑m
i=1 Bi ≡ l. Given l, let jl

be the optimal number of strongholds engaged by the gov-
ernment, and let .l�

∑j
i=1 Bi� be the right-hand side of (46)

(minus the miny max0�j�j+ term). The square root term,
when viewed as a function of

∑j
i=1 Bi, spans the north-

east quadrant of a circumference of radius f , and so it is
strictly concave decreasing in

∑j
i=1 Bi. Therefore, jl neces-

sarily takes one of two values: the largest value of j such
that .′

l�
∑j

i=1 Bi� � 0; or the smallest value of j such that
.′

l�
∑j

i=1 Bi� � 0. More precisely, jl must equal either r or
r + 1, where

r∑
i=1

Bi �
f

�1+ �l/)�2�1/2
�

r+1∑
i=1

Bi (48)

for viewed as a function of
∑j

i=1 Bi, .l�
∑j

i=1 Bi� is maxi-
mized when

∑j
i=1 Bi = f /�1+ �l/)�2�1/2. This leads to an

upper bound for the number of casualties the government
can avert: the best the government can do is set

∑j
i=1 Bi =

f /�1+�l/)�2�1/2, whereas the insurgents can inflict at most
) civilian casualties, which implies that

.l

( j∑
i=1

Bi

)
�min

{
f

((
1+ )2

l2

)1/2

− 1
)

 )

}
� (49)

From (48), the number of engagements taken by the gov-
ernment decreases with l and increases with ). Large values
of l/) lead to B1 > f �1+ �l/)�2�−1/2, in which case the
government fights at most one battle. On the other hand,
small values of l/) lead to jl = m (indeed, from Equa-
tion (48), this must happen when l � f /�1 + �l/)�2�1/2).
This reasoning indicates that the insurgents attempt to make
l as large as possible.
However, just maximizing l does not tell the whole story.

Indeed, looking at Equations (46) and (48), the insurgents’
best option is to make the government indifferent to having
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jl = r or jl = r + 1. This means that for values of l suf-
ficiently large such that jl < m, the optimal value of Br+1
satisfies

.l

( r∑
i=1

Bi

)
=.l

(r+1∑
i=1

Bi

)
� (50)

Moreover, on the space of feasible solutions where (48)
holds, the optimal solution for the insurgency is the one
that minimizes .l�

∑r
i=1 Bi� while preserving Equation (50),

which is analogous to making both l and Br+1 large while
preserving Equations (48)–(50).
In other words, the last battle offered by the insurgency

is relatively large, and the net change in casualties averted
by taking versus not taking it is zero. This happens because
if the government takes the �r + 1�st town, then kr+1 =
)Br+1/l extra casualties are averted, but additional soldiers’
casualties are incurred because each battle is fought closer
to its victory threshold. On the other hand, if the �r + 1�st
town is not taken, then the government bears extra kr+1
casualties, but the soldiers’ casualties in the first r bat-
tles are relatively lower. Hence, in this game the govern-
ment would initially be offered battles where it is clearly
advantageous to attack the insurgency, and then it would be
offered a relatively (to the other battles) large battle with
two equally unappealing outcomes: bear a large number of
civilian casualties, or take many more soldiers’ casualties.
Regarding the ordering of the battle thresholds offered

by the insurgency, their order does not matter when the
Bis have low variability. If the variability is large then
the order of the Bis depends on f /�1 + l2/)2�1/2. For
f /�1+ l2/)2�1/2 low, we have jl small, suggesting that the
largest Bis would appear first. On the other hand, when
f /�1 + l2/)2�1/2 is large, we have jl large too, and the
insurgents will put the Bis in increasing order, so that
Br+1 is large. Finally, the order does not matter when
f /�1+ l2/)2�1/2 is so large that jl =m.

