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a b s t r a c t

We generalize Deitchman’s guerrilla warfare model to account for trade-off between intelligence (‘bits’)
and firepower (‘shots’). Intelligent targeting leads to aimed fire; absence of intelligence leads to unaimed
fire, dependent on targets’ density. We propose a new Lanchester-type model that mixes aimed and
unaimed fire, the balance between these being determined by quality of information. We derive the
model’s conserved quantity, and use it to analyze the trade-off between investments in intelligence and
in firepower—for example, in counterinsurgency operations.

Published by Elsevier B.V.

1. Introduction

Good intelligence is key for effective combat operations. If a
shooter knows exactly the location and state of his targets, he
can accurately target them with effective aimed fire. Absent such
information, the shooter is essentially ‘shooting in the dark’—
utilizing unaimed fire whose effectiveness depends on the density
of the targets. Arguably, such unaimed fire is less effective than
aimed fire, and it may also result in substantial unintended
collateral damage. At its simplest, the balance between aimed
and unaimed fire boils down to the trade-off between situational
awareness (‘bits’) and firepower (‘shots’).

Our purpose in this paper is to write down and analyze a
simple, prototypical system of two coupled differential equations
which mixes aimed and unaimed fire, in the sense of Lanchester’s
models. It is perhaps surprising that this has not been done before.
A step towards it is Deitchman’s guerrilla warfare model [7], an
asymmetric variant of Lanchester’smodels [15] inwhich aimed fire
from guerrilla forces is opposed by unaimed fire from conventional
forces. Deitchman’s model was extended by Schaffer [17], who
used the model to suggest new military hardware. The idea of
modeling the trade-off between firepower and intelligence in a
Lanchester setting was first suggested by Schreiber [19], albeit in
a somewhat different context. Schreiber’s model uses a reciprocal
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switching function between aimed and unaimed fire, whereas
ours has simple linear interpolation. The main resulting difference
between the two approaches is in their behavior as the battle is
scaled up: higher engaged numbers result in a shift towards aimed
fire in the Schreiber model and towards unaimed fire in ours.

Our model captures the dynamics of a perennial problem of
combat, which recurs in different contexts through the ages:
finding the best trade-off between rate and accuracy of fire. This
trade-off concerns both the optimal use of single weapons –
archery, anti-aircraft fire, battleship gunnery and musketry from
its inception to the modern day – and finding the correct weapons
mix, such as SAMs and flak against aircraft, or depth charges and
torpedoes against submarines. After an initial analysis of themodel
we specialize, for simplicity and without much loss of generality,
to the situation in which only one side has this mix of fire and thus
faces the trade-off problem, while the other can aim all of its fire.
Although our results are applicable wherever the rate/accuracy
trade-off problem bites, we choose to illustrate it in the context
of counterinsurgency (COIN) operations.

We assume that in COIN war it is straightforward for the
insurgents to identify state forces, so that all insurgent fire is
aimed. In fact we could equally have made it unaimed; the
point is that only the state, with the problem of distinguishing
insurgents from civilians, faces the bits vs shots trade-off problem.
Assuming that the resources for both capabilities are derived
from the same pot (e.g. defense budget) the question is how to
allocate the resources between them. Typically, in COIN settings,
the state forces are confronted by relatively small armed groups,
diffused in the population, which are ill-equipped and poorly
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trained. In terms of physical net assessment, insurgents are
no match for state forces, at least not in the early stages of
the insurgency. For example, in September 2011, the estimated
number of insurgents in Syria was around 10,000 people [10],
while the Syrian armed forces (active, reserve and paramilitary
personnel) were estimated at over 700,000 soldiers [16]. The key
advantage of the insurgents is their elusiveness and invisibility
while blended into the civilian population, whichmakes it difficult
for state forces to identify insurgent targets and execute effective
COIN operations. Thus, while intelligence is a key component in
any conflict situation, it is critical in COIN operations. The problem
of the state is how to divide limited COIN resources between
gathering information about the insurgents and accumulating
firepower that can effectively engage them.

