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We formulate and solve aircraft-routing problems that arise when planning missions for mili-
tary aircraft that are subject to ground-based threats such as surface-to-air missiles. We use
a constrained-shortest path (CSP) model that discretizes the relevant airspace into a grid
of vertices representing potential waypoints, and connects vertices with directed edges to
represent potential flight segments. The model is flexible: It can route any type of manned
or unmanned aircraft; it can incorporate any number of threats; and it can incorporate, in
the objective function or as side constraints, numerous mission-specific metrics such as risk,
fuel consumption, and flight time. We apply a new algorithm for solving the CSP problem
and present computational results for the routing of a high-altitude F/A-18 strike group,
and the routing of a medium-altitude unmanned aerial vehicle. The objectives minimize
risk from ground-based threats while constraints limit fuel consumption and/or flight time.
Run times to achieve a near-optimal solution range from fractions of a second to 80 seconds
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1 Introduction

This paper describes the application of a new constrained shortest-path (CSP) algorithm

for identifying an optimal or near-optimal route for military aircraft such as strike aircraft,

unmanned aerial vehicles (UAVs), and cruise missiles. Mission planning for such aircraft

typically seeks to identify a route from origin to destination that balances the risk imposed

by some combination of enemy threats, flight time, fuel consumption, strike effectiveness,

and possibly other factors. We intend for our algorithm to form the core of an automated

route optimizer, or “autorouter,” in a mission-planning system.

The difficulty of determining an appropriate route and managing the many details of a

mission has prompted the development of a number of air-mission-planning systems. These

comprise various hardware and software components for organizing, calculating, and display-

ing mission-related information. For example, SAIC Mission Planning System (2007) and

FalconView (2007) extract relevant information from databases, display manually prepared

routes on a computer screen together with geographical information, and analyze the given

routes for factors such as threats and fuel consumption. An inter-service mission-planning

system is also being developed by the U.S. Department of Defense and several defense con-

tractors, with operational testing under way (JMPS 2007).

Manually planned routes have obvious disadvantages, and fast autorouters will eventu-

ally become standard components of mission-planning systems. In fact, some autorouters

for military aircraft do exist, including CLOAR (2007), OPUS (2007), and JRAPS (see

Tharp 2003). However, as discussed below, these have a number of modeling and computing

shortcomings.

Two model types have been proposed for autorouting: (i) Continuous models, classically

based on the calculus of variations, and (ii) discrete models that represent airspace as a

network. See Vian and More (1989), Novy (2001), and Zabarankin et al. (2006) for examples

of the former case, and see Lewis (1988), Leary (1995), Lee (1995), Grignon et al. (2002),

Kim and Hespanha (2003), and Zabarankin et al. (2006) for examples of the latter.

A typical continuous model seeks to identify an optimal route, defined via one or more

continuously varying curves, by solving of a system of nonlinear equations; see Hebert (2001)

for a detailed review. A series of papers (Zabarankin et al. 2002, Murphey et al. 2003a,
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Zabarankin et al. 2006) show how to model and solve a system of equations analytically for

the case of a single threat and a single constraint on route length. However, formulating and

solving such systems, analytically or numerically, is difficult given an arbitrary number of

threats, and given multiple constraints on factors such as fuel consumption and flight time.

(See also Inanc et al. 2004.)

Tsitsiklis (1995) and Polymenakos et al. (1998) describe reasonably efficient algorithms

for finding “continuous shortest paths,” but these algorithms do not easily extend to side-

constrained problems or to problems with direction-dependent travel costs. Pfeiffer et al.

(2005) develop a continuous, bi-objective model for minimizing risk and travel time along

a path, subject to convex, polygonal threat regions. Based on an assumed sequence of n

threats along any path, these authors identify an optimal path by solving a convex nonlinear

program. However, the optimal sequence of threats will not normally be known, and finding

a globally optimal path may therefore require the solution of n! nonlinear programs.

A different type of continuous model describes routing as an obstacle-avoidance problem

(Bortoff 2000, Helgason et al. 2001). But, an aircraft trying to reach a target cannot always

avoid all threats, so these models could apply only in special cases.

Even if the shortcomings described above could be overcome, any continuous routing

model that produces routes having smooth curves probably produces routes that are unfly-

able by a human pilot or a human UAV controller, or by a cruise missile using a “bang-bang”

flight-control mechanism. In general then, we conclude that continuous routing models are

unsuitable for use in autorouters.

A discrete routing model represents airspace using a network: Edges representing flight

segments connect vertices in a three-dimensional grid embedded in airspace, although a

two-dimensional grid will suffice for some situations. An edge’s length represents the risk

incurred by traversing the corresponding flight segment, or it represents a weighted sum of

risk and other factors such as fuel consumption and travel time over that segment. Lewis

(1988) appears to be the first to consider three-dimensional aircraft routing in discretized

airspace. His discretization defines a network model that seeks a “minimum-cost” path with

respect to a non-additive, composite measure of detection probability and fuel consumption;

his nonlinear objective function necessitates a heuristic solution. But, a discrete model like

Lewis’s having a linear objective function will solve quickly using a standard, unconstrained
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shortest-path algorithm: The algorithm’s output would be a route that is optimal for the

composite measure being minimized (within the approximation entailed by the discretiza-

tion), and any reasonable number of metrics can be combined in the objective function with

modest computational effort. Unfortunately, this approach cannot be guaranteed to produce

a route that minimizes one factor while satisfying a constraint on another.

Clearly, we would like to be able to place firm constraints on a mission with respect to

fuel consumption, and/or elapsed time, and/or total risk, etc. Minimizing an additive risk

measure, and constraining additive measures of the other factors in the airspace network,

produces a constrained shortest-path problem (CSPP) (e.g., Lee 1995, Zabarankin et al. 2002,

Murphey et al. 2003a, Zabarankin et al. 2006). CSPPs are NP-complete (Garey and Johnson

1979, p. 214), but numerous algorithms for solving them have been proposed and tested; for

example, see Joksch (1966), Handler and Zang (1980), Aneja et al. (1983), Desrochers and

Soumis (1988), Beasley and Christofides (1989), Lorenz and Raz (2001), Juttner et al. (2001),

Van Mieghem et al. (2001), Korkmaz and Krunz (2001), Dumitrescu and Boland (2003), and

Carlyle et al. (2007). (Kuipers et al. 2004 provides a general review of the topic.) Successful

applications of these algorithms have appeared in such areas as transportation (Nachtigal

1995), commercial aircrew scheduling (Vance et al. 1997, Day and Ryan 1997), and signal

routing in communication networks (Chen and Nahrstedt 1998, Kuipers et al. 2004).

The computational cost of solving the large-scale CSPPs that arise in aircraft rout-

ing has apparently restricted the use of such formulations in existing aircraft autorouters.

Consequently, these autorouters have relied on computationally tractable, unconstrained,

shortest-path approximations (e.g., Tharp 2005), or have applied a heuristic version of A*

search to solve the CSPPs approximately (OPUS 2007).

Recently, however, Zabarankin et al. (2006) have applied the label-setting CSP algorithm

of Dumitrescu and Boland (2003) to solve certain large-scale CSPPs for aircraft routing, and

they report the best computational results on this topic to date. Nonetheless, much room

remains for improvement. Zabarankin et al. first describe a radar-threat model (see Marcum

1947), which leads to an analytically tractable, continuous routing model as shown in an

earlier paper (Murphey et al. 2003a). (See Leary 1995 for the application of a similar radar-

threat model to an unconstrained, discrete aircraft-routing problem.) The model assumes

a single radar threat, a single side constraint to limit route length, and an ellipsoid-shaped
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aircraft. The authors then build an analogous discrete model, and verify that it finds routes

that correspond closely to the optimal routes provided by the continuous model. (They also

present computational investigations of discrete models with two and three radars.) But,

in doing this, the authors make no attempt to model (i) terrain avoidance, (ii) terrain-

masking of threat radars, (iii) variable flight speed to improve threat avoidance, or (iv)

more than a single side constraint. Furthermore, they (v) handle turn-radius constraints

only heuristically (see Murphey et al. 2003b), (vi) test in a hypothetical airspace having an

unrealistic geometry (the aircraft’s maximum altitude is similar to the horizontal distance the

aircraft must travel), and (vii) report long solution times (up to 1.5 hours for the heuristic,

and up to three hours for the optimal algorithm).

