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Abstract

In many applications to which DEA could be applied, there is often a ®xed or common cost which is imposed on all

decision making units. This would be the case, for example, for branches of a bank which can be accessed via the

numerous automatic teller machines scattered throughout the country. A problem arises as to how this cost can be

assigned in an equitable way to the various DMUs. In this paper we propose a DEA approach to obtain this cost

allocation which is based on two principles: invariance and pareto-minimality. It is shown that the proposed method is

a natural extension of the simple one-dimensional problem to the general multiple-input multiple-output case. Ó 1999

Elsevier Science B.V. All rights reserved.
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1. Introduction

An issue of considerable importance, both from
a practical organizational standpoint and from a
costs research perspective, involves the allocation
of ®xed resources or costs across a set of com-
peting entities in an equitable manner. The prob-
lem, for example, of how to allocate ongoing
overhead expenditures among a set of departments
or divisions within an organization, across multi-

ple branches of a bank, among a set of schools in a
district, and so on, is one with which we are all
familiar. In this paper we investigate the particular
problem of allocating a ®xed cost across a set of
comparable decision making units (DMUs). By
`comparable' we will mean that each DMU has
access to, and consumes an amount of each of a set
of inputs; similarly, each DMU produces some
amount of each of a set of de®ned outputs. So, the
DMUs are all doing basically the same kinds of
things. For each DMU the amounts of inputs and
outputs used individually can be clearly distin-
guished or measured. At the same time, we assume
that the set of DMUs may share or incur a com-
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mon cost such as a ®xed overhead. Consider the
example of a set of automobile dealerships wherein
two types of advertising expenditures are incurred:

(1) Direct advertisements (TV, radio, newspa-
per) pertaining to a particular dealership and
(2) General or blanket advertisements issued by
the corporation for particular models of vehi-
cles sold by all dealerships.

While both (1) and (2) a�ect the sales output of a
dealership, only (1) is taken into account in the
performance measurement, because there is no
way to associate a part of (2) with a certain DMU,
and as well there is no direct consumption of this
input by the DMU.

Suppose now that the corporation decides to
pass on (allocate) the cost of the TV campaign
XJ�1 among the dealerships. That is, it wishes to
assign ``General TV-advertising costs'' X1J�1; . . . ;
XnJ�1 to the n dealerships. This cost becomes a
new, non-discretionary input. Speci®cally, while
all dealerships bene®t from the blanket advertise-
ment, it is not under their control to utilize more
or less of that resource. In particular, no dealership
is in a position to substitute an amount of any
other discretionary input for more or less of the
blanket advertising input. The issue is how to split
that blanket cost among the DMUs in the best or
most equitable way.

To provide a practical setting within which to
investigate this issue, we refer to the recent paper
by Cook et al. [5]. There, the authors present a
model for evaluating the relative e�ciencies of a
set of highway maintenance crews or patrols in the
province of Ontario, Canada. The model is based
on the data envelopment analysis (DEA) proce-
dure of Charnes et al. [3]. Each maintenance patrol
is responsible for some designated number of lane
kilometers of highway along with all of the activ-
ities associated with that portion of the network.
The more than 100 di�erent categories of mainte-
nance activities can be grouped under ®ve general
headings: `surface', `shoulder', `median', `right of
way', and `winter operations'. In the speci®c ex-
ample discussed, each patrol is examined in terms
of two inputs and two outputs:

Outputs:
size of system: this is a measure comprising
for each patrol, a combination of the number

of lane kilometers of highway served together
with the number of hectares of road side en-
vironment;
tra�c: this output is a measure of the average
daily tra�c.

Inputs:
maintenance budget: this is the aggregate of
all direct maintenance expenditures attribut-
able to a patrol's activities, but does not in-
clude those ®xed costs at the district level
that cannot be immediately attached to spe-
ci®c crews;
annual capital budget: expenditure on major
resurfacing.

The 246 maintenance patrols in Ontario are
organized into 18 geographical districts, which are
further grouped into 5 regions. In the initial stages
of the study of maintenance activities carried out
in Ontario, a pilot study of fourteen patrols in one
district was conducted. It is this single district
study that is reported on by Cook et al. [5]. The
hierarchical arrangement of patrols (into districts,
then regions) gives rise to the need to look at the
issue of distributing ®xed cost. A good example in
this particular setting is the ®xed administrative
expenditures consumed at the district level, as
opposed to those expenditures pertaining to the
individual patrol. One component of this ®xed
expenditure, for example, is the salary and bene®ts
of district sta�, in particular the District Engineer,
whose task it is to coordinate activities of all pa-
trols in his/her jurisdiction.