There have been many attempts to model insurgencies as
dynamical systems. Descriptive models have addressed the effect
of civilian collateral casualties generated by the state [14] and
by the insurgents [3] on public response and, consequently, on
the fate of the insurgency, the impact of collective memory on
popular behavior towards the state and the insurgents [2], and
the spatial dynamics of such conflicts [1]. Berman et al. model
COIN as a three-way contest between violent insurgents, a state
seeking to minimize violence, and civilians deciding whether to
share information with the state [4]. A related paper compares
two possible COIN tactics – ‘fire’ (high violence) and ‘water’ (low
violence) – using optimal control techniques [6]. Bohorquez et al.
reveal, in an empirical study, some unique patterns regarding
the size and timing distributions of insurgencies [5], which
may be explained by notions of coalescence and fragmentation
of insurgent groups. The dynamical problems of intelligence
collection itself are treated by Kaplan and collaborators [9], while
Schaffer has introduced an updated model which contrasts 21st
century insurgency with Vietnam [18]. For recent overviews
of the literature on mathematical modeling of intelligence and
warfare see [12,13], respectively. In this note, however, we do
not attempt to deal with dynamical non-physical variables such
as psychological and social effects in COIN. Our intention is
to construct and analyze no more than a homogeneous model
of attrition, with all of the simplifications that this implies. In
Epstein’s categorization of reasons tomodel [8], ours is to illustrate
the core dynamics of the trade-off in combat attrition between two
parameters: rate of fire, and intelligence. Important questions such
as how popular opinion shifts over time, and how it impacts upon
the evolution andoutcomeof a conflict, are dealtwith in [1–4,6,14].

In the next section we extend Deitchman’s classical model for
the case of partial intelligence (on both sides) and obtain the
conserved quantity. In the rest of the paper we focus on the
asymmetrical COIN situation. In Section 4 we discuss the trade-off
between bits and shots when cost information is unavailable. In
Section 5 we present two constrained optimization models when
the costs of intelligence and firepower are known and the budget
is either constrained or is to be minimized. We show that the
two optimization problems produce the same optimal solution.
Summary and conclusions are presented in Section 6.

2. The generalized Deitchman model

The core of the generalized model is a pair of parameters that
interpolate aimed and unaimed fire, representing the intelligence
levels – hereafter called ‘intel’ – of the two forces. The values of
these parameter range between 0 (no intel – shooting in the dark,
unaimed fire) and 1 (perfect intel – all fire is aimed). In this section
we obtain and interpret the conserved quantity of such a mixed
engagement.

Let the positive real variablesB(t) andR(t) represent the sizes of
the Blue and Red forces respectively, and β and ρ denote their per-
unit aimed-fire hit-rates, so that the Lanchester aimed-fire model
is

Ḃ = −ρR, Ṙ = −βB, (1)

where dots denote time-derivatives. Famously this system con-
servesβB2

−ρR2, resulting in Lanchester’s ‘square law’. TheDeitch-
man guerrilla model [7] mixes aimed fire by Redwith unaimed fire
by Blue, so that
.

B = −ρR, (2)
.

R = −β
BR
NR

.

Note that rather than introduce a single parameter for unaimed
fire (which must necessarily have different dimensions than that
for aimed fire) we retain β but introduce a new fixed parameter
NR, with the same dimensions as R and B, which parameterizes
the density effect of unaimed fire. The Deitchmanmodel conserves
1
2βB2

− ρNRR, so that Blue’s fighting strength is square law while
Red’s is linear-law, with Blue suffering a further disadvantage from
the factor of 1/2.

Our generalized Deitchman model introduces intel parameters
µ and ν for Blue and Red, and is
.

B = −ρR(ν + (1 − ν)B/NB), (3)
.

R = −βB(µ + (1 − µ)R/NR).

Notice that Deitchman’smodel is obtainedwhenµ = 0 and ν = 1.
Analogously to elementary Lanchester theory, we compute the

conserved quantity Q for this system by dividing one equation by
the other:

dB
dR

=
ρR(ν + (1 − ν)B/NB)

βB(µ + (1 − µ)R/NR)
. (4)

Separating variables and computing partial fractions we obtain the
relationship

βNB

(1 − ν)


1 −

1
1 +

1−ν
ν

B
NB


dB

=
ρNR

(1 − µ)


1 −

1

1 +
1−µ

µ
R
NR


dR (5)

between differentials, and then, by integrating, we find that the
quantity

Q :=
βNB

(1 − ν)


B −

νNB

1 − ν
log


1 +

1 − ν

ν

B
NB


−

ρNR

(1 − µ)


R −

µNR

1 − µ
log


1 +

1 − µ

µ

R
NR


(6)

is constant throughout the battle. This expression interpolates
between Lanchester linear and square laws, just as it should: in
the µ, ν → 0 limit the second, logarithmic term in each bracket
vanishes and we have Q = βNBB − ρNRR, the linear-law, while in
the µ, ν → 1 limit, and after expanding the logarithm as a Taylor
series, we have Q =

1
2βB2

−
1
2ρR

2, the square law. The mixed
limit ν → 1, µ → 0 gives the conserved quantity 1

2βB2
− ρNRR

of the Deitchman model. We discuss these limits in more detail in
the next section.