It may be possible to overcome some of the omissions and difficulties, noted above,

within the paradigm of Zabarankin et al. (2006). However, variable flight speed, extra side

constraints, and turn constraints could substantially increase both storage requirements and

the computational workload for a label-setting CSP algorithm. For example, avoiding the

use of a heuristic to handle turn constraints requires an expanded network model (Caldwell

1961), or an algorithm having more complex vertex labels and a less stringent test for label

dominance compared to the heuristic. Section 5.2 discusses this topic further.

This paper addresses the modeling omissions described above, and overcomes compu-

tational difficulties by applying a fast and versatile CSP algorithm. The basic algorithm,

developed by Carlyle et al. (2007), combines Lagrangian relaxation and enumeration of near-

shortest paths: Problems with more than one hundred thousand vertices and edges, and with

up to ten side constraints, usually solve to optimality in a few minutes on a personal com-

puter. Carlyle et al. show that this algorithm can be an order of magnitude faster than the

label-setting algorithm of Dumitrescu and Boland (2003) used by Zabarankin et al. (2006).

Additionally, as we will see in Section 5.2, our algorithm more easily extends to problems

with turn constraints than does the label-setting algorithm.

Using the algorithm in Carlyle et al. (2005), we can describe and solve an aircraft-routing

model that minimizes the risk of destruction from ground-based threats such as surface-to-air

missiles (SAMs), while (i) placing firm limits on fuel consumption, or fuel consumption and

flight time, and (ii) restricting turning radii, if desired. (A modified algorithm, as opposed to

a modified network, ensures constraint satisfaction here.) Our modeling and computational
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tests cover the routing of both manned and unmanned aircraft.

The remainder of the paper is outlined as follows. The next section describes the CSP

formulation for a generic aircraft-routing problem; Section 3 outlines the algorithm we use

for solving CSPPs; Section 4 presents an aggressive network-reduction scheme to eliminate

edges that can be proven not to lie on any optimal path; Section 5 presents two case studies;

and Section 6 presents a summary and conclusions.

2 Constrained Shortest-Path Model for Aircraft Routing

We model the airspace in the area of operations (AO) by a directed network G = (V,E)

in which vertices v ∈ V represent potential waypoints in three-dimensional space (two-

dimensional in some cases), and directed edges e = (u, v) ∈ E represent potential flight

segments between distinct vertices u, v ∈ V . An aircraft, or group of aircraft, will fly from

waypoint to waypoint along, and in the direction of, the specified edges. A suitable mesh and

edge distribution must be selected based on aircraft characteristics such as maximum turn

radius and/or climb rate, and on features of the operational environment such as threats

and terrain features. We discuss this topic in detail for each application in section 5. (With

a sufficiently fine mesh of vertices and sufficient density of edges, a discrete model can also

identify a route that differs only negligibly from the optimal route produced by a continuous

model; see Kim and Hespanha 2003. However, such a route could involve so many course

corrections as to be unflyable.)

The aircraft will fly from some origin vertex s (e.g., a point designated for entering the

AO), to some destination vertex t (e.g., a weapons launch point near a target), along a

directed s-t path. This path is an ordered set of edges, EP = {(s, v1), (v1, v2), . . . , (vk−1, t)}.

A path is simple if no vertices are repeated. A set of nonnegative real numbers measuring,

for example, risk, traversal time, or fuel consumption is associated with each edge. And, a

path’s total risk, or time, or fuel consumption is evaluated simply as the sum of the relevant

edge values. In the CSP model, one of these path measures will be minimized, while the

others are constrained by upper bounds. We refer to the optimized measure as length; the

other measures, indexed by i ∈ I, are weights. Let ce ≥ 0 and fie ≥ 0, i ∈ I, denote length

and weights of edge e, respectively. The length of path EP is simply
∑

e∈EP
ce and the path’s

i-th weight is
∑

e∈EP
fie. For each i ∈ I, gi prescribes an upper limit on a path’s i-th weight.
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We define the aircraft-routing problem as:

Find a simple, directed, s-t path E∗
P in G such that

∑
e∈E∗

P
fie ≤ gi for all i ∈ I,

and such that
∑

e∈E∗
P

ce is minimum over all s-t paths EP .

In a general context, this problem is known as the (resource-)constrained shortest-path

problem (CSPP).

The CSP model is certainly reasonable for a cruise missile that makes a one-way trip

from origin to destination, but a human pilot also wishes to make the return trip. A valuable

UAV should make the return trip as well. Generally, doctrine and common sense prescribe

different ingress and egress routes to a target. In particular, airspace controllers often specify

a certain airspace corridor for ingress and another for egress to avoid enemy fire as well

as accidents and friendly fire (Zacherl 2006). With such separation, the CSP model can

determine an optimal, round-trip flight path by simply using a directed network consisting

of two sub-networks. The first sub-network represents ingress routes from s to t, while the

second represents egress routes from its source at t to its sink at s′, which could be a duplicate

of s. Because the two sub-networks are essentially disjoint, the optimal path from s to s′

solves the joint, ingress-egress problem. Section 5.5 provides a computational example to

illustrate.

3 Solving the Constrained Shortest-Path Problem

Carlyle et al. (2007) develop an efficient, exact algorithm for solving certain CSPPs, and we

intend to apply that algorithm for routing military aircraft. For completeness, this section

presents the essence of that algorithm. The algorithm is called “Lagrangian relaxation plus

(near-shortest path) enumeration,” or “LRE” for short. The LRE algorithm is related to

the Lagrangian-based algorithms of Handler and Zang (1980) and Beasley and Christofides

(1989). Its implementation also exploits and extends the preprocessing procedures of Aneja

et al. (1983), Beasley and Christofides (1989), and Dumitrescu and Boland (2003).

Let A denote the vertex-edge incidence matrix for a directed graph G = (V,E): For

each e = (v, u) ∈ E, Aue = 1, Ave = −1, and Awe = 0 for any w 6= u, v. Let b denote

the |V |-vector such that bs = 1, bt = −1 and bv = 0 for all v ∈ V \{s, t}. And, define this
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additional notation:

g = (g1 g2 · · · g|I|)T , c = (c1 c2 · · · c|E|), fi = (fi1 fi2 · · · fi|E|), and F =




f1
f2
...

f|I|




.

Then, CSPP may be written as an integer program (Ahuja et al. 1993, p. 599),

CSPIP z∗ ≡ min
x∈{0,1}|E|

cx (1)

s.t. Ax = b (2)

Fx ≤ g, (3)

where x∗
e = 1 if edge e is in the selected optimal path, and x∗

e = 0, otherwise. We refer to

constraints (3) as side constraints, and refer to x̂ as a path when it satisfies all constraints of

CSPIP except possibly the side constraints. (The potential for cycles in an optimal path x̂

can be safely ignored because c ≥ 0 and because of the structure of our solution algorithm.)