4.2. Knapsack Games in Towns and Villages

Consider again the towns and villages example of §3.3.
Rather than assuming that the government can optimize
its attack, presuming that insurgent forces and downstream
civilian casualties are distributed as in Table 1, we now
model “smart” insurgents who anticipate that the govern-
ment will allocate its force to maximize the objective in
(30). We presume that the government has f = 2000
troops to allocate, whereas the insurgents have ' = 750
fighters along with materiel (e.g., missiles, IEDs) capable
of causing ) = 520 civilian casualties. The scenario and
intelligence function are as in §3.3. We examine the con-
sequences of the resulting knapsack game as a function of
the intelligence parameter &.
For a given problem instance, the insurgents deploy by

allocating ỹi fighters to stronghold i where the ỹis jointly
maximize

∑m
j=1 Bj�yj� (Bj�yj� is given by Equation (39)),

set k̃i = )Bi�ỹi�/
∑m

j=1 Bj�ỹj �, and lightly perturb the k̃s

Figure 3. Casualties averted in knapsack games in
towns and villages.
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to induce the government to form the knapsack ordering
that minimizes casualties averted as discussed in the previ-
ous section. The government decides which strongholds to
attack by solving Equation (30) and allocating in proportion
to those Bi�ỹi�s in the optimal battle set.
Figure 3 presents the results. In contrast to the govern-

ment’s optimal ordering from Table 2 (which was Town 1,
Town 2, Village 2, Village 1, and Village 3), the insurgents
find it optimal to force the government to fight in the larger
towns (sequence by decreasing Bi�ỹi�) when intelligence
is very limited (& < 0�15). For intermediate values of the
intelligence parameter (0�15 < & < 0�5), the insurgents are
able to reduce the number of casualties the government can
avert by reordering the sequence according to increasing
Bi�ỹi�. These strategic responses result in fewer casualties
averted when compared to the original towns and villages
example with nonstrategic insurgents (when & � 0�5, f �∑m

j=1 Bj�ỹj � and the government can engage the insurgents
in all strongholds). The insurgents’ first-mover advantage
can be considerable: When & = 0�3, the number of casual-
ties the government can avert falls from 302 to 283; when
&= 0�2, the drop is much larger—from 249 to 187 casual-
ties averted, a 25% reduction. The analytical bound of Equa-
tion (49) is also shown in Figure 3. This example shows how
smart insurgents can readily create worst-case results for
the government, and not surprisingly, the damage inflicted
is greater when the government’s intelligence is poor.

5. Incorporating Collateral Civilian
Casualties

Thus far, we have only considered Blue civilian casual-
ties inflicted by the insurgents as modeled by the kis, but
in counterterror/counterinsurgency operations, governments
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clearly worry about collateral Red civilian casualties even
while insurgents/terrorists do not. For example, in an empir-
ical study covering 2001–2003, Kaplan et al. (2005) show
that Hamas and other terrorist organizations retaliated with
suicide bombing attacks following successful Israeli tar-
geted killings of terror operatives, yet did nothing in
response to botched hits that missed their intended targets
but resulted in the deaths of Palestinian civilians. We will
therefore incorporate Red civilian casualties into the gov-
ernment’s damage function while leaving the insurgents’
valuation unchanged in a manner similar to Jacobson and
Kaplan (2007). Specifically, if the government defeats a
stronghold containing y insurgents, Red civilian casualties
will be accounted for by the addition of the term cy to
the government’s damage function. The constant c reflects
two assumptions: that the number of Red civilian casualties
will be proportional to the number of insurgent casualties,
and that the government can differentially value Red ver-
sus Blue civilian casualties. Thus, c represents the govern-
ment’s valuation of the number of Red civilian casualties
that occur per insurgent casualty. Modeling Red civilian
casualties as proportional to insurgent casualties reflects the
tendency of insurgents and terrorists to hide in and mix
with their civilian population. Even in the case of per-
fect intelligence, one should expect Red collateral civil-
ian casualties—for example, a rocket-firing crew could be
shooting deliberately from the roof of a civilian home still
occupied by its family; aimed Blue fire could well harm the
family while eliminating the rocket threat. It is reasonable
to expect that c would increase as the quality of intelligence
deteriorates, that is, there would be more Red civilian casu-
alties in attacks on strongholds where the government has
lower levels of intelligence.
If the government has a force of size x with which

to attack a stronghold containing y insurgents capable of
inflicting k Blue civilian casualties, then the government
would only consider attacking if its valuation of the Blue
battle and Red civilian casualties caused by attacking is less
than its valuation of Blue civilian casualties that would be
suffered in the absence of an attack, that is, if

x−√x2 −B�y�2 + cy < k� (51)