Blue’s goal is to maximize Q over B, β and µ, Red’s to minimize
it over R, ρ and ν. In the Lanchester limits this is simple, since Q
takes the form Q = f (NB, B, β) − f (NR, R, ρ). So Blue (say) seeks
to maximize f , independent of Red’s choices, and an increase in
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its forces B by a factor k is equivalent to an increase in its hit-
rate β by a factor k for the Linear Law and k2 for the Square Law.
In our model, however, the situation is more complex, for now
Q = f (NB, B, β, ν) − f (NR, R, ρ, µ), and Blue’s and Red’s optimal
strategies are no longer independent, because ν is chosen by Red
and µ by Blue. So Blue has to maximize Q given that Red is trying
to minimize it, and vice versa. This moves us into the fascinating
territory of differential games [11]—but a full minimax analysis
rapidly becomes unwieldy and unilluminating (in part because
there is no canonical cost function), and is certainly beyond the
scope of this note. Rather we proceed in the next section with a
fuller analysis of the situation in which one side is able to aim all of
its fire. The analysis is quite general, but is presented in the context
of COIN.

3. COIN model

Consider a COIN situation where B = G are the state (‘Govern-
ment’) forces and R = I are the ‘Insurgents’, who are embedded in
a civilian population of size P . The insurgents have perfect situa-
tional awareness regarding the state forces and therefore can uti-
lize effective aimed fire, ν = 1. The state forces, on the other hand,
who do not have this perfect awareness, have to utilize a fraction
(1 − µ) of their firepower for unaimed engagement, where only a
fraction I

P of this firepower is effective. If the hit rates are α and γ
for the insurgents and state, respectively, then (3) becomes

Ġ = −αI (7)

İ = −γG


µ + (1 − µ)
I
P


,

and the parity condition, for a fully-annihilating endgame at which
G = I = 0, is

γG2
0 =

2αP
1 − µ


I0 −

µP
1 − µ

log

1 +

1 − µ

µ

I0
P


(8)

where G0 and I0 are the initial force sizes of the state and the insur-
gency respectively.

We observe immediately from (8) that, in terms of the trade-off
between hit-rate and force size, the state fights a Lanchester square
law war: its fighting strength, the left-hand side of (8), is γG2

0.
Defining κ := α/γ , y := G0/P, x := I0/P and z :=

1−µ

µ
x we

obtain the parity condition in the simpler form

y2 =
2κµ

(1 − µ)2
[z − log (1 + z)] . (9)

This has the expected limits. When z is small, which occurs if
µ ≃ 1 (mostly aimed fire) or I ≪ P , one uses the Taylor series
log(1 + z) = z − z2/2 + · · · to obtain

y2 ≃
κµ

(1 − µ)2
z2 =

κ

µ
x2, (10)

which results in a generalized square law
G0

I0

2

≃
κ

µ
. (11)

At the other extreme, when µ → 0 we have z → ∞ and
log(1+ z)/z → 0. The right-hand side of (9) then approaches 2κx,
just as in the Deitchman, µ = 0 case.

In Fig. 1 we plot the phase portrait with direction field and
parity curve. Under the generalized square law (11), the parity
curve is linear, so that for a clear departure from linearity z must
not be too small. Even if the insurgency is concentrated in a
sparsely populated area, for example P = 3I0 (that is, x = 1/3), we
only see departure from linearity at very small values of µ. Fig. 1

Fig. 1. Phase portrait of generalized Deitchman model for κ = 1, µ = 0.01. The
parity curve separates the two forces’ victory regimes.

uses x ≤ 1/3, κ = 1, µ = 0.01. For µ > 0.1 the parity curve is
practically indistinguishable from a straight line.

With limited endurance, where the state tolerates attrition up
toG0−G and the insurgents surrenderwhen their attrition reaches
I0 − I (where G, I > 0), the parity condition becomes

γ

2
[G2

0 − G
2
] =

αP
1 − µ


I0 − I −

µP
1 − µ

log


1 +

1−µ

µP I0

1 +
1−µ

µP I


. (12)

4. Firepower-intel trade-off in COIN

In many modes of combat there is a natural trade-off between
firepower and intelligence that is manifested in fire rate: shoot
now or wait for more accurate targeting information? Waiting for
better intelligence (higherµ) results in larger inter-firing time and
therefore lower γ . This trade-off is significant in particular in COIN
situations because of the high cost of collateral damage.