Using the standard theory of Lagrangian relaxation (e.g., Ahuja et al. 1993, pp. 598-648),

we know that for any appropriately dimensioned row vector λ ≥ 0,

z∗ ≥ z(λ) ≡ min
x∈{0,1}|E|

cx + λ(Fx− g) (4)

s.t. Ax = b. (5)

Rewriting the objective function, we can optimize the Lagrangian lower bound z(λ) through

CSPLR z∗ ≡ max
λ≥0

z(λ) (6)

= max
λ≥0

min
x∈{0,1}|E|

(c + λF )x− λg (7)

s.t. Ax = b. (8)

For any fixed λ ≥ 0, computing the lower bound z(λ) simply requires the solution of a

shortest-path problem with Lagrangian-modified edge lengths. An integer optimal solution

exists for the linear-programming relaxation of the inner minimization of CSPLR, so we

know that z∗ equals the optimal objective value of the linear-programming relaxation of

CSPIP (e.g., Fisher 1981). Unfortunately, it is easy to construct examples in which this

bound greatly underestimates z∗ (see Lee 1995 and section 5 in the current paper), so the

success of the LRE approach can depend on the ability to quickly close a large duality gap.
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The outer maximization over λ can be solved by numerous methods; for instance, see

Fox and Landi (1971), Beasley and Christofides (1989), DeWolfe et al. (1993), Wolsey (1998,

pp. 172-173). We use repeated bisection search in the coordinate directions because we

expect to have only a few side constraints, and because this technique seems to work well

for such cases (DeWolfe et al. 1993, Carlyle et al. 2007).

The LRE algorithm also requires an upper bound, z̄ ≥ z∗. Any path x̂ that satisfies the

side constraints (3) yields such a bound, z̄ = cx̂. Such paths often appear as a byproduct

of optimizing z(λ), especially if the problem possesses only a few side constraints. But, a

special “phase-I algorithm” can also be used to identify a feasible path, if necessary (Carlyle

et al. 2007). In the worst case, z̄ = (|V |−1)maxe∈E ce is always valid for a feasible problem.

Now, given z̄, and an arbitrary Lagrangian vector λ ≥ 0, the following theorem and

corollary show that we may view the problem of solving CSPIP as one of simple path enu-

meration. Carlyle et al. (2007) prove this theorem explicitly, but it may be found implicitly

in Handler and Zang (1980).

Theorem 1 All optimal solutions x∗ to CSPIP are contained in the set X̂(λ, z̄), where z̄

denotes an upper bound on z∗ for CSPIP, and X̂(λ, z̄) denotes the set of feasible paths x̂

to CSPLR that satisfy cx̂ + λ(F x̂− g) ≤ z̄.

Proof: Since Fx∗ ≤ g and λ ≥ 0, the result follows from the facts that (i) cx∗+λ(Fx∗−g) ≤

z∗, and (ii) z∗ ≤ z̄.

Corollary 1 If CSPIP is feasible, an optimal solution x∗ can be identified by (a) establish-

ing an upper bound z̄ ≥ z∗, (b) enumerating x̂ ∈ X̂(λ, z̄), and (c) selecting

x∗ ∈ argmin
x̂ ∈ X̂(λ, z̄)

{cx̂ | F x̂ ≤ g}. (9)

Theorem 1 and Corollary 1 are valid for any λ ≥ 0, but it is easy to devise examples that

show how an optimal or near-optimal λ for CSPLR can exponentially reduce the size of

X̂(λ, z̄), which reduces the computational workload correspondingly. Thus, we do attempt to

maximize z(λ) but, for simplicity, use heuristic stopping rules for the maximization process.

We have verified on medium-sized problems, through direct solution of linear programs, that

these rules typically maximize the Lagrangian bound to within 1% of the optimal value.
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The theorem and corollary also imply that we may need to enumerate each path x̂

satisfying (c + λF )x̂ − λg ≤ z̄. Let x∗
λ solve the shortest-path problem given the edge-

length vector c + λF so that z(λ) = (c + λF )x̂∗
λ − λg. Then, we can solve CSPP by

enumerating all paths x̂ such that z(λ) ≤ (c + λF )x̂− λg ≤ z̄. In turn, this means that,

given edge-length vector c + λF , and adding the Lagrangian constant term −λg to the

length of any path, we wish to find all δ-optimal (near-shortest) paths for δ ≡ z̄ − z(λ). Of

course, z̄ may change as the algorithm identifies new feasible solutions, so δ may change;

and, if δ ever goes to 0, the algorithm can halt. The full LRE algorithm can now be outlined.

LRE Algorithm for CSPP (Outline)

Input: G = (V,E), s, t, c, g, and F defining a CSPP.

Output: An optimal path-edge incidence vector x̂.

Step 1: Find λ that optimizes or approximately optimizes the Lagrangian lower bound

z(λ).

Step 2: Let X̂ denote the set of feasible paths identified while optimizing z(λ). If X̂ 6= ∅,

set upper bound z̄← minx̂∈X̂ cx̂, else set z̄ ← (|V | − 1)cmax + γ for some γ > 0.

Step 3: Using a standard path-enumeration procedure (e.g., Byers and Waterman 1984),

begin enumerating all paths x̂ such that (c + λF )x̂ − λg ≤ z̄, with the following

modifications:

(a) Use z̄ and the side constraints to limit the enumeration when it can be projected

that the current path cannot be extended to one whose length improves upon z̄ or

which does not violate at least one of the side constraints.

(b) Whenever the algorithm identifies a feasible path x̂ whose length is shorter than

the incumbent, update the incumbent to x̂ and update the upper bound to z̄ = cx̂.

Step 4: If no x̂ is found in Step 3, the problem is infeasible; otherwise the best solution x̂

is optimal.

End of LRE Algorithm
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The path-enumeration procedure initializes itself in Step 3 by computing distances from

every vertex to t using “Lagrangian edge lengths” (to be defined below), true edge lengths,

and individual edge weights. Specifically, Step 3 starts by

• Computing the minimum “Lagrangian distance” d(v) from each v ∈ V to t by solving

a single shortest-path problem that traverses edges backwards, starting from t, using

Lagrangian edge lengths c′ ≡ c + λF ,

• Computing analogous minimum v-to-t distances d0(v) for all v ∈ V with respect to

edge lengths c, and

• Computing analogous minimum v-to-t distances di(v) for all v ∈ V and i ∈ I with

respect to edge weights fi.

This initialization phase requires the solution of only |I|+ 2 shortest-path problems.

Let EP (u) = {(s, v1), (v1, v2), . . . , (vk−1, u)} denote a directed s-u subpath. In Step 3

of the algorithm, a standard path-enumeration procedure commences from s, but extends

subpath EP (u) along edge e = (u, v) if and only if the following conditions hold:

Conditions for extending a subpath

• EP (u) ∪ {e} can be extended to a path whose Lagrangian length does not exceed z̄,

i.e., L(u) + (ce +
∑

i∈I λifie) + d(v) ≤ z̄, where L(u) denotes the Lagrangian length of

EP (u) and where, by convention, we define L(s) = −λg.

• EP (u) ∪ {e} can be extended to a path with length strictly less than z̄, i.e., L0(u) +

ce + d0(v) < z̄, where L0(u) denotes the length of EP (u).

• For all i ∈ I, EP (u) can be extended to a path whose i-th weight does not exceed gi,

i.e., Li(u) + fie + di(v) ≤ gi for all i ∈ I, where Li(u) denotes the i-th total weight of

EP (u).

• The path does not loop back on itself.

The LRE algorithm actually defines a branch-and-bound procedure that incorporates

a depth-first enumeration tree along with feasibility checks. (This may also be viewed as

non-heuristic variant of A* search; for example, see Russell and Norvig 1995, pp. 92-107.)
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Branching consists of extending the current subpath by one edge. Carlyle et al. (2007) show

the usefulness of several enhancements to the LRE algorithm, including (i) the application

of a network-reduction procedure at several places in the algorithm to remove edges that

cannot possibly lie on an optimal path (discussed further in the next section), (ii) the

addition of conditions based on aggregated constraints to limit path enumeration in Step

3(a) of the algorithm, and (iii) the use of a phase-I routine for finding initial feasible paths.

We recommend these enhancements as they can improve solution times dramatically for

some problems, and because they do not incur significant overhead in practice. Naturally,

computational work can also be reduced by accepting an ε-optimal solution, i.e., by halting

the algorithm as soon as z̄−z(λ) ≤ ε, for some prespecified ε > 0. Or, as in our computational

tests, the algorithm can halt when a relative optimality tolerance of r% is reached: (z̄ −

z(λ))/z(λ) ≤ r/100%.