Note that if cy > k, the government will not attack, irre-
spective of the magnitude of x and y. This introduces a new
feature to the analysis: If potential Red civilian casualties
are too large, the stronghold is viewed as out of bounds in
that no attack there would be approved.

5.1. Optimal Force Allocation with Collateral
Civilian Casualties

Incorporating Red civilian casualties requires only minor
modifications to the force allocation models discussed
in §3. Assume as before that the insurgents have positioned
yi fighters and allocated weaponry capable of inflicting ki

Blue civilian casualties in stronghold i for i = 12 � � � m,

and assume further that if the government attacks and con-
quers stronghold i, ciyi Red civilian casualties will result.
Note that allowing the Red civilian casualty rates ci to
be stronghold-specific accounts for differential stronghold-
specific government intelligence in the model. The gov-
ernment first asks whether ciyi > ki for each stronghold,
and for any stronghold where this is the case sets xi =
0 because such strongholds are out of bounds. The gov-
ernment then allocates its f soldiers over the remaining
strongholds that are in-bounds in accord with the methods
of §3 after resetting ki ← ki − ciyi, and the total casual-
ties suffered by the government equal the sum of battle
plus true Blue civilian casualties (the original kis) over in-
bounds strongholds plus the sum of Blue civilian casualties
emanating from those strongholds that are out of bounds.
Note that as a result of incorporating Red civilian casu-
alties, the total casualties suffered by the government (the
sum of Blue civilian and government battle casualties) can
only increase or stay the same. That this is the case for any
insurgent deployment across strongholds suggests that the
government’s desire to avoid Red civilian casualties pro-
vides the insurgents with an additional strategic tool, as we
explore in the next section.

5.2. Force Allocation Game with Perfect
Intelligence and Collateral Civilian Casualties

Suppose that the government has perfect intelligence in all
strongholds. Recall from Equation (37) that if the insur-
gents allocate yi fighters to stronghold i in this case,
then the battle threshold Bi�yi� =

√
�i/�iyi and govern-

ment battle casualties resulting from the allocation of xi

soldiers to the ith stronghold follow the convex function
xi −

√
x2

i −B2
i �yi� provided xi > Bi�yi� (which is a nec-

essary condition for attack). We reconsider the sequen-
tial force allocation game where the insurgents first allo-
cate their ' fighters and weaponry capable of inflicting )
Blue civilian casualties across the m strongholds, after
which the government allocates its f soldiers. The insur-
gent goal remains the maximization of Blue battle and civil-
ian casualties, whereas the government objective is now
the minimization of Blue battle plus Blue and Red civilian
casualties. Let i∗ = argmax��i/�i� and i∗∗ = argmax�ci��
Expanding Proposition 3, we obtain the following result.

Proposition 5. Suppose that the government has perfect
intelligence. Then, there are three possible scenarios:
(i) f � Bi∗�'�. Then, the insurgents set yi∗ = 'ki∗ = ),

the government does not attack, and the insurgents inflict
) Blue civilian casualties.
(ii) f > Bi∗�'� and ∃i such that f − √

f 2 −Bi�'�2 +
ci' � )� Then, the insurgents set yi = ' and ki = ) for
some such i, the government does not attack, and once
more the insurgents inflict ) Blue civilian casualties.
(iii) f >Bi∗�'� and f −√f 2−Bi�'�2+ci'<) ∀i. Then,

if f −√f 2−Bi∗�'�2+ci∗'>f −√f 2−Bi∗∗�'�2+ci∗∗', the
insurgents set yi∗ =' and ki∗ = f − √

f 2 −Bi∗�'�2 +
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ci∗' − /, for / > 0 arbitrarily small, and the government
sits and accepts f −√f 2 −Bi∗�'�2+ci∗'−/ Blue civilian
casualties.