Recall (as noted above) that in a square law fight a proportionate
improvement in numbers is twice as valuable as the same
proportionate improvement in unit hit-rate [15].We formalize this
with the logarithmic derivative,

dλ := d(log F)/d(log λ) =
λ

F
dF
dλ

, (13)

where λ is some parameter andwe take F to be the ratio of fighting
strengths for the model, here

F :=

1
2γG2

0
αP2µ

(1−µ)2
[z − log(1 + z)]

, (14)

with z =
1−µ

µ

I0
P =

1−µ

µ
x as before. Then we find immediately that

dγ = 1, dG0 = 2, dα = −1: increasing numbers gives twice the
improvement of increasing hit-rate or reducing vulnerability, the
standard square law result.

For intel, though, the logarithmic derivative is not appropriate,
essentially because γ ∈ (0, ∞) whereas µ ∈ [0, 1]. If instead we
define a simple Dµ :=

d
dµ log F , we find

Dµ =
1
µ


1 −

x
µ


2
z

−
z

(z + 1)(z − log(1 + z))


. (15)
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Fig. 2. Plots of (a) Dµ against µ for x = 1/3, (b) critical values µc , at which Dµc = 1, for 1/x = 1, . . . , 20.

How does Dµ behave? As µ → 1,Dµ →
1
µ
(1 −

2x
3 ). As µ → 0

we find that Dµ has a logarithmic divergence; its behavior is Dµ ∼
log z
x −

x+1
x + O(log z/z).

In Fig. 2(a) we plot Dµ(µ) for a representative x, here x = 1/3
as before. The crucial value is that at which Dµ = 1, since it is here
that crossover with dγ ≡ 1 occurs. In Fig. 2(a) this critical µc is
approximately 0.7. In Fig. 2(b) we plot µc as a function of 1/x for
integer values 1 through 20.

So intel, which enables a small additional percentage of fire
to be targeted accurately, is of greater value than an equivalent
proportional increase in γ or G2 provided µ < µc . The operational
lesson is that when intel is poor, it is better to turn a percentage
of your untargeted fire into intelligent fire than it is to increase
hit-rate by the same percentage. When intel is already high the
opposite is true. This crossover happens at high values of µ, with
µc → 1 as x → 0: for example, if x = 1/3 then µc ≃ 0.72. That
is, if two-thirds of your untargeted fire goes astray, then more bits
are better than more shots until nearly three-quarters of your fire
is intelligent.

5. The cost of COIN

The state wishes to reduce the insurgency, and the question is
how to achieve the correct balance between intel and firepower
efforts. Aswenoted above, ourmodel is fundamentally Lanchester-
like: it already combines lethality γ and numbers G0, and thereby
the trade-off between them, in the form γG2

0. So we suppose
now that the cost of COIN operations is linear in both efforts, the
combined firepower γG2

0 and intel µ. That is,

C(COIN) = c1γG2
0 + c2µ, (16)

and the trade-off between γ and µ is investigated by holding
G0 fixed. Such a cost function might naturally be extended to
more general monotonic functions of γ , G0 and µ, but we do not
consider this here.

We consider two optimization problems. First, weminimize the
total cost of conducting COIN operations subject to the constraint
that the state does not lose the conflict, initially for a campaign of
annihilation and then when there is limited loss toleration on both
sides. Second, we maximize the force advantage (left-hand side
minus right-hand of (8) when the forces are not at parity) subject
to a fixed budget constraint.

5.1. Minimizing cost

To simplify the model we first assume a full-annihilation case
where G = I = 0. The objective now is to minimize c1γG2

0 + c2µ
subject to the parity condition in (8). Substituting γG2

0 computed
from (8) in the cost function above we have

C(µ) = c2µ + c1
2αP

(1 − µ)

×


I0 −

µP
1 − µ

log

1 +

1 − µ

µ

I0
P


. (17)

Recall that x =
I0
P is the relative initial inaccuracy of unintelli-

gent fire. Define r =
c2

c1αI20
, the intel-to-firepower cost ratio divided

by (twice) the insurgent firepower at square law parity. Then

C(µ) = 2αc1P2fx,r(µ), (18)

where

fx,r(µ) =
µrx2

2
+

x
(1 − µ)

−
µ

(1 − µ)2
log


1 +

1 − µ

µ
x


. (19)

Our task is to find the value of µ (in the interval 0 ≤ µ ≤ 1) which
minimizes fx,r(µ), for 0 < x < 1 and r > 0.