4 Network Reductions

A network-reduction procedure for CSPP may be able to identify numerous vertices and

edges that cannot lie on any optimal path, and remove them prior to optimization. The

resulting, smaller network should require less effort to solve, simply because there are fewer

vertices and edges to process. Importantly, a smaller network may also yield a tighter

Lagrangian bound as well as tighter distances d(v), d0(v), and di(v), i ∈ I, for the path

enumeration procedure. Aneja et al. (1983) apply network reductions with respect to the

individual edge weights, while Beasley and Christofides (1989) and Ziegelmann (2001) also

apply these with respect to edge length and Lagrangian edge length. Those authors apply

network reductions only before the main algorithm begins, so these reductions are typically

referred to as “preprocessing.” Dumitrescu and Boland (2003) preprocess with respect to

individual edge weights and edge lengths, but repeat the process multiple times. We use

the following network-reduction procedure at several different points in our algorithm (see

Carlyle et al. 2007). Note that the procedure generalizes the techniques described above by

also using “average edge weight”
∑

i∈I fie/gi.

Network Reduction Procedure

Input: Data for CSPP and number of scans ns.
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Step 1: Set h← 1.

Step 2: For all i ∈ I, and for all v ∈ V , compute a minimum-weight s-v subpath distance

Di(v) and a minimum-weight v-t subpath distance di(v) with respect to weight vector

fi.

Step 3: For all v ∈ V , compute a minimum-average-weight s-v subpath distance D̄(v) and

a minimum-average weight v-t subpath distance d̄(v) with respect to “average weight”

vector
∑

i∈I fi/gi.

Step 4: For all v ∈ V , compute a minimum-length s-v subpath distance D0(v) and a

minimum-length v-t subpath distance d0(v) with respect to length vector c.

Step 5: For all v ∈ V , compute a minimum-Lagrangian-length s-v subpath distance D(v)

and a minimum-Lagrangian-length v-t subpath distance d(v) with respect to weight

vector c + λF .

Step 6: Delete any edge e = (u, v) ∈ E such that

Di(u) + fie + di(v) > gi for any i ∈ I, or (10)

D̄(u) +
∑

i∈I

fie/gi + d̄(v) > |I|, or (11)

D0(u) + ce + d0(v) ≥ z̄, or (12)

D(u)− λg + ce +
∑

i∈I

λifie + d(v) > z̄. (13)

Step 7: If h < ns and at least one edge was deleted in Step 6, set h ← h + 1, and go to

Step 2. Else, stop.

A similar network-reduction procedure for eliminating vertices can also be constructed

(Aneja et al. 1983 and Dumitrescu and Boland 2003), but the edge-elimination procedure

subsumes it, and computational time is negligible.

Dumitrescu and Boland (2003) propose scanning edges multiple times in their prepro-

cessing procedure, which corresponds to setting ns > 1 in our network-reduction procedure.

Repeated scanning may reduce the network further than a single scan since the removal of

edges in Step 6 can lead to longer distances in Steps 2-5. Empirically, we find little value in
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scanning the set of edges more than 10 times and therefore set ns = 10. Aneja et al. (1983),

Beasley and Christofides (1989), Ziegelmann (2001), and Dumitrescu and Boland (2003)

apply network reductions prior to any calculations or after optimizing the Lagrangian lower

bound. Carlyle et al. (2007) follow suit, but also experiment with “reprocessing,” which

repeatedly applies network reductions within the path-enumeration phase of the algorithm.

The current paper adopts an aggressive network-reduction scheme that applies reductions

(i) before Step 1 of the LRE algorithm, with ns = 10, (ii) immediately after Step 1 (i.e.,

after optimizing the Lagrangian lower bound) with ns = 10, and then (iii) during Step

3 (i.e., within the path-enumeration phase of the algorithm), every time z̄ reduces by a

multiplicative factor of α, but only with ns = 1. We set α = 0.9 in all numerical tests.

Since only a weak upper bound is available prior to Step 1, the first application of

network reductions effectively utilizes only the side constraints. However, as successively

tighter upper bounds are found while optimizing the Lagrangian lower bound or enumerating

paths, the reductions becomes more effective and may shrink the network dramatically.

5 Applications

This section presents two case studies for military-aircraft routing, the first for an F/A-18

strike mission and the second for a UAV surveillance mission. We also demonstrate how

to enforce turn-radius constraints, when needed. Computational results are obtained using

the LRE algorithm as described above, but with the addition of aggregated constraints and

the phase-I procedure from Carlyle et al. (2007) (not described in the current paper). We

carry out computations on a desktop computer with a 3.4 GHz Intel Pentium IV processor, 3

gigabytes of RAM, the Microsoft Windows XP operating system, and with programs written

and compiled using Microsoft Visual C++ Version 6.0.

5.1 Routing an F/A-18 Strike Mission

Planners wish to determine a fuel-constrained, minimum-risk route for an F/A-18 strike

group from an entry point in the area of operations (AO), through enemy airspace to a

specific destination such as a weapons-launch point. A strike group consists of multiple

aircraft types such as fighters, radar jammers, and the primary strike aircraft, several F/A-

18s in this case. The aircraft risk being shot down by enemy surface-to-air missiles (SAMs),
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and are subject to a limit on fuel consumption.

We formulate this routing problem as a singly constrained CSPP on a two-dimensional

network consisting of a highly connected grid of vertices. Edge length ce measures the risk (to

be defined precisely below) of traveling along e, while edge e’s weight fe = f1e measures fuel

consumption along e, with the Euclidean length of the edge used as a surrogate. The AO’s

limits are defined, in part, by the closest points to the destination at which the strike group

might complete aerial refueling. Current doctrine specifies that F/A-18 and similar aircraft

will maintain a constant, fuel-efficient altitude of about 36,000 feet, so a two-dimensional

grid suffices to model the AO’s airspace.

The AO covers an area of 200 nautical miles (nm) by 296 nm, laid out in a Cartesian

coordinate system with the origin at the southwest corner; see Figure 1. We cover the

airspace with a 26×38 rectangular grid of vertices, which implies a spacing of eight nm. This

spacing corresponds to about one minute of flying time at the standard cruising speed of

Mach 0.8. (See Kim and Hespanha 2003 for experiments with non-rectangular grids.) The

strike group will enter the AO at the AO’s western edge, at coordinates (0,104), and fly in

a generally easterly direction to the destination at coordinates (296,104).

Graphically, the threat from a single SAM, with known location, can be represented as a

set of concentric “threat circles,” centered on the SAM’s location. The central circle defines

the region of highest risk around the SAM, and risk decreases, stepwise, in each annulus-

shaped region further from the center. Clearly, this represents an idealized threat model,

but it does reflect the current level of detail in military planning (Bindi and McCarthy 2004,

Landon 2004), and more elaborate formulations are easily incorporated into the flexible CSP

methodology.

Intelligence reports may not be able to locate some SAMs precisely, especially in the

case of mobile SAMs. In this case, we could increase the radii of the concentric circles and

decrease the corresponding risk measure to reflect the more diffuse risk. Other shapes could

also be used: For instance, if a mobile SAM were spotted on a straight-line road segment

some hours before a strike mission is to commence, a cigar-shaped region along the road

might be appropriate.

We compute an additive risk measure ce, for each edge e, based on the probability

pe that at least one SAM hits the strike group as the group traverses e. We compute pe
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as a as a function of the geometric length of each threat-circle intersection and associated

“threat magnitudes,” assuming that pe does not depend on the subpath used to reach e. This

“independence assumption” would be inappropriate if a SAM that could strike an aircraft on

edge e′′ could capitalize on the tracking information provided by radars associated with some

edge e′ 6= e′′ that might appear earlier along the strike group’s route. But, because terrain-

masking cannot be exploited by a high-altitude strike group, mission planners actually expect

that the enemy’s long-range radar will accurately track the group. Consequently, threats to

the strike group are local and independent, and pe depends on the group’s ability to jam

targeting radars and to avoid any missiles that are fired at it. The independence assumption

only fails here if the threat from a single SAM influences the calculation of pe′ and pe′′ on two

separate edges, e′ and e′′, along a path the group might traverse. But, assuming all nominal

probabilities are reasonably small, it can be shown that the error induced is modest.

