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INTRODUCTION

A dictionary definition of interdict, in the
military sense, is

to destroy, cut or damage by ground or aerial
firepower (enemy lines of reinforcement,
supply, or communication) in order to stop or
hamper enemy movement and to destroy or
limit enemy effectiveness [1].

This definition is unnecessarily restrictive—
for instance, it should also include ship-based
firepower—but the essence is reasonable:
interdiction connotes preemptive attacks
that limit an enemy’s subsequent ability
to wage war, or carry out other nefarious
activities. The mathematical study of inter-
diction has focused primarily on network
interdiction, in which an enemy’s activities
are modeled using the constructs of network
optimization (e.g., maximum flows, multi-
commodity flows, and shortest paths), and in
which attacks target the network’s compo-
nents to disrupt the network’s functionality.
Depending on the type of network, tar-
geted components can include bridges, road
segments or interchanges, communications
links or switches, and so on. This article
focuses on the bilevel network interdiction
problem (BNI), but the reader should note
that much of the presentation extends to
interdiction of more general systems.

Examples of what we now call network
interdiction date from antiquity. Herodotus
[[2] 9.49–50] describes how the Persian cav-
alry (in 479 BC) cut Greek supply lines and
routes to water sources in a battle near the
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Greek city of Plataea; Livy [3, 22.8] reports
that (in 218 BC) the Roman Senate ordered
bridges near Rome to be destroyed to slow the
advance of Hannibal and his troops; Polybius
[4, 9.7] gives a different chronology for the
latter incident, but the interpretation as ‘‘net-
work interdiction’’ remains. Two millennia
later, the American Civil War is replete with
examples of both Confederate and Union
forces attacking roads, bridges, rail lines,
and telegraph lines to hamper the enemy’s
resupply, movement, and communications [5,
Chapter 4]. In World War II, German sub-
marines interdicted, that is, sank, hundreds
of Allied petroleum tankers that were travel-
ing the sea lanes of the Atlantic Ocean and
elsewhere [6, Appendix 17].

Allied bombing attacks during World War
II on German-controlled oil refineries and
synthetic-fuel plants exemplify a more gen-
eral type of system interdiction or ‘‘economic
warfare.’’ The German military was crippled
by the lack of fuel and lubricants caused by
the ‘‘Oil Plan,’’ as the attack strategy was
called. Interestingly, an acrimonious debate
was waged between the proponents of the Oil
Plan (system interdiction) and proponents
of the ‘‘Rail Plan’’ (network interdiction).
The Rail Plan sought to destroy rail lines
and other transportation assets in Europe
to restrict the movement of the German
troops and equipment that would counter the
Allied D-Day offensive. Ultimately, parts of
both plans were implemented [7, pp. 75–78,
174–175].

Network interdiction is an important part
of modern warfare where attacks on key
civilian and military infrastructure can help
reduce an enemy’s fighting effectiveness,
while incurring only limited casualties to
‘‘friendly forces’’ [8,9]. When planning for
such attacks, the ‘‘interdictor’’ is typically
faced with this question: Given limited attack
resources and possibly other restrictions
(e.g., political considerations), which network
components should be attacked to reduce
the enemy’s war-fighting capabilities most
effectively? BNI addresses this question.
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To provide background on the modern,
mathematical study of network interdiction,
we first make the following definitions and
assumptions [10]:

1. The interdictor, called attacker here-
after, acts first by using limited inter-
diction resources to attack components
of his enemy’s network.

2. The enemy, or defender, observes the
damage caused by the attack(s) and
then operates the damaged network so
as to maximize his own, well-defined
objective-function value.

3. The attacker understands the defen-
der’s capabilities and goals, and chooses
attacks that minimize the defender’s
maximum achievable objective-func-
tion value.

These standard assumptions lead to the for-
mulation of BNI and more general system-
interdiction models as a type of Stackelberg
game: a two-person, zero-sum, sequential-
play game with two stages [11,12].

Wollmer [13] studies the problem of find-
ing the single ‘‘most vital link’’ in a capaci-
tated flow network, in his case, the arc whose
deletion minimizes the maximum s-t flow in
the network. (The reader who is unfamil-
iar with the terminology of network flows,
e.g., ‘‘s-t flows,’’ may wish to consult a stan-
dard text such as Ahuja et al. [14].) Here, the
attacker has enough interdiction resource to
attack and destroy exactly one arc, and the
defender’s objective is to maximize s-t flow.
Wollmer’s work may represent the earliest
mathematical investigation of an instance of
BNI, although as early as 1955 researchers
were investigating a simpler ‘‘single-level’’
network interdiction problem that seeks to
eliminate all s-t flow efficiently [15].