The analysis carried out in Cook et al. [5] uti-
lizes only those factors, i.e., outputs and inputs,
for which measurable patrol-speci®c data exists.
What is not utilized in the analysis on a patrol by
patrol basis is the ®xed district (overhead) costs,
nor is it clear how this cost should be split. There
are a number of reasons, however, to be discussed
below, for wanting to obtain an allocation of such
an overhead across the patrols in the district in the
most equitable way possible. Clearly, the cost that
is imposed on a DMU constitutes an additional
input which may alter the absolute e�ciency rating
of the DMU. The objective of management is to
allocate these costs in such a way that the relative
(radial) e�ciency is not changed. In the DEA set-
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ting, we require that no DMU will appear rela-
tively ``better'' just because its allocated cost was
too small.

It should be emphasized that the DMU has no
control on this cost. Its performance relies entirely
on its existing inputs and outputs. We will argue in
the subsequent sections that any allocation of costs
that does not alter the value of the radial e�ciency
measure is equitable. We, therefore, take this as a
necessary condition for any such allocation.

In Section 2 we examine the basic concept of
equity in the one dimensional case which motivates
the analysis and provides a backdrop for the
subsequent DEA model. In Section 3 we look at
the concept of fair allocation in the DEA setting
and examine what that should mean on a problem
setting such as that discussed above. In Section 4,
we go back to the one-dimensional case and ex-
amine it vis-�a-vis the DEA framework that was
laid out in Section 3. Section 5 examines a special
case involving only inputs. Here it is shown that
the intuitively desirable result occurs, namely, that
the optimal amount of the ®xed cost to be allo-
cated to a DMU is proportional to its consump-
tion of the variable inputs. In Section 6 we
examine the general multiple-inputs multiple-out-
puts case. We characterize the set of equitable al-
locations and present a reasonable model for
arriving at a unique such allocation. A numerical
example is presented. Concluding remarks follow
in Section 7.

2. The one-dimensional case

We start o� with the one-dimensional case
where each DMU has one input and one output.
For j � 1; . . . ; n let xj and yj be the input and
output respectively of DMUj. One measure of ef-
®ciency of each DMU is given by

Ej � yj=xj: �1�
Suppose that a cost R is to be distributed

among the n DMUs. That is, each DMU is to be
allocated a cost rj such thatXn

j�1

rj � R: �2�

A reasonable and ``fair'' allocation is such that the
relative e�ciencies of the DMUs remain un-
changed after the allocated costs are added as in-
puts to the various DMUs. The rationale for this is
as follows: the existing e�ciency rating Ej� for any
DMU j� is a re¯ection of that DMUs consump-
tion of the speci®c amounts of inputs that it has at
its disposal. Moreover, that rating is also a re-
¯ection of any other noncontrollable factors
present at the time, whether they are explicitly
included in the analysis or not (e.g., blanket ad-
vertisement for all DMUs). Thus, the allocation of
the ®xed cost (or ®xed resource) should be made in
a way that is consistent with the computed in¯u-
ence that the ®xed cost is presently having on
performance. In other words, if the e�ciency of
DMU j, after adding the cost rj is E0j; then we
would require that

E0s
E0t
� Es

Et
; s; t � 1; . . . ; n: �3�

Lemma 1. The cost allocation r1; . . . ; rn;withPn
j�1 rj � R that satis®es Eq. (3) is unique and is

given by

rj � RxjPn
s�1 xs

; j � 1; . . . ; n: �4�

Proof.

Es

Et
� E0s

E0t
if and only if

ys=xs

yt=xt
� ys=�xs � rs�

yt=�xt � rt� �5�

or

xs

xt
� xs � rs

xt � rt
: �6�

From Eq. (6) we get that

rs

rt
� xs

xt
�7�

or

rs � xs

xt
rt �8�

and the result follows. �

From this elementary exercise we may conclude
that: (a) the equitable allocation is unique, (b) it is
a function of the total cost R and the inputs that
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are used, and (c) it is independent of the output
levels.

3. Cost allocation equity utilizing DEA

For purposes herein we will utilize the original
CCR-model [3] for relative e�ciency measure-
ment. 2 Speci®cally, we concentrate on the constant
returns-to-scale case. Furthermore, it is instructive
to apply the output-oriented version of the CCR
model, given by

�Pjo
� fjo

� min
XI

i�1

mijo xijo �9�

s:t:XK

k�1

lkjo
ykjo � 1; �10�

ÿ
XK

k�1

lkjo
ykj �

XI

i�1

mijo xij P 0; j � 1; . . . ; n; �11�

lkjo
; mijo P 0; 8i; k:

Here, it is assumed that each decision making unit
(DMU) j consumes a known amount xij of each of
I inputs i � 1; . . . ; I in the production of K outputs
in the amounts ykj; k � 1; . . . ;K: The model �Pjo�
®nds the best set of multipliers lkjo

; mijo for each
DMU jo; in the sense of minimizing the ine�ciency
score fjo : Further, it is assumed that the produc-
tion function is adequately explained by the ex-
isting input±output bundle �x; y�:

Recall that fjo�� 1� yields the output expansion
factor in the sense that the outputs would need to
be increased by �fjo ÿ 1� � 100% in order to render
DMU jo e�cient. It is noted also that for the CCR
model, the measure ejo that would come about
from the input-oriented version (max outputs
rather than min inputs), and which is traditionally
interpreted as the measure of e�ciency, is such
that ejo � 1=fjo : Due to this connection, we will

from this point on refer to the fjo as the e�ciency
scores.

Given the resulting e�ciency scores fj from
model �Pjo�; we wish to allocate, in an equitable
manner, a given amount R of a ®xed resource or
cost among the n DMUs. In a pure accounting
sense, one would arguably allocate a ®xed cost or
resource to a DMU in a manner consistent with
the way other inputs are consumed by that DMU.
If, for example, one DMU utilizes twice as much
labor and capital as another DMU, then it is
reasonable to allocate twice as much of the over-
head expenditures to the former DMU as com-
pared to the latter. In the typical DEA setting,
however, such an approach is a problem in that
multiple factors are involved, and are generally in
non-commensurate units.

Consistent with the assumption that the given
inputs and outputs adequately explain the pro-
duction function, we may require that the allo-
cated cost in question should have no e�ect on this
function. We call this requirement invariance of the
relative e�ciency scores to the allocated costs.
Thus, following the discussion in Section 2, a
reasonable principal for the partitioning of R into
n pieces r1; r2; . . . ; rn, is to do so in such a manner
as to preserve the relative e�ciency ratings for the
n DMUs. Speci®cally, the rj should be chosen so
that if they were to be included after the fact as an
(I+1)th input, the re-evaluated e�ciencies would
remain unchanged. Otherwise a DMU is either
penalized (if the e�ciency rating is decreased) or
bene®ts (if the e�ciency rating increases) because
of a decision it does not make.

Unfortunately, allocation according to this
principle is not unique. One can, for example,
readily see that if R were distributed in its entirety
among only the ine�cient DMUs in any propor-
tion whatever, the ratings would not change, and
the principle would be satis®ed. This is the case
since the optimal multipliers (which are unique to
each DMU) would be such that mI�1jo � e for all jo:
Such an allocation renders the new input redun-
dant in terms of its impact on the evaluation pro-
cess. Clearly, however, any allocation which
``penalizes'' only the ine�cient DMUs, would
generally be unacceptable to the organization.
Thus, while the invariance requirement discussed

2 We use the non-archimedian version of the CCR-model in

this paper. Our development, therefore, does not take into

account any consideration or importance that one may wish to

accord to slacks. See Thrall [6].

W.D. Cook, M. Kress / European Journal of Operational Research 119 (1999) 652±661 655



above is necessary for an equitable allocation
of cost, it is not su�cient and, therefore, anoth-
er condition is needed. This condition is called
Input Pareto-Minimality. Formally, we de®ne a
cost allocation to be input pareto-minimal if no
cost can be transferred from one DMU to another
without violating the invariance principle. Clearly,
the allocation mentioned above where only
ine�cient DMUs are assigned costs is not input
pareto-minimal since some costs may be trans-
ferred to e�cient DMUs without violating
invariance.

Before we apply the ideas presented above to
the multiple-inputs multiple-outputs case, we look
at the one-dimensional case again, but from a
DEA point of view.

4. The one-dimensional case and the DEA formu-

lation

The DEA (CCR) formulation for the (trivial)
one-dimensional case is

�P1� min mxjo �12�
s:t:

mxj P yj=yjo ; j � 1; . . . n; �13�
mP 0:

By adding the new cost rj; (P1) becomes

�P2� min mxjo � wrjo �14�
s:t:

mxj � wrj � yj=yjo ; j � 1; . . . ; n; �15�
m;w � 0:

Going back to Eq. (3), one can argue now that a
necessary condition for an allocation to be equi-
table is that no DMU can utilize this new input to
improve its relative e�ciency. In LP terminology,
this requirement amounts to keeping the w vari-
able in (P2) out of the basis.

For each DMU jo; w remains out of the basis if
and only if the reduced costs are non-negative.
That is:

rjo �
Xn

j�1

ujo
j rj; �16�

where ujo
j are the dual optimal variables of (P1).

Evidently, as discussed in Section 3 above, this
invariance condition is not su�cient to determine
an equitable allocation. The Input Pareto-Minim-
ality condition is needed as well, and therefore we
require that

rjo �
Xn

j�1

ujo
j rj �17�

for all ine�cient DMUs jo:
The dual of (P1) is:

�D1� max
Xn

j�1

ujyj=yjo �18�

s:t:Xn

j�1

ujxj � xjo ; �19�

uj � 0:

The extreme points of the feasible set de®ned by
Eq. (19) have all components but one equal zero.
Thus, an optimal solution for (D1) is of the form

u� � �0; . . . ; xjo=x�j ; 0; . . . ; 0�: �20�
Clearly, this solution may not be unique when

the maximum of fyi=xjg is obtained by more than
one j: Let j1; . . . ; jl be the e�cient DMUs; then
from Eq. (17) it follows that

rjo �
xjo

xj1

rj1
� � � � � xjo

xjl

rjl : �21�

Hence,

vs

vt
� xs

xt
�22�

and therefore

rj � xjPn
s�1 xs

R; �23�

as was obtained in Eq. (4).
We conclude that input pareto-minimality may

indeed be a reasonably su�cient criterion for eq-
uity.
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Thus, we have established the applicability of
the proposed DEA cost-allocation approach for
the single-input single-output case. It is instructive
to point out here that if one assessed DMUs on a
periodic basis (e.g. annually), the relative posi-
tioning of those DMUs may change. This means,
of course, that a DMUs share of a ®xed cost
burden can ¯uctuate. Arguably, this may be an
undesirable property in the case of one-time ®xed
costs that are amortized over future periods and
where a DMUs percentage of the burden would be
best left at a ®xed value. One-time plant con-
struction might be an example. The proposed
DEA approach may be more suitable to ongoing,
®xed expenses such as those arising from annual
blanket advertising. In this case, each years allo-
cation (and total amount to be shared) may rea-
sonably be expected to change, depending upon
performance.

Next, we examine the pure multiple-input case.

5. The pure input case

Consider the case where the n DMUs use a
number of inputs to produce the same unique
output. For example, local television stations uti-
lize inputs such as reporters, technicians, tele-
communication systems, video cameras, etc. to
produce the 6 o'clock news which, we assume here,
is of a uniform format. We can, therefore, discard
the uniform output and look at a pure input ver-
sion of �Pjo� (Eqs. (9)±(11) in Section 3) where we
wish to evaluate the DMUs in terms of e�ciency
with which the inputs are consumed.

Thus, the problem that we look at is

�P 0jo
� fjo � min

XI

i�1

mijo xijo �24�

s:t:XI

i�1

mijo xij � 1; j � 1; . . . ; n; �25�

mijo � 0:

We now show that if e�ciency is viewed only in
terms of inputs, then the appropriate allocation
frjg of a ®xed resource is one whereby rj is pro-

portional to the virtual or aggregated input.
Hence, the amount of ®xed cost to be assigned to a
DMU is proportional to that DMU's consump-
tion of variable resources.

If a new (®xed) input is introduced, we may
consider an augmented version of �P 0jo

�:

�Q0jo
� min

XI

i�1

mijo xijo � mI�1jo rjo �26�

s:t:XI

i�1

mijo xij � mI�1jo rj � 1; j � 1; . . . ; n; �27�

mijo P 0; 8i:
As was shown in Section 3 above, the condition
for invariance and pareto-minimality is that the
reduced cost of the new cost variable vanishes.

0 � ÿrjo �
Xn

j�1

ujo
j rj; �28�

where the ujo
j are the optimal dual variables of

�P 0jo
�:
The dual of problem of �P 0jo

� is:

�D0jo
� max

Xn

j�1

uj �29�

s:t:Xn

j�1

ujxij � xijo ; i � 1; . . . ; I ; �30�

uj � 0; 8j:
In the case that DMUjo is not e�cient, then

XI

i�1

m�ijo
xijo � fjo > 1;

where the m�ijo
are the optimal solutions for �P 0jo

�:
Letting Jjo denote the binding constraints in (P 0jo

)
corresponding to the e�cient reference set for jo; it
follows that

ÿ rjo �
X
j2Jjo

ujo
j rj � 0; �31�

since the other dual variables ujo
j are all zeros, due

to complementary slackness.
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Denote Je as the set of all e�cient DMUs.
Clearly

Je � U n
jo�1Jjo :

5.1. Allocation among e�cient DMUs

For an e�cient DMU, that is a DMUjo for
which

XI

i�1

mijo
xijo
� fjo � 1;

we can assign any value rjo in (P 0jo
) without altering

its optimal objective value (Eq. (24)) since we can
always choose mI�1jO � 0 in (Q0jo

). Therefore, we
may make the assumption in the pure input case
that a fair allocation of the ®xed resource to the
e�cient DMUs is the uniform allocation. Since no
outputs are involved, no normalizing conditions
such as Eq. (10) are imposed. Any two members of
Je here are judged to be the same from an aggre-
gate input standpoint, whereas in the general case,
two e�cient DMUs are the same only from an
aggregate input/aggregate output perspective. One
could, for example, in the general case have two
DMUs j1 and j2 where one is twice the size of the
other (in each of the inputs and outputs), and yet
both could be e�cient. In such a case an equal
allocation rj1

� rj2
might seem unreasonable where

xij1
� 1=2xij2

for all i: Such a situation could, of
course, not happen in the pure input case, since if
j1 is e�cient (i.e., fj1

� 1�; then fj2
� 2; that is the

larger DMUj2 will not be e�cient.
If we then make the assumption that rj � ro for

j 2 Jjo ; then from Eq. (31)

rjo � ro

X
j2Ijo

ujo
j : �32�

From the dual theorem of linear programming
however, the objective functions of �P 0jo

� and �D0jo
�

are equal, hence fjo �
P

j2Jjo
ujo

j ; and

rjo � ro � fjo : �33�
Thus, in the pure input case a fair allocation of a
®xed resource to a set of n DMUs is one which

assigns DMUjo an amount proportional to its
aggregated or virtual input, as obtained from the
DEA exercise. This result complies with the allo-
cation rule of the one-dimensional case.

We now wish to apply the invariance and input
pareto-minimality principles to the allocation of
shared costs in the general multiple-inputs multi-
ple-outputs case.

6. The general case

Consider an augmented version of model �Pjo�;
namely:

�Qjo� f̂ jo
� min

XI

i�1

mijo xijo � mI�1jo
rjo �34�

s:t:XK

k�1

lkjo
ykjo � 1; �35�

ÿ
XK

k�1

lkjo
ykj �

XI

i�1

mijo xij � mI�1jo
rj � 0;

j � 1; . . . ; n; �36�
mijo ; lkjo

� 0; 8i; k:
As before, the condition that satis®es the two
principles is

�zI�1 � ÿrjo �
Xn

j�1

ujo
j rj � 0; �37�

where ujo
j ; j � 1; . . . ; n, are the optimal dual vari-

ables of �Pjo� corresponding to constraints Eq. (11)
in (Pjo ). As before, letting Je denote the set of in-
dices of all e�cient DMUs, it follows from the
complementary slackness property of linear pro-
gramming that

ÿ rjo �
X
j2Je

ujo
j rj � 0; jo 2 �J e; �38�

must hold for any ine�cient DMU jo: We, there-
fore, conclude that any cost allocation r �
�r1; . . . ; rn� must satisfy the set of equations

r` �
X
j2Je

u`jrj for all ` 2 �J e �39�
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andXn

`�1

r` � R: �40�

The following two properties hold by virtue of
Eqs. (39) and (40):

Property 1. The allocation rj of the cost to the
e�cient DMUs j 2 Je is such that

X
j2Je

1�
X
`2 �J e

u`j

0@ 1Arj � R: �41�

Property 2. For a given relative distribution of the
cost across the e�cient DMUs, the allocation
frjgj2 �J e

to the ine�cient DMUs is uniquely deter-
mined.

Thus, we have obtained a characterization for
an equitable allocation of shared costs in a multi-
ple-input multiple-output case. Speci®cally, any
allocation that belongs to the set

A � rjrl �
X
j2Je

u`jrj; ` 2 �J e

( )
is an equitable allocation. It satis®es both the in-
variance and the pareto-minimality principles.
Evidently, this allocation is not unique. It has de-
grees of freedom the number for which is equal to
the number of e�cient DMUs minus one. There-
fore, A cannot be used to determine a cost allo-

cation among the DMUs but rather to examine
existing costing rules for equity.

If the preliminary DEA analysis produced only
one e�cient DMU, then the allocation is unique.
This situation, however, is very unlikely to occur
in real world problems. One can reach such situ-
ations by prioritizing the e�cient DMUs. Several
methods for prioritizing e�cient units are reported
in the literature ± see, for instance, [1,4]. One way
to obtain a single allocation in this case is to im-
pose cone-ratio type constraints (see e.g., Charnes
et al. [2]) on the weights. Speci®cally, we add the
following constraints to Eqs. (34)±(36):

1

c
� lk=ls � c; s; k � 1; . . . ;K; �42�

1

c
� mi=mt � c; t; i � 1; . . . ; I : �43�

These constraints are used to identify the most
robust e�cient DMU, that is, the DMU that
maintains e�ciency as the weights get more and
more ``spread out'' among the various inputs and
outputs. As c! 1; the most robust e�cient DMU
emerges, where robustness is measured here in
terms of e�ciency invariance to a wide range of
non-zero multiplier values. In that case, a unique
set of relative costs is obtained, as it is readily seen
from Eq. (38).

To demonstrate this method for prioritizing the
e�cient units, consider the data in Table 1.

Table 1

Input±output data

DMU Input1 Input2 Input3 Output 1 Output2

1 350 39 9 67 751

2 298 26 8 73 611

3 422 31 7 75 584

4 281 16 9 70 665

5 301 16 6 75 445

6 360 29 17 83 1070

7 540 18 10 72 457

8 276 33 5 78 590

9 323 25 5 75 1074

10 444 64 6 74 1072

11 323 25 5 25 350

12 444 64 6 104 1199
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Running a (CCR) DEA model on these data
results in four e�cient DMUs: 4, 5, 8, and 9.
Therefore, the allocation is not unique and there-
fore the set A can be used only to examine any
given cost allocation for equity. If we impose ratio
restrictions on the weights as in Eq. (43) above,
then for c� 12.4, DMU 9 emerges as the single
e�cient one. The e�ciency ratings h and the op-
timal u9 value ± which is to be used in Eq. (38) ±
are shown in Table 2.

The u9 values for the various DMUs represent ±
as per Eq. (38) above ± the relative cost allocation
for the corresponding DMUs. For example, the
cost that is to be allocated to DMU 3 is 27.5%
higher than that cost to DMU 9 (the e�cient one),
and the cost allocation to DMU 4 is only 76.6% of
that of DMU 9.

Note that these relative cost allocations re¯ect
the activity of a DMU, as represented by the in-
puts. For example, DMU 4, with input vector
(281,16,9), represents a general lower activity rate
than DMU 9 with an input vector of (323, 25, 5).
Moreover, the outputs are used only to determine
the reference (e�cient) DMU. As was the case in
the single-input single-output case, once the e�-
cient DMU is found, the allocation is determined
entirely by the input side. To demonstrate this
property, consider DMUs 11 and 12 which have
identical input vectors to that of DMUs 9 and 10,
respectively. Their output vectors are, however,
quite di�erent ± DMU 11 has a lower output

vector than DMU 9 while DMU 12 has a higher
output vector than DMU 10. This latter situation
is well re¯ected in their corresponding e�ciency
ratings h: However, their shares of the ®xed cost
are identical to those of DMUs 9 and 10, respec-
tively. Thus, only the activity level of a DMU in-
deed a�ects its corresponding cost allocation ± as
one will naturally expect.

7. Discussion

The problem of allocating an ongoing ®xed cost
such as annual overhead, is important in many
managerial decision problems. When similar units
share a common resource pool, such as head o�ce
management expenses, centralized technology, or
annual advertising expenses, cost center consider-
ations point to a need to allocate the cost fairly
across the various units. For the simple and
straightforward case of one input and one output ±
through the pure input case ± to the general mul-
tiple-inputs multiple-outputs case, we have shown
that DEA can be used to obtain a characterization
of an equitable cost allocation. This DEA-oriented
cost allocation approach re¯ects the activity level
represented by the input consumption of the
DMU.

As emphasized earlier, the method is a gener-
alization of the simpler idea of ®xed allocations
being proportional to variable resource consump-
tion. To facilitate buy-in by management it is rec-
ommended that the review of a DMU's share of
®xed costs be undertaken only at convenient
points in time. This might occur annually, when
new and up-to-date cost ®gures are available; such
would be the case for, say, annual advertising
budgets.
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