Given pe for every edge e, and given the independence assumption, the probability

of no SAMs hitting the strike group while traversing a path EP is simply
∏

e∈EP
(1 − pe).

Using a standard logarithmic transformation (Shorack 1964), we obtain the risk measure

ce = − log(1− pe) such that minimizing
∑

e∈EP
ce maximizes that product, i.e., a minimum-

risk path is equivalent to a path with maximum probability of no aircraft being hit by a SAM.

In the following, we report this probability of no hits, which we equate with “probability of

mission success.” (Of course, risk could be limited by a constraint in the CSP model, while

some other objective such as time is minimized.)

Our test data define 15 SAM sites in the AO, each surrounded by two or three threat cir-

cles, with various radii. These radii depend on the technical capabilities of the corresponding

SAM and its tracking radar. Figure 1 depicts the threat-circle boundaries as dotted circles

inside the AO.

The simplest discretization of the AO might connect nearest-neighbor vertices, including

diagonals, with edges. The resulting network would be sparse and the computational burden

low, but it could lead to unrealistically jagged flight paths. On the other hand, modeling

straight-line flight segments between every vertex pair would yield a dense, complete network

with about 2× 106 edges, and a high computational burden. Consequently, we explore eight

different graph structures (A-H in Table 1), which are much denser than typical network

models such as road networks (and much denser than the topologies employed by Zabarankin
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et al. 2006), but substantially sparser than a complete network. For instance, Structure A

connects each vertex u to all vertices v that are between 8 nm and 12 nm away, but only

those that are no further west than u. In fact, none of the networks in Table 1 includes

edges with any west-bound vector component. We justify models with no short edges (see

F, G, and H in Table 1) by the fact that short edges may result in routes with many edges

and consequently the potential for frequent zig-zagging. Zig-zagging is undesirable from the

pilot’s perspective because of the associated work load. Note that some of the edges we

generate, especially certain long ones, could be excluded from the network a priori, because

they imply paths that clearly consume too much fuel. However, for simplicity in this paper,

we eliminate those through network reductions, a posteriori.

Edge lengths Prob. of mission success for various fuel limits g

Graph (nm) (fuel measured in nm)
Structure |V | |E| min max 300 310 320 330 340 350
A 988 4,712 8 12 0.1892 0.4738 0.5337 0.7953 0.8940 0.9222
B 988 11,048 8 18 0.3517 0.5793 0.8949 0.9240 0.9268 0.9287
C 988 22,222 8 30 0.3517 0.6225 0.9094 0.9259 0.9277 0.9305
D 988 123,166 8 80 0.5310 0.7254 0.9185 0.9268 0.9287 0.9305
E 988 228,042 8 120 0.5310 0.7261 0.9185 0.9268 0.9287 0.9305
F 988 223,330 16 120 0.5247 0.7261 0.9185 0.9268 0.9287 0.9305
G 988 195,110 40 120 0.5092 0.7045 0.9066 0.9235 0.9235 0.9235
H 988 118,454 16 80 0.5247 0.7254 0.9185 0.9268 0.9287 0.9305

Table 1: Statistics for strike-group routing given various fuel constraints. Each vertex u is connected
with edges (u, v) where v lies between “min edge” and “max edge” nautical miles distant from u,
but is no further west than u. Using a 1% relative optimality tolerance, the last six columns specify
the probabilities of success for the near-optimal routes given various fuel limits g. These fuel limits
correspond to the Euclidean distance traveled, measured in nautical miles. Figure 1 illustrates
some of these routes.

The last six columns of Table 1 show that different network densities do affect the

calculated probability of mission success. Naturally, a denser graph allows more flexibility

and a route with higher probability of success (lower risk) is possible. It appears that graph

structures F and H allow reasonable flexibility in flight planning with, as we shall see below,

small computational effort. Note also that the tighter fuel limits dramatically reduce the

probabilities of mission success, to levels at which the missions might not be executed.

For various fuel limits, Table 2 reports the solution time (“Run time”); the relative

“initial gap” which provides a measure of the quality of the initial solution found (“Ini.

gap”); and the relative duality gap (“Dual gap”). We define the relative initial gap as

17



100%(cx̂ − z∗)/z∗, where x̂ denotes the best feasible solution found while optimizing z(λ),

and we define the relative duality gap as 100%(z∗ − z∗)/z∗. Note that the minimum fuel

consumption for the group is 296 and the optimality tolerance is 1%. Table 2 shows that a

problem from this class can, in fact, exhibit large initial gaps and large duality gaps. And,

note that a problem with a small duality gap but a large initial gap may require a significant

amount of enumeration, presumably because of a weak upper bound.

The edge weights, which represent fuel consumption, vary significantly among the graph

structures B-H. This motivates us to examine the path-enumeration procedure within the

LRE algorithm and its potential sensitivity to edge-processing order, i.e., to the order in

which the enumeration mechanism scans the edges directed out of any vertex. In fact, we

find that efficiency tends to improve when the algorithm processes edges in order of decreasing

weight, rather than in some arbitrary order. The improvement seems to derives from the

greater likelihood of finding good feasible solutions quickly. Roughly speaking, when the

algorithm uses this rule, it searches for s-t paths with the fewest edges first, and thus spends

less effort per path investigated in its early phases. If a path with only a few edges is just

as likely to be a good feasible path as a path with many edges—and we may have no reason

to believe otherwise—then, on average, the algorithm using this rule will find more good

paths quickly. Consequently, all tests reported use this scheme. (This ordering scheme may

be viewed as a static “branching strategy” for the underlying branch-and-bound algorithm.)

We typically observe only moderate sensitivity of solution times to edge-processing order,

but two instances do show order-of-magnitude improvements with the reordering.

Figure 1 illustrates some of the minimum-risk paths for the “F network” (see numerical

results in Table 1). The figure clearly shows how, as the fuel limit increases, the near-optimal

path becomes longer and more indirect in order to improve the probability of mission success.

The second and third columns of Table 3 list the probabilities of mission success and actual

fuel-consumption values, respectively, for various fuel limits. (Some of these results are also

reported in Table 1.) Initially, the probability of success increases substantially as the fuel

limit increases from 300 to 330. This probability does not improve much with greater fuel

limits, however, because the last part of the route must fly through an unavoidable threat

region.

The model above assumes constant aircraft speed along the mission’s route. This is a
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Fuel limit Run time and Gap
(fuel limit) Statistic A B C D E F G H
300 Run time (sec.) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ini. gap (%) <1 <1 <1 <1 <1 <1 <1 <1
Dual gap (%) <1 <1 <1 <1 <1 <1 <1 <1

310 Run time (sec.) 0.0 0.0 0.0 0.5 0.5 0.4 0.4 0.3
Ini. gap (%) 3 4 3 264 260 260 136 262
Dual gap (%) 3 4 2 117 117 117 43 117

320 Run time (sec.) 0.0 0.0 0.0 0.2 0.5 0.5 0.2 0.3
Ini. gap (%) 7 <1 32 41 41 41 8 41
Dual gap (%) 7 <1 10 4 4 4 7 4

330 Run time (sec.) 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1
Ini. gap (%) 10 1 <1 <1 <1 <1 <1 <1
Dual gap (%) 10 <1 <1 <1 <1 <1 <1 <1