First, note that fx,r(µ) → x and f ′
x,r(µ) → −∞ as µ → 0. Thus

the minimum is always at a strictly-positive value of µ: however
expensive intel may be, it is always best to have at least a little of
it. (This might seem somewhat counterintuitive since, if x = 1,
targeted and untargeted fire are equivalent initially, making any
spend on intel initiallywasteful. But note that, even if x = I0/P = 1
initially, I/P will become less than one during the battle and will
become small towards its end, when intel will become crucial.)

At the other end of the interval fx,r(1) =
x2(r+1)

2 and f ′
x,r(1) =

x3
3 +

x2(r−1)
2 (via a series expansion of the logarithm and a little

algebra). Thus (since we observe that f is either monotone or
unimodal) the minimum cost is found at the end of the interval,
µ = 1, when r ≤ 1 −

2x
3 . That is, other things being equal, if

intelligence is cheap enough then it is always better to acquire it in
full capability. Since x ≤ 1 necessarily, if r ≤ 1/3 then this applies
regardless of the signature value x.

For r > 1 −
2x
3 the minimum is interior, 0 < µmin < 1, and

our task is to understand how its location varies with x and r . An
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Fig. 3. Scaled cost function f (µ) plotted against µ for x = 1/3, r = 5.

analytic solution is not illuminating. Rather we begin in Fig. 3 by
plotting a typical curve, here for x = 1/3, r = 5.

The minimum, here at about µ = 0.25, decreases with increas-
ing x or r . In Fig. 4(a), we generalize Fig. 3 to give a plot of µmin,
still with x = 1/3, for integer values of r from 1 to 10. Note that
for r = 1 this minimum occurs at about 0.86; we saw above that
when r ≤ 7/9 (that is, r = 1 − 2x/3 with x = 1/3) the minimum
reaches µ = 1. The value at r = 5 is the µmin of Fig. 3.

In Fig. 4(b) we generalize further to a plot of µmin as a function
of r (again for integers from 1 to 10) and 1/x (also integers from
1 to 10). Fig. 4(a) is the section at 1/x = 3. All calculations were
performed using Maple 14.

5.2. Limited endurance

Next assume that each side has limited endurance, which
results in the parity condition given in (12). Defining x =

I
P and

r̄ = r 1−G2/G20
1−I2/I20

we obtain from (12) and (16) that

C(µ) =
2αc1P2

1 − G
2
/G2

0


fx,r(µ) − fx,r(µ)


. (20)

If we assume that each side has the same tolerated proportion
of losses then r̄ = r and the analysis of (20) becomes more
tractable. First, we observe that µ = 1 minimizes (20) when r ≤

1 −
2
3
x2+xx+x2

x+x , a lower threshold than in the case of unlimited en-
durancewhere x = 0. This means that limited loss toleration shifts
the balance towards heavier weight on firepower versus intel.

For an alternate scenario, suppose that Ī = 0 (the insurgency
continues until its annihilation) but the state has limited loss
toleration. Then µ = 1 minimizes (20) whenever r̄ ≤ 1 − 2x/3,
and the cost range for which full intel is optimal increases with the
state’s inability to tolerate losses.

When x → x (almost no toleration of losses), then, setting
x = (1 − ϵ)x, we have

fx,r(µ) − fx,r(µ) ≃ ϵx2


µr +
1

µ + (1 − µ)x


(21)

and

µmin =


1 r < 1 − x

1
√
r(1 − x)

−
x

1 − x
1 − x ≤ r ≤

1 − x
x2

0 r >
1 − x
x2

.

(22)

At x = 1 the solution is µmin = 0: there is no initial difference
between the effectiveness of aimed and of unaimed fire, and thus
no value in intel.

Thus, whatever the loss toleration, for imperfectly-targeted fire
(x < 1) if intel is cheap enough (that is, if r is low enough) then
full intel is optimal. As loss toleration falls, this ‘cheap enough’
threshold also falls, from r = 1 −

2
3x in a war of annihilation to

r = 1−x forminimal toleration of losses. If the state’s unaimed fire
is very poorly targeted (x ≪ 1) then the threshold is approximately
r = 1, independent of loss toleration.