Otherwise, the insurgents put yi∗∗ = ' and ki∗∗ = f −√
f 2 −Bi∗∗�'�2 + ci∗∗' − /, the government does not fight,

and takes f − √
f 2 −Bi∗∗�'�2 + ci∗∗' − / Blue civilian

casualties.

Compared to the perfect intelligence game where the
government ignores Red civilian casualties, the insur-
gents’ situation has improved in cases (ii) and (iii). Case
(ii) shows how the insurgents can take advantage of the
government’s desire to avoid Red civilian casualties to
create out-of-bounds strongholds that allow the inflic-
tion of maximal Blue civilian casualties ()), whereas in
case (iii) the insurgents are able to guarantee inflicting
max�f − √

f 2 −Bi∗�'�2 + ci∗'f − √
f 2 −Bi∗∗�'�2 +

ci∗∗'� Blue civilian casualties in circumstances where they
would otherwise have had to settle for a smaller number
of Blue battle casualties. In all of these cases, even though
the insurgents’ objective function does not consider Red
civilian casualties at all, the knowledge that the government
seeks to avoid Red civilian casualties enables the insurgents
to gain a strategic advantage. By deliberately blending in
with their civilian populations in a manner that would max-
imize Red civilian casualties if the government attacks, the
insurgents can increase the damage they cause to the gov-
ernment. Whether in Lebanon, Gaza, Iraq, or Afghanistan,
this is an observable tactic used by terrorists and insurgents
the world over.

6. Conclusions
We have investigated an important tactical question in
counterinsurgency operations: How should the government
optimally allocate its forces against insurgent strongholds
that threaten civilian populations when both military and
civilian casualties must be taken into account, and when
the operations are executed with imperfect intelligence?
We showed that for a given allocation of insurgents
across strongholds, optimally selecting those strongholds to
attack can be (approximately) accomplished with a simple
knapsack rule. The forces allocated to those strongholds
attacked divide the total force available in proportion to the
victory thresholds Bi. These thresholds are determined in
turn by the size of the insurgent force in stronghold i, the
effective fire ratio �i/�i, and the intelligence function p�·�.
We also showed that if the insurgents anticipate government
actions and have full knowledge of the battle parameters, a
sequential game ensues. The solution to this game depends
on the government’s level of intelligence: If the govern-
ment has perfect intelligence (and the insurgents know it),
then the insurgents’ best strategy is to concentrate its entire
force and assets in one stronghold, in which case the gov-
ernment decides whether or not to attack depending upon
the number of soldiers needed to prevent civilian casual-
ties. With lower levels of intelligence, if the government

follows a knapsack policy (which is shown to be nearly
optimal), then the insurgents’ optimal strategy is to spread
their force and materiel in a manner that maximizes the
number of soldiers the government needs to win all battles,
and induce the government to select battles in a sequence
that forces worst-case results. Via example, we showed
that the insurgents’ first-mover advantage can appreciably
reduce the ability of the government to avert both civil-
ian and battle casualties, and this problem is especially
acute when the government has poor intelligence. Incorpo-
rating Red civilian casualties provides the insurgents with
an additional tool, because by mixing with the civilian pop-
ulation, the insurgents can sometimes lead the government
to declare strongholds to be out of bounds, resulting in a
free pass for the insurgents to attack Blue civilians from
such strongholds. This work thus joins other recent research
in recognizing the importance of treating our adversaries
as strategic players in homeland security, counterterror, or
counterinsurgency games (Brown et al. 2006, Golany et al.
2009, Jacobson and Kaplan 2007, Sandler and Arce 2007,
Zhuang and Bier 2007).

7. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.

Endnotes
1. The model can be modified to account for limited
endurance on both sides, meaning that the combatants are
only willing to endure a certain number of casualties before
abandoning the fight.
2. A simple extension of the argument to follow applies if
civilian or other downstream casualties are valued differ-
ently relative to casualties among the attacking government
force.
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