340 Run time (sec.) 0.0 0.0 0.0 0.2 0.4 0.3 0.2 0.2
Ini. gap (%) 4 2 2 2 2 2 2 2
Dual gap (%) 1 <1 <1 <1 <1 <1 2 <1

350 Run time (sec.) 0.0 0.0 0.0 0.2 0.3 0.4 0.3 0.2
Ini. gap (%) 3 1 <1 1 1 1 4 1
Dual gap (%) 3 1 <1 1 1 1 4 1

Table 2: Computational results for routing an F/A-18 strike group. For various fuel limits, this table
reports solution time (“Run time”), initial solution quality (“Ini. gap”) and duality gap (“Dual
gap”). Given a initial feasible solution x̂, initial solution quality is defined as 100%(cx̂− z∗)/z∗;
duality gap is defined as 100%(z∗ − z∗)/z∗. The optimality tolerance is 1%.
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Constant speed Variable speed

Fuel limit Prob. of Fuel consumed Prob. of Fuel consumed
(nm) success (modified nm) success (modified nm)
300 0.5247 300.0 0.5247 300.0
310 0.7261 310.0 0.7261 310.0
330 0.9268 328.8 0.9268 328.8
340 0.9287 339.8 0.9308 339.9
360 0.9319 358.7 0.9473 359.7
370 0.9335 370.0 0.9592s 369.3
390 0.9340 384.8 0.9697 389.3
400 0.9340 397.9 0.9776 399.9
420 0.9340 416.1 0.9915 419.2
430 0.9340 416.1 0.9965 429.4
∞ 0.9340 397.9 1.0000 710.6

Table 3: Minimum-risk routing for an F/A-18 strike group with constant or variable speeds. This
table compares near-optimal routes in the “F network” for various fuel limits assuming constant-
speed and variable-speed paths, and using a 1% optimality tolerance. Fuel is measured in “modified
nm” for the variable-speed model because the use of a high-speed edge consumes twice the fuel
of its standard-speed counterpart. All run times are less than 3 seconds. Note that rows with
identical success probabilities but different fuel-consumption values represent cases with multiple
near-optimal solutions. (See Figures 1 and 2.)

realistic assumption for missions with uniformly low risk, but a pilot may wish to traverse a

high-risk region at a higher-than-normal speed: Higher speeds enable more effective evasive

maneuvers against a SAM that is actually fired at an aircraft (Landon 2004). To account

for variable speeds, we add a parallel edge e′ for each original edge e ∈ E. The original

edge e corresponds to flying at a standard cruising speed of about Mach 0.8, as used in the

constant-speed examples, while the parallel edge e′ corresponds to flying at a higher speed

to improve threat avoidance. Since a low-threat region requires no special actions for threat

avoidance, we include e′ only when pe ≥ 0.1. For purposes of demonstration, we represent

reduced risk on a high-speed edge by defining 1 − pe′ = min{1.2(1 − pe), 1}, and reflect

increased fuel consumption at high speed by setting fe′ = 2fe.

Columns four and five of Table 3 show the probability of mission success and total fuel

consumption, respectively, for the variable-speed solutions on the F network. The variable-

speed F network contains 318,890 edges compared to 223,330 for the constant-speed network

(see Table 1). Run times increase slightly for the variable-speed network, but no solution

in Table 3 requires more than three seconds. For tight fuel limits, the pilot cannot increase

speed and the probability of success remains unchanged. However, for fuel limits greater than
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330, temporarily increasing speed becomes a viable option, and the probability of success

improves.

Figure 2 depicts the minimum-risk routes with a fuel limit of 370 for a constant speed

(solid line) and for variable speed (dashed line). The constant-speed solution involves a long

detour to exploit a marginally safer approach to the destination—compare the near-optimal

route for fuel limit 340 shown in Figure 1—while the variable-speed solution conserves fuel

initially for a final, high-speed, direct approach to the destination.

5.2 Turn-Radius Constraints

Any aircraft has a limited turning radius. The 90-degree turn in Figure 1 is a reasonable

approximation of reality for a highly maneuverable F/A-18 at that figure’s scale of hundreds

of nautical miles. However, other aircraft such as cruise missiles are less maneuverable

than strike and fighter aircraft, and they may also be controlled at a much finer scale. We

may therefore wish to impose “turn-radius constraints,” or simply “turn constraints,” on an

aircraft’s route that limit all turn angles to θ degrees or less, for some predefined constant

θ > 0 (Boroujerdi and Uhlmann 1998, Helgason et al. 2001).

Zabarankin et al. (2006) incorporate turn constraints by modifying their label-setting

CSP algorithm. This enforces realistic constraints, but a detailed description of the modified

algorithm in Murphey et al. (2003b) reveals that it is a heuristic, not an exact algorithm.

The heuristic maintains non-dominated risk-distance labels at each vertex, and records the

standard predecessor-vertex datum for each label. The predecessor data are used to ensure

that no label is updated by following an edge whose traversal would require an overly sharp

turn. An exact algorithm would require a three-part vertex label that includes the prede-

cessor vertex, and would apply dominance tests only to labels having the same predecessor

vertex.

The classical exact method of incorporating turn constraints in a network-routing prob-

lem (Caldwell 1961) first “expands” each vertex v by adjacent vertices v′ that might precede

v in a path; let <v′, v> denote such an expanded vertex. If the original network has edges

(v′, v) and (v, v′′), and the turn angle involved in flying the corresponding flight segments

is not too sharp, then and only then is an “expanded edge” created, (< v′, v >,< v, v′′ >).

(Actually, Caldwell adds penalties that depend on the turn angle.) Thus, if we were to

21



modify our network’s topology and numerical data appropriately, and then apply the LRE

algorithm to that network, we would have handled turn constraints for aircraft routing. Of

course, Zabarankin et al. could also apply this method, too.

However, a modest variant of the LRE algorithm provides a simpler method of incorpo-

rating turn constraints, one that does not modify the network’s topology: In Step 3 of the

algorithm, under “Conditions for extending a subpath,” we simply add one more condition:

If edge e′ = (vk−1, u) has just been added to the current path, then edge e = (u, v) can be

added to the path only if the angle between e and e′ does not exceed θ. This modification is

valid because d(v), d0(v), and di(v) for all i are computed while ignoring turn constraints and

therefore provide valid lower bounds on turn-constrained versions of Lagrangian distances,

true distances, and weights from v to t, respectively. (This algorithmic variant points out a

key advantage of the LRE approach to solving a CSPP: The full history of the route under

consideration is always available.)

Tighter bounds than those resulting from d(v), d0(v), and di(v), based on explicitly turn-

constrained shortest paths, might be useful here, and could be computed with any standard

method (e.g., Caldwell 1961, Boroujerdi and Uhlmann 1998). However, tighter bounds are

unnecessary to achieve acceptable computational efficiency in our tests, so we do not pursue

that topic in this paper.

For testing purposes, we simply imagine that the constant-speed F/A-18 problem on the

“F network,” with turn-radius constraints added, represents a high-altitude cruise-missile

routing problem. As a baseline, we use the problem with a fuel limit of 370. (See Table

3, row six, columns two and three; and see the path denoted by a solid line in Figures 1

and 2.) Figure 3 depicts three different routes using turn angles that are (a) unconstrained

(the baseline), (b) limited to at most 60 degrees, and (c) limited to at most 30 degrees.

The corresponding probabilities of mission success are 0.9335, 0.9318 and 0.9307, with cor-

responding solution times of 2.3, 80.4 and 15.2 seconds. Clearly, adding turn constraints can

increase solution times, but the reported times should be more than acceptable for many

applications. We further note that the standard method for handling turn constraints in

this model, that is, using an expanded network, could simply fail to solve. On average, each

vertex in the D-H networks has between 120 and 230 incoming edges, which implies that the

standard, expanded network would require more than 107 vertices. That many edges could
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present computational difficulties for current computers.

5.3 Route Planning for Unmanned Aerial Vehicles

We next apply the CSP methodology to planning a medium-altitude surveillance mission for

a UAV. At the planning stage, and perhaps even during a mission, minimum-risk routes must

be determined that are feasible with respect to maneuverability and fuel consumption. We

imagine a UAV with capabilities similar to the current Northrop Grumman Hunter MQ-5B,

but with better communications capabilities and hence longer range. Cruising speed is 120

kilometers per hour (km/hr), climb and dive rate is 200 meters per minute (m/min), and

the aircraft’s mission radius, which will be varied, is at least 500 km. (See Jane’s 2005 for

a description of the MQ-5B’s predecessor, the RQ-5A, and see Northrop Grumman 2005 for

the manufacturer’s datasheet on the MQ-5B.)