Danskin [16] presents some of the
fundamental theory of ‘‘max–min models,’’
which may be viewed as a generalization
of BNI to system interdiction. (His ‘‘min’’
and ‘‘max’’ are reversed compared to our
convention). Confusingly, ‘‘max–min’’ and
similar terms are also used in the context
of the more common two-person, zero-sum,
simultaneous-play games [17, pp. 143–165].
For example, von Neumann [18] proves the
famous ‘‘minimax theorem’’ for such games.

Mathematical studies of BNI began in
earnest during the Vietnam War, with
models applied to disrupt the flow of enemy
troops and materiel [19,20]. Fulkerson and
Harding [21] and Golden [22] investigate
the problem of maximizing the length of
the shortest path in a network—to slow
enemy reinforcements, say—using models
in which the length of each network arc can
be increased linearly, within limits, based on
the amount of interdiction resource applied
to it. (This is a ‘‘max–min’’ variant of BNI.)
These models are solved as parametric linear
programs (LPs). The k-most-vital-arcs prob-
lem [23,24] is similar, but at most k arcs may
be interdicted and interdiction decisions are
discrete. In particular, an arc is attacked and
destroyed and its length becomes infinite,
or it is left untouched and keeps its nominal
length. Ball et al. [25] show that problem to be
NP-complete. Israeli and Wood [26] extend
the k-most-vital-arcs problem to general
resource constraints: their study of the the
shortest-path network interdiction problem
(or ‘‘maximizing the shortest path’’), makes
important theoretical and computational con-
tributions to the solution of BNI, in general.

Ratliff et al. [27] extend Wollmer’s [13]
model to the problem of finding a set of n
arcs in a capacitated network whose deletion
minimizes the maximum s-t flow. While
investigating problems of drug interdiction,
Wood [28] generalizes that model to allow
general interdiction resource constraints.
(Phillips [29] considers a similar model, but
allows some continuous interdiction effort;
see also Steinrauf [30].) Wood shows that this
maximum-flow interdiction problem is NP-
complete, even when attacks are constrained
only in cardinality. Thus, even the simpler
model of Ratliff et al. appears to be difficult.

More general system-interdiction issues
arise in the work of Grötschel et al. [31] and
Medhi [32] who seek to evaluate the vulnera-
bility of information networks to interdiction.
Chern and Lin [33] study the interdiction
of a system represented as a minimum-cost
network-flow model.

Similar to the BNI studied by Wood
[28], the network interdiction model of
Washburn and Wood [34] aims at disrupting
drug smuggling, and its efficient solution
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involves maximum flows. But this is a
two-person, zero-sum, simultaneous-play
(Cournot) game, and its purpose is quite
different from BNI. Specifically, an interdic-
tor controls one or more ‘‘inspectors’’ who
must be placed strategically on the arcs of
a transportation network to maximize the
probability of detecting a drug smuggler mov-
ing surreptitiously through that network.
(If the smuggler traverses arc k when an
inspector is present, the smuggler is detected
with known probability pk; otherwise he goes
undetected.) In a simultaneous-play model,
neither player can observe the other’s actions
before acting himself and, consequently, solu-
tions define probabilistic (‘‘mixed’’) strategies
for both players. In this case, the interdictor’s
strategy defines a probability distribution
over the inspectors’ locations, and the
smuggler’s strategy defines a probability dis-
tribution over paths through the network. In
contrast, a solution to BNI prescribes deter-
ministic (‘‘pure’’) strategies for both players.

Deterministic strategies do not imply
that BNI cannot incorporate uncer-
tainty and probability, however. Cormican
et al. [35] develop stochastic-programming
versions of the maximum-flow interdiction
model to handle uncertain interdiction
successes and uncertain arc capacities.
Whiteman [36], studying interdiction prob-
lems faced by the US Strategic Command,
addresses uncertainty through Monte Carlo
simulations of maximum-flow interdic-
tion models. Pan et al. [37] maximize the
expected probability of detecting a smuggler
trying to transport stolen nuclear materials
out of a country: nominal probabilities of
detection can be improved by installing a
limited number of radiation detectors at
border crossings. Maximizing probability of
detection is related, through a logarithmic
transformation in the objective function, to
shortest-path interdiction, and in that sense
the model is deterministic. The model is
stochastic, however, in that a probability
distribution describes the smuggler’s origin
in the network [38].