When full intel is not optimal, we can compare limited loss
toleration with the annihilating case. Fig. 5(a) shows the plot of
µmin against r , still with x = 1/3 and analogous to the (x̄ = 0)
annihilating case in Fig. 4(a), but nowwith x̄ = 1/5. Fig. 5(b) shows
the difference in µmin between the limited loss toleration case and
the annihilating case—that is, the curve of Fig. 4(a) minus that of
Fig. 5(a). As was mentioned above, we observe that, compared to
annihilation, limited loss toleration results in lower optimal values
for intel.

5.3. Maximizing force advantage

Here we return to Ḡ = Ī = 0, the war of annihilation. Suppose
that, rather than the previous problem of choosing µ to minimize
the cost of a marginal win, we instead choose µ to maximize the
firepower advantage (the difference between left- and right-hand
sides of (8)) available at a given cost C = c1γG2

0 + c2µ.
Thus we need to find the value of µ which maximizes

C − c2µ
c1

−
2αP2

1 − µ


x −

µ

1 − µ
log


1 +

1 − µ

µ
x


,

or (equivalently) which minimizes

2αP2fx,r(µ).

But this is precisely the same problem, with the same solution, as
in Section 5.1. It makes no difference whether the state wishes to
minimize the cost of a barewin, or tomaximize its force advantage
(and thereby minimize its losses) for a given cost outlay. Either
way, the optimum level of intel is the same.

6. Conclusions and operational lessons

We have written down and analyzed a variant of Lanchester’s
models that mixes aimed and unaimed fire by linear interpolation.
This allowed us to model, in the simplest possible setting, the
trade-off between targeting and firing rate which is a crucial
component of the operational use of many weapons systems.

As an application, we examined this trade-off in the context
of counterinsurgent warfare, in which state forces target an
insurgency with a mix of aimed (well-targeted, ‘intelligent’) and
unaimed (random, ‘unintelligent’) fire. In contrast to other recent
dynamical-systems models of insurgent war (e.g. [6,14]), we
included no psychological variables, parameters or feedbacks, no
dynamics of popular opinion, and no game theory. This was a
purely attritional model, with all the acknowledged deficiencies
of these, in which the question was posed only at its simplest:
which, for various parameter regimes, is more likely to lead to
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Fig. 4. Plots of µmin (a) as a function of r for x = 1/3, (b) as a function of r and 1/x.

Fig. 5. (a) Plot of µmin for limited losses x̄ = 1/5, (b) difference 1µmin between x̄ = 1/5 and annihilating case.

a state victory, ‘bits’—better intelligence – or ‘shots’ – increased
firepower?

Even in this context, of attrition and annihilation, in which no
account was taken of the human (and, in the end, political) costs
of random violence, intelligence emerges as remarkably valuable.
First, whether from the point of view of minimizing cost or of
maximizing force advantage (both in Section 5), it is always the
case that if intel is sufficiently cheap then a force can never have
too much of it: perfect intel is the most effective option. This is
truewhether in a battle of annihilation or of limited loss toleration,
although this ‘sufficiently cheap’ threshold is reduced in the latter
case. Estimates of realistic values of our cost ratio r would be
difficult to justify because this type of data is typically classified.
But, for a given cost ratio, it is clear that the optimal intel level
increases rapidly as the accuracy of targeting x decreases.

Even without attempting a cost analysis, one can still compare
intel with hit-rate and numbers (Section 4). In our model, the state
is fighting a square lawbattle, and a proportionate increase is twice
as valuable in numbers as in hit-rate. But an (absolute) increase in
intel is more valuable than a proportionate increase in (hit rate) ×
(numbers)2 for most combinations of intel µ and accuracy x. This

is our result at its starkest: bits are better than shots for all points
below the curve in Fig. 2(b), and this likely covers most realistic
values of the parameters. Absent accurate estimates of these, and
if the state has no strong reason to believe that its intel is already
excellent (µ is close to 1) and its unaimed fire not too random
(say x > 1/2), it should assume that more intel is the most cost-
effective military option, independent of other considerations.

Finally, future work on dynamic combat models should focus
more on psychological and social effects such as modeling the
‘bandwagon’ effect, which captures how people are mobilized to
support or oppose a certain side in the conflict, in the presence
of media-controlled public information. Also, as mentioned in
Section 2, the case where the two sides face the bits-versus-shots
dilemma naturally leads to a game-theoretic setting that may also
be a subject for future research.
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