The UAV is assigned to provide detailed battle-damage assessment by observing a target

in an AO with active enemy radars and SAMs. A 400 km by 200 km mountainous area

northeast of Boise, Idaho, serves as the AO; see Figure 4. The UAV will enter the AO at the

area’s southwest corner at an altitude of 3400 meters, and will attempt to reach the target

located in the northeast corner. Target observation will occur at 2400 meters.

We use digital terrain elevation data freely available from the National Geospatial-

Intelligence Agency (2004). Elevations are accurate to within ±30 meters at least 90%

of the time, and are provided at points on a grid with 30 arc-second (1 km) spacing. Given

the UAV’s cruising speed and climb and dive rates, it is convenient then to approximate the

AO with a three-dimensional grid network with vertices that have a two-kilometer horizontal

spacing and 200-meter vertical spacing. (The horizontal spacing yields edge-traversal times

of about one minute.) We adopt metric units here because all terrain and aircraft data are

specified in such units.

We begin generating a network model of the AO by defining a grid with 201×101 equally

spaced vertices in the horizontal plane. This is replicated 16 times, at 200-meter intervals,

starting at 400 meters above sea level. The implied maximum altitude of 3400 meters suffices

because the UAV plans a stealthy flight that takes advantage of terrain-masking of threat

radar, and this is available only at lower altitudes. The nominal, three-dimensional grid has

201×101×16 = 324,816 vertices, but vertices below the terrain need not be modeled, so the
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actual number becomes 187,284.

With two-kilometer spacing in the horizontal plane, vertical spacing between vertices

corresponds to the climb and dive rate of the UAV, so we nominally connect each vertex to

each of its nearest neighbors, including diagonal neighbors, but omit connections to vertices

directly above and below. (Of course, the climb and dive rate to the diagonal vertices will

be somewhat slower than the nominal 200 m/min.) The mission must follow a path that

runs generally southwest to northeast, so we omit any edge that does not have a horizontal

component in the north, northeast, east, or southeast direction. This results in a network

with 2,011,730 edges.

The UAV is subject to two threat types. Four fixed SAM installations present “type-I

threats.” Two of these each have a radar range with a 150 km radius and 18,000 meter

ceiling; they are located at coordinates (151, 149) and (301, 51), with coordinates measured

in kilometers in a Cartesian-coordinate system whose origin lies at the southwest corner

of the AO. Two short-range SAM installations, each with a 27.8 km range but with the

same 18,000 meter ceiling, are located at coordinates (331, 164) and (365, 124). We model

each SAM threat as an ellipsoid with circular horizontal cross-section centered at the SAM’s

location and a vertical half-axis of 18,000 meters. We assume that the airspace with line

of sight to the SAM’s location within the ellipsoid is subject to the same threat. Airspace

within the ellipsoid, but with line of sight blocked by terrain, is not subject to the threat.

Similar to the strike-group example, this represents a fairly simple threat model but, again,

the flexibility of the CSP methodology makes more detailed models easy to incorporate. For

instance, a threat model could easily account for an aircraft’s radar cross section(s), which

can vary by edge and along a single edge (Leary 1995, Zabarankin et al. 2006).

Hand-held SAMs, mobile anti-aircraft artillery, and small-arms fire constitute the type-

II threat. Since specific intelligence is rarely available on low-altitude threats like these, we

assume a uniformly low risk from them over the whole AO, but with that risk decreasing

exponentially with distance above the terrain.

As in the F/A-18 example, we construct an additive risk measure ce, for each edge e,

based on the probability pe of being destroyed by a type-I or type-II threat while the UAV is

traversing e. Again, we compute pe as a function of how much of edge e’s length is exposed

to various threats, and the magnitude of those threats. We assume no communication
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between potential observers so that the “independence assumption” is reasonable here. Thus,

minimizing
∑

e∈EP
ce =

∑
e∈EP

− log(1−pe), over all s-t paths EP , is equivalent to maximizing

the probability of no hits from type-I and type-II threats over those paths. Again, we define

this as the “probability of mission success.”

The edge weight fe = f1e represents the amount of fuel consumed while flying along

edge e and relates to the geometric length of e in kilometers, denoted le, and whether the

edge is level, ascending or descending. Specifically, we let fe equal le, 2le, or 0.9le for the

three cases, respectively.

Table 4 reports computational results obtained using a 5% relative optimality tolerance.

(We increase the optimality tolerance here because the network is significantly larger than

in the first example, and a 1% tolerance leads to orders-of-magnitude increases in computing

times in a few cases.) The first column of the table specifies the fuel limit and the second

column gives the probability of mission success for the best path found. The third column

shows actual fuel consumption for each path, and the fourth column gives solution times.

Figure 4 shows horizontal and vertical views of the near-optimal path with a fuel limit

of 485.0. Figure 5 shows similar plots for the near-optimal path with a fuel limit of 530.0.

The vertical views make it evident that the near-optimal routes do use terrain-masking to

avoid being tracked by radars. (Note: The vertical flight path appears jagged only because

of the compressed horizontal scale.)

In Figure 5, the UAV initially stays at a high altitude of 3400 m because terrain masks

the line of sight to the first SAM located at (151, 149), and because that altitude nearly

eliminates type-II threats. At 200 km into the flight, however, a line of sight would be

established to the first SAM, and the UAV descends in response. The UAV maintains a low

altitude until it exits the SAM’s threat region, approximately 100 km from the destination.

The UAV avoids the second long-range SAM centered at (301, 51) by exploiting terrain-

masking, and it simply circumvents the short-range SAMs.

5.4 UAV Routing: Multiple Side Constraints

We have already shown that our solution methodology can handle a fuel constraint and

turn-radius constraints together. However, all examples up to this point have incorporated

only a single, standard side constraint (on fuel), and we wish to demonstrate that multiple
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Fuel limit Prob. of Fuel consumed Run time
(nm) success (nm) (sec.)
482 0.3742 481.5 1.1
485 0.7288 485.0 1.1
490 0.9818 489.6 15.2
500 0.9871 499.2 9.3
510 0.9883 509.1 5.4
520 0.9890 518.7 5.6
530 0.9893 527.9 2.2
540 0.9894 533.1 2.1
550 0.9894 533.1 2.1

Table 4: Constrained minimum-risk routing for a UAV. The optimality tolerance is 5% and solution
times (“Run time”) are listed in seconds. It is impossible to reach the destination with less than
481.5 units of fuel. Figures 4 and 5 illustrate two of these cases.

side constraints can be incorporated successfully.

Incorporating two or more side constraints may be important for some applications. For

instance, a routing problem for a time-critical mission could require both a fuel constraint

and a time-to-target constraint (FM 90-36 1997). Accordingly, we now suppose that the

UAV mission described above imposes both types of constraints. (Carlyle et al. 2007 solve

large models with up to ten side constraints, but we believe it unlikely that more than two

side constraints will be necessary in most aircraft-routing problems.) Each edge now has two

weights, one representing fuel consumption and the other flight time. We assume a constant

ground speed of 120 km/hr and use the horizontal projection of the geometric length le km,

divided by the constant ground speed, as a surrogate for time.