Brown et al. [39,10] develop a taxon-
omy for bilevel system-interdiction and
system-defense models, as well as for trilevel
system-defense models. The bilevel and

trilevel models are two-stage and three-stage
Stackelberg games, respectively. BNI is an
instance of a two-stage ‘‘attacker–defender
model’’; the trilevel defense models are
‘‘defender–attacker–defender models.’’ In
the latter case, a defender wishes to employ
his limited defensive resources as efficiently
as possible to ‘‘interdict the interdictor,’’
with effectiveness being evaluated by solv-
ing a bilevel interdiction model. Bilevel
system-defense models can be constructed,
also: these are ‘‘defender–attacker models’’;
they apply when the value of attacking
a system component is a fixed or easily
computed value; they can be solved using the
techniques described in this article; but will
not be discussed further. We note that Brown
et al. [10,40] also discuss solution techniques
for all these model types and describe a
number of applications to infrastructure
protection. Indeed, vulnerability analysis
for infrastructure is an important new
application area for BNI.

Most recently, bilevel interdiction and
defense models have been developed for a
number of interesting applications: theater
ballistic missile defense [41], planning
attacks on multicommodity flow networks
[42], planning attacks on communications
networks [43], delaying the nuclear-weapons
project of a ‘‘rogue state’’ [44], and attacking
and defending electric-power grids [45]. The
theory of ‘‘global Benders decomposition’’
developed in the last paper promises to be
a useful computational technique for BNI
(and other optimization problems), and is
discussed later in this article.

The goal of the rest of this article is
to describe basic theoretical models and
solution techniques for BNI. A lack of space
prohibits further detailed discussion of
applications. More information on advanced
computational techniques can be found
in Magnanti and Wong [46], Israeli and
Wood [26], Salmerón et al. [45], and Smith
et al. [47].

A BASIC, BILEVEL, INTERDICTION MODEL

In abstract form, BNI may be stated as the
following attacker–defender model:
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[AD0] min
x∈X

z0(x), where

z0(x) ≡ max
y∈Y(x)

f (x, y), (1)

and where (i) x ∈ X denotes a binary vector of
attack decisions that is limited by resources
and perhaps logical restrictions (e.g., targets
k and k′ both cannot be attacked); (ii)
y ∈ Y(x) denotes the activities that the
defender will carry on after the attack,
typically restricted by effects of the attack
x; and (iii) the objective function f (x, y)
measures the functionality of the defender’s
network after the attack. Thus, the attacker
seeks to minimize the functionality of the
network which the defender is assumed to
maximize. Of course, by switching the min
and the max, we can model an attacker who
seeks to maximize the cost of the defender’s
operations.

[AD0] is a special case of a Stackelberg
game in which a leader (attacker) takes some
action, and a follower (defender) observes
that action and its effects, and then responds
optimally given that information (12). [AD0]
is a two-stage game and is finished after the
follower responds; more general Stackelberg
games may have many stages and/or players.

For the sake of concreteness and simplic-
ity, further development of [AD0] assumes
that

1. The defender’s activities take place on
network arcs, which are indexed by k,
and there is a one-to-one correspon-
dence with the attacker’s potential
targets.

2. The defender nominally optimizes net-
work operation by solving the following
LP which is feasible for any u ≥ 0

max
y

cTy (2)

s.t. Ay ≤ b (3)

0 ≤ y ≤ u, (4)

3. Restrictions on the attacker assume
x = 0 is feasible, and are represented
by

X = {
x ∈ {0, 1}n | Hx ≤ h

}
, and (5)

4. xk = 1 implies that activity k is attac-
ked, its level forced to 0, that is, yk = 0.

Then, defining U = diag(u), [AD0] takes
on the following specific form

[ADLP1] z∗
1 = min

x∈X
z1(x), where (6)

z1(x) ≡ max
y

cTy (7)

s.t. Ay ≤ b (8)

0 ≤ y ≤ U(1 − x).

(9)

The inner LP in [ADLP1] might repre-
sent a simple maximum-flow problem [27,28],
the optimal deployment of the defenders’s
armed forces [48], or the production and
distribution of oil or natural gas in a bel-
ligerent country [49]. [ADLP1] extends easily
to attacks on nodes, attacks on groups of arcs
and/or nodes, attacks that reduce capacity
only partially, and so on, but such exten-
sions are straightforward and not considered
here.

A Stackelberg game with mixed-integer
variables and having just two levels of deci-
sion making is called a bilevel mixed-integer
program (BLMIP) [50]. However, the leader’s
and follower’s objective functions in a BLMIP
are not usually diametrically opposed as
they are in [AD0]; for example, see Bard
and Moore [51], Wen and Yang [52], and
Hansen et al. [53]. In fact, most algorithms
developed for BLMIPs assume a strong
positive correlation between the leader’s
and follower’s objective functions. Thus,
the theory and algorithms for BLMIPs do
not seem well-suited for handling [ADLP1],
while the special-purpose methods described
in this article have had demonstrated
successes.

Standard LP theory tells us that z1(x) is
a concave function in (continuous) x. Thus,
[ADLP1] is a difficult, nonconvex minimiza-
tion problem. The problem can be ‘‘convexi-
fied,’’ however, by moving x into the objective
of the inner maximization.

Proposition 1 [54]. Let rk be an upper
bound on the optimal dual variable for the
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constraint yk ≤ uk(1 − xk) in [ADLP1] taken
over all x ∈ X. Let r = (r1 . . . rn)T and R =
diag(r), and define

[ADLP2] z∗
2 = min

x∈X
z2(x), where (10)

z2(x) ≡ max
y

(
cT − xTR

)
y (11)

s.t. Ay ≤ b [q] (12)

0 ≤ y ≤ u. [r].

(13)

(The vectors q and r, used later, denote dual
variables for their respective constraint sets
when x is fixed.) Then, [ADLP1] and [ADLP2]
are equivalent in the sense that z∗

1 = z∗
2, and

x∗ solves [ADLP2] if and only if it also solves
[ADLP1].

Note also that z2(x) is a convex function in
continuous x.

That [ADLP2] is equivalent to [ADLP1]
is intuitively clear, at least when the rk
are strict upper bounds: (x∗, y∗) solves
[ADLP1] if and only if it also solves [ADLP2].
Nonstrict bounds can lead to cases where
(x∗, y∗) is optimal [ADLP2] but infeasible to
[ADLP1]. In this case, however, there must
exist some y∗∗ such that (x∗, y∗∗) is optimal
to [ADLP1].

To solve [ADLP2], (i) temporarily fix the
variables x in [ADLP2] (i.e., treat x as data);
(ii) take the dual of the resulting LP; and
(iii) then release x. The following, equivalent
mixed-integer program (MIP) results:
[
ADMIP2

]
min

x∈X, q, r
bTq + uTr (14)

s.t. ATq + Ir + Rx ≥ c

(15)

q ≥ 0, r ≥ 0 (16)

A standard LP-based branch-and-bound algo-
rithm will solve [ADMIP2] if that model is not
too large.

Good dual bounds r are important for
solving [ADMIP2] directly, but are not easy
to come by except in a few instances. For
instance, if the inner LP in [ADLP] corre-
sponds to a maximum-flow model with inte-
gral capacity vector u , then rk = 1 is valid

and tight because the value of an extra unit
of arc capacity in a maximum-flow problem
is 0 or 1 [35]. Theoretically, we could also use
rk = 100 in this case, but the resulting LP
relaxation of [ADMIP2] would be weak and
solution times would suffer.

The decomposition solution method for
[ADLP2] described next does not eliminate
the need for good bounds on dual variables,
but ancillary techniques can alleviate some
of the difficulties caused by weak bounds,
and decomposition has some key advan-
tages over a branch-and-bound solution of
[ADMIP2].

1. In the context of network interdiction,
various studies [55,26], have demon-
strated that decomposition typically
solves [ADMIP2] much faster than
does branch-and-bound,

2. As we shall see, decomposition can be
extended to solve BNI even when the
defender’s optimization model is more
general than an LP, and

3. Decomposition methods typically solve
a sequence of ‘‘defender subproblems’’
in a familiar, user-friendly form,
which obviates the complicated, unfa-
miliar dual constructs of [ADMIP2].
For instance, Salmerón et al. [45]
evaluate the effects of an attack plan x
on a large, regional electric-power grid
using a standard electric-power model.
In contrast, a MIP formulation for BNI
in this case becomes unwieldy (and can
only be solved for small, unrealistic
test problems) [56].

BENDERS DECOMPOSITION

The decomposition algorithm described here
may be viewed as solving [ADLP2] by apply-
ing Benders decomposition to [ADMIP2]
[57]. The Benders methodology for solving
a minimizing MIP first converts the MIP
into a min–max problem by reversing the
steps that we used to create [ADMIP2] from
[ADLP2]: (i) temporarily fix the integer
variables, (ii) take the dual of the resulting
LP, and (iii) release the integer variables [58,
pp. 135–143]. In the case of [ADMIP2], this
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conversion returns us to the more natural
starting point of [ADLP2].

An optimal solution in y to [ADLP1] occurs
at an extreme point of the (bounded) feasible
region of that problem’s inner LP. Because
of the essential equivalence of the problems,
the same holds true for solutions in y to
[ADLP2]. Let Y denote the full, finite set of
extreme points for the latter problem. Then,
[ADLP2] may be expressed as this equivalent
master problem

z∗
2(Y) = min

x∈X
z2(x, Y), where

z2(x, Y) ≡ max
ŷ∈Y

(
cT − xTR

)
ŷ. (17)

That model has this formulation as a MIP

[ADMP2(Y)]

z∗
2(Y) = min

x, z
z (18)

s.t. z + ŷTRx ≥ cTŷ ∀ ŷ ∈ Y (19)

x ∈ X. (20)

Benders decomposition dynamically gen-
erates constraints (19) called Benders cuts.
It solves or approximately solves the original
problem by finding Ŷ ⊂ Y, with |Ŷ| << |Y|
it is hoped, so that [ADMP2(Ŷ)] is an ade-
quate approximation of the equivalent mas-
ter problem.

Algorithm A-1. Basic Benders decomposition algorithm to solve [ADLP2]

Input: An instance of [ADLP2] and allowable optimality gap ε ≥ 0.
Output: An ε-optimal interdiction plan for [ADLP2], and associated objective value;
Step 0: Ŷ←∅; z← − ∞; z←∞; x̂←0; x̂∗←0; gap ← ∞;
Step 1: Fix x = x̂ in [ADLP2] and solve for ŷ and objective value ẑ ≡ z2(x); Ŷ←Ŷ ∪ {ŷ};

If ẑ < z then z←ẑ and x̂∗←x̂;
If z − z ≤ ε then go to Step 3;

Step 2: Solve [ADMP2(Ŷ)] for z∗
2(Ŷ) and x̂; z←z∗

2(Ŷ);
If z − z > ε then go to Step 1;

Step 3: Print ‘‘Approximate solution is,’’ x̂∗, ‘‘with objective value,’’z;
Print ‘‘Provable optimality gap is’’, z − z;
Stop;

End of Algorithm A-1.

Algorithm A-1, or simply ‘‘A-1,’’ is actu-
ally a special case of Benders decomposition
that does not require ‘‘feasibility cuts’’ [59].
Such cuts are needed if the subproblems can
become infeasible for certain x ∈ X, which
ours cannot by assumption. The correctness
of the algorithm is easy to see: (i) The upper
bound z is valid because it corresponds to
some feasible solution of [ADLP2] for the
minimizing attacker; (ii) the lower bound z is
valid because it corresponds to a relaxation of
the equivalent master problem [ADMP2(Y)];
(iii) if a solution x̂ ever repeats, it follows that
z = z and the algorithm must terminate; and
(iv) the termination criterion is satisfied with
z �= z or a solution repeats in a finite number
of steps because X is a discrete, finite set.

The following section describes some
enhancements to A-1 that may improve

solution speeds, and shows how global
Benders decomposition can actually solve
more general problems than [ADLP2].

IMPROVING AND GENERALIZING BENDERS
DECOMPOSITION

Faster Solutions with Super-Valid Inequalities

The (relaxed) master problem [ADMP1(Ŷ)]
can be strengthened in some instances by
adding super-valid inequalities (SVIs). Intu-
itively, this strengthening can help alleviate
some of the difficulties caused by weak dual
bounds r. SVIs are similar to valid inequal-
ities of integer-programming theory [60, pp.
205–295] except that they may, and typi-
cally do, eliminate feasible solutions from the
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master problem. We define SVIs with respect
to general MIPs.

Definition. Let x and y denote the vectors
of integer and continuous variables, respec-
tively, in a MIP. The inequality wT

1 x + wT
2 y ≥

w0 is super-valid for this MIP if (i) adding
that inequality to the MIP does not eliminate
all optimal solutions, or (ii) an incumbent
solution (x̂, ŷ) is (already) optimal for the
MIP.

With proper precautions, SVIs may be
used within a branch-and-bound algorithm
for [ADMIP2] as well as within Benders
decomposition for solving [ADLP2]. Suppose,
for instance, that we add a single SVI in the
course of solving a MIP by either technique.
If case (i) is true for that SVI, then an optimal
solution will still be found via enumeration
because (a) some optimal solution is still fea-
sible, and (b) any lower bound obtained from
a relaxation of the SVI-modified MIP is still
a valid lower bound on z∗

2. Thus, standard
fathoming tests within a branch-and-bound
algorithm and the convergence tests in A-1
are valid. If case (ii) is true when we add
the SVI, we simply want our algorithm to
halt with a message that the incumbent x̂∗

is optimal, and this is easy to arrange. After
adding the SVI

1. If the MIP is found to be infeasible,
or z > z(x̂∗), we declare the incumbent
optimal, which it is, or

2. If z − z ≤ ε occurs, we declare the
incumbent to be ε-optimal, which it
is. (As often happens, our incumbent
is optimal, but we only prove it to be
ε-optimal.)

By induction, it follows that an enumera-
tion algorithm incorporating a finite number
of SVIs will also terminate correctly and
finitely.

One type of SVI for our enhanced version
of A-1 applied to [ADLP2] is easy to derive.

Proposition 2 [26]. Let z + ŷTRx ≥ cTŷ
denote a Benders cut from Algorithm A-1
being used to solve [ADLP2].

Ik(ŷ) =
{

1 if ŷk > 0
0 otherwise. (21)

Then, the following inequality is super-valid:

I(ŷ)Tx ≥ 1. (22)

Suppose that R derives from strict dual
bounds and that ŷ is the response to the
feasible interdiction plan x̂. It follows that
ŷTRx̂ = I(ŷ)Tx̂ = 0, and that x̂ is made
infeasible by the SVI I(ŷ)Tx ≥ 1. That is,
the inequality I(ŷ)Tx ≥ 1 is not valid in the
standard sense. Note also that x̂ could be
an optimal solution which is made infeasible
by the inequality, but if we already have
an optimal solution in hand, we have free
reign to restrict the solution in any way
we like.

A simple extension of Proposition 2
leads to

Corollary 1. For every Benders cut z +
ŷTRx ≥ cTŷ, the SVI of Proposition 2
can be tightened to I(ŷ)Tx ≥ 2 if cTŷ −
maxj rkŷk > z, can be tightened to I(ŷ)Tx ≥ 3
if cTŷ − maxk�=k′ {rkŷk + rk′ ŷk′ }> z, and so on.

Of course, as z changes during the course of
A-1, it may be possible to tighten previously
generated SVIs.

Modifications of A-1 to incorporate SVIs
are straightforward, and SVIs may improve
solution times substantially. Israeli and
Wood [26] demonstrate this and show how
to (i) add heuristically generated SVIs to an
instance of [ADMIP2] to improve branch-
and-bound solution times, (ii) generalize
SVIs to ‘‘ε-SVIs’’ that guarantee not to elim-
inate all ε-optimal solutions, and (iii) solve
[ADLP1] and [ADLP2] in a decomposition
algorithm whose master problem constraints
consist solely of SVIs. The ‘‘covering algo-
rithm’’ alluded to in (iii) uses no dual bounds
r at all, and converts Benders decomposition
into a purely combinatorial procedure.

Standard Computational Enhancements for
Benders Decomposition

In addition to employing SVIs, Algorithm A-1
can benefit from more standard techniques
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used to improve solution speeds for Benders
decomposition [46]. Some of these techniques
are discussed briefly below.

1. For fixed x, [ADLP2] may have
multiple extreme-point solutions y
and a different Benders cut can be
generated for each. Adding too many
such cuts can slow down solutions of
[ADMP2], but adding them judiciously
can improve solution times greatly.
Israeli and Wood [26] use this tech-
nique in the shortest-path interdiction
problem, where they enumerate multi-
ple shortest paths for a single attack
plan x and generate cuts for each.

2. The master problem need not be solved
to optimality if ‘‘sufficient progress’’ is
made after each cut is added [61].

3. Cuts derived from interior-point sub-
problem solutions ŷ may prove better
than those derived from extreme-point
solutions. For instance, an arc k with a
large flow ŷk on it appears as an attrac-
tive candidate for interdiction in the
solution of the maximum-flow interdic-
tion problem. That is, it generates a cut
with a large-magnitude entry in posi-
tion k. But ŷk may be large primarily
because the solution is an extreme-
point solution, not because it must be
large to achieve a maximum s-t flow. So,
A-1 may waste time exploring solutions
with xk = 1. In contrast, an interior-
point solution ‘‘spreads flow around’’
the network, and ŷk will tend to be large
only if it needs to be in order to achieve
a maximum s-t flow. Consequently, bet-
ter guidance and better cuts may be
derived from such solutions.

4. Some Benders cuts can be dominated
(implied) by others, and the nondom-
inated ones ought to be used for the
sake of efficiency. Magnanti and Wong
[46] provide guidance on this topic. The
related work of Smith et al. [47] may
also prove useful: that paper shows
how a polynomial-sized reformulation
of the master problem in an interdic-
tion model can yield cuts that dominate
an exponential number of cuts from the
original formulation.

Global Benders Decomposition

Algorithm A-1 can be extended to solve
instances of [AD0], in which the defender’s
operational model is more complicated than
an LP. For example, let ‘‘[ADIP2]’’ denote
a model identical to [ADLP2] except that y
is required to be integral. A-1 clearly solves
this problem because we can replace ‘‘the
finite set of extreme points Y ’’ used to define
the equivalent master problem [ADMP2]
with ‘‘the finite set of integer solutions’’ for
[ADIP2]. Geoffrion [62] coins the phrase
‘‘generalized Benders decomposition’’ to
describe extensions of Benders decompo-
sition to nonlinear models analogous to
[ADLP2] with convex objective functions
z2(x); Salmerón et al. [45] therefore use the
phrase ‘‘global Benders decomposition’’ to
describe the solution of other models like
[ADIP2], in which the issues of convexity
may even be irrelevant.

In [ADIP2], rk no longer corresponds to
a bound on a dual variable. Rather, that
datum must comprise an integral part of the
original formulation. For instance, [ADIP2]
might correspond to a max–min instance of
BNI in which an attacker seeks to delay
completion of a defender’s project, which is
modeled through the constructs of a resource-
constrained PERT network. (Davis [63] dis-
cusses such PERT networks, and Brown et al.
[40,44] discuss interdicting them.) If xk = 1,
task k in the project is attacked and delayed
by a fixed amount: that is what −rk would
represent in [ADIP2]; otherwise xk = 0 and
task k requires some nominal time to com-
plete, corresponding to ck in that model.

We can generalize further.

Proposition 3 [45]. Suppose that BNI has
the following form:

[AD3] min
x∈X

z3(x), where

z3(x) ≡ max
y∈Y

f (x, y), (23)

and where X is defined as in Equation (5),
y ∈ Y can be discrete and/or continuous, and
f (x, y) has a general form. Furthermore, sup-
pose that penalty vectors v(x) can be defined
so that
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z3(x) ≥ z3(x̂) + vT(x̂)(x − x̂) ∀ x, x̂ ∈ X.

(24)

Then, the following master problem is equiv-
alent to [AD3]:

[ADMP3]

min
x∈X, z

z (25)

s.t. z − v(x̂)Tx ≥ z3(x̂) − vT(x̂)x̂ ∀ x̂ ∈ X

Given the existence of an equivalent mas-
ter problem, [AD3] may be solved via a mod-
ified version of A-1. We may assume that the
attacker has an efficient method for comput-
ing z3(x̂), that is, for evaluating the effects of
an attack plan x̂ through the solution of the
defender’s subproblem. For instance, to eval-
uate the effects of attack plan x̂ on an electric-
power transmission grid, the attacker can
solve a nonlinear ‘‘AC optimal power-flow
model’’ or a standard, faster, LP approxima-
tion, a ‘‘DC optimal power-flow model’’ [64].
Thus, the difficult part here will be defining
and computing appropriate penalty vectors
v(x). That task will be problem-dependent,
so we expand upon the power-