Table 5 reports computational results for different combinations of fuel and flight-time

limits for the UAV. For each near-optimal path found, the table reports the probability of

mission success. No solution time exceeds 45 seconds, and 1-12 seconds is typical. Figure

6 shows horizontal and vertical views of the best path found given fuel and time limits of

530.0 and 245.0, respectively. We note that imposing a time constraint of 245.0 reduces the

probability of success only slightly, from 0.9893 to 0.9887. As seen by comparing Figures 5

and 6, a time-constrained route must be more direct, and hence it crosses several high-threat

regions. However, most of the threat can be avoided through aggressive terrain-masking.
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Probability of success
Fuel limit Time limit (time units)

(nm) 242 245 250 255 260 265
485.0 0.7288 0.7288 0.7288 0.7288 0.7288 0.7288
490.0 0.9547 0.9818 0.9818 0.9818 0.9818 0.9818
500.0 0.9862 0.9871 0.9871 0.9871 0.9871 0.9871
510.0 0.9870 0.9882 0.9882 0.9883 0.9883 0.9883
520.0 0.9879 0.9885 0.9886 0.9890 0.9890 0.9890
530.0 0.9881 0.9887 0.9890 0.9893 0.9893 0.9893
540.0 0.9881 0.9887 0.9890 0.9893 0.9893 0.9893

Table 5: Fuel and time-constrained minimum-risk routing for a UAV. The optimality tolerance is
5%. All run times are less than 45 seconds. It is impossible to reach the destination with less than
481.5 units of fuel or in less than 241.4 time units. Figure 6 illustrates one of these cases.

5.5 UAV Routing: Ingress and Egress

The case studies above demonstrate that our algorithm quickly finds routes to a target. But,

the CSP methodology extends easily to find a round trip, from origin to a target and back,

when the airspace is separated into two disjoint regions, one for the ingress and one for the

egress. In fact, this situation requires no change in the algorithm, only modest changes in

the network model. Consider the minimum-risk routing problem for the UAV with a single

side constraint on fuel consumption as described in Section 5.3. The UAV will enter the AO

at the area’s southwest corner at an altitude of 3400 meters, observe the target from 2400

meters in the northeast corner, and then return to the southwest corner to exit the AO at

3400 meters.

The airspace controller has assigned the airspace below and above the southwest-northeast

diagonal for ingress and egress, respectively. We create a network that is identical to the

one used in Section 5.3, except that: The directions of arcs are reversed above the diagonal,

edges across the diagonal are omitted, and the final destination vertex t is located one grid

space (2 km) north of the origin vertex s. The total number of edges is 1,982,958.

To exercise this round-trip model, we repeat tests analogous to those reported in Table

4, but using the modified network and with doubled fuel limits. We do not report detailed

results, but the longest run time is only 33 seconds, and Figure 7 displays the route found

given a fuel limit of 1060.
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6 Conclusions

This paper has examined the use of a constrained shortest-path (CSP) model and a new

solution algorithm for routing various types of military aircraft. The CSP model is highly

flexible and can account for terrain avoidance, terrain-masking of enemy radar, aircraft ma-

neuverability constraints, varying aircraft speeds, and any number of ground-based threats

such as surface-to-air missiles (SAMs). We have focused on an objective that minimizes an

additive risk function, which is equivalent to minimizing the probability that the aircraft,

or one aircraft in a group of aircraft, will be detected and shot down. Routes can be lim-

ited by any reasonable number of constraints on such factors as fuel consumption and flight

time, although one of those factors could be moved into the objective and a limit on risk

incorporated as a constraint.

Our basic CSP solution algorithm, the “LRE algorithm,”combines Lagrangian relaxation

with enumeration of near-shortest paths. However, enhancements of the basic algorithm

yield substantial computational improvements. In particular, “network reductions” identify

edges that can be proven not to lie on an optimal path. We apply these reductions in

a standard preprocessing mode before the main algorithm begins, but also after the first

feasible solution has been identified, and even repeatedly during the enumeration process as

that process identifies improving feasible solutions.

The enhanced LRE algorithm solves realistic routing problems—we have investigated the

routing of strike aircraft and unmanned aerial vehicles—in 80 seconds or less on a desktop

computer. The algorithm extends easily to incorporate turn-radius constraints, which offers

a clear advantage over the alternative solution method described in the literature, a label-

setting algorithm. We have also demonstrated the solution of a round-trip routing problem

that incorporates separate ingress and egress corridors.

The probability that a particular SAM installation detects and then destroys an air-

craft may depend on the aircraft’s path. For example, early detection by distant radar

systems, relayed through a command-and-control system, may increase detection probabil-

ity and tracking accuracy for that installation. Our basic model cannot handle the resulting

path-dependent probabilities. However, assuming that the “true” risk associated with a path

can be computed quickly, and the model under independence provides a lower bound on that
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risk—under normal circumstances it will—our approach may be useful: (i) Begin enumerat-

ing feasible paths that are near-optimal under independence, (ii) evaluate each feasible path

for its true risk, always saving the best as the incumbent solution, and (iii) halt when the

enumeration procedure proves that the lower bound on risk over all unexplored feasible paths

reaches or exceeds the incumbent solution’s true risk. We can implement (iii) by modifying

conditions within the path-enumeration procedure.

Future work will study path-dependent probabilities, as just described, specialized bounds

to improve solution speeds for turn-constrained problems, and integer cutting planes, added

as Lagrangianized side constraints, to tighten bounds and reduce enumeration.
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Figure 1: Minimum-risk routes for an F-A/18 strike group subject to various fuel limits. Graph
structure F is used. Concentric circles represent different levels of risk surrounding a central SAM
site. Probabilities of mission success are 0.7261, 0.9287, and 0.9335, for fuel limits of 310 (·−), 340
(−−), and 370 (solid line), respectively. (See Table 3, column two.)
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Figure 2: Minimum-risk routes for an F-A/18 strike group with fuel limit 370, flying at constant
speed (solid line) or variable speed (dashed line). Graph structure F is used. The probabilities
of mission success are 0.9335 and 0.9596, respectively. Constant speed results in a long detour to
exploit a marginally safer approach, while variable speed conserves fuel initially for a high-speed,
direct approach. (See Table 3, columns two and four.)
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Figure 3: Minimum-risk routes for an F-A/18 strike group subject to a fuel limit of 370 and
constraints disallowing turns greater than 30 degrees (·−) and 60 degrees (−−), and allowing all
turns (solid line). The respective probabilities of mission success are 0.9311, 0.9320, and 0.9335.
All paths are computed using a 1% optimality tolerance.
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Figure 4: Horizontal (a) and vertical (b) views of a minimum-risk route for a UAV. Contours in
the horizontal view lie at 800, 1600 and 2400 meters. Four circles represent area within range of
four SAM sites. Blocked line-of-sight eliminates threat. The optimal path uses terrain masking to
avoid the SAMs’ radars, but tries to stay high to avoid a diffuse ground threat. The fuel limit is
485 and the resulting probability of mission success is 0.7288. (See Table 4.)
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Figure 5: Horizontal (a) and vertical (b) views of a minimum-risk route for a UAV. Contours in the
horizontal view lie at 800, 1600 and 2400 meters. The data for this problem are identical to those
in Figure 4 except the fuel limit increases to 530. Because of this increase, the UAV can dive and
climb more to take advantage of terrain-masking, and the probability of mission success increases
to 0.9893. (See Table 4.)
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Figure 6: Horizontal (a) and vertical (b) views of a minimum-risk route for a UAV with both
a fuel limit (530) and flight-time limit (245). Contours in the horizontal view lie at 800, 1600
and 2400 meters. This figure demonstrates that the applied limits allow a significant amount of
terrain-masking. The probability of mission success is 0.9887. (See Table 5.)
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Figure 7: Horizontal view of a minimum-risk ingress and egress route for a UAV with fuel limit
1060. The ingress corridor lies below southwest-northeast diagonal, and the egress corridor lies
above. Contours in the horizontal view lie at 800, 1600 and 2400 meters. The probability of
mission success is 0.9719.
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Unofficial Appendix
Military Operations Research does not print in color, but the reviewer may wish to see the
color versions of Figures 4-7.
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Figure 8: Color version of Figure 4
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Figure 9: Color version of Figure 5
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Figure 10: Color version of Figure 6

42



50 100 150 200 250 300 350 400

20

40

60

80

100

120

140

160

180

200

kilometers

ki
lo

m
et

er
s

Egress 

Ingress 

Figure 11: Color version of Figure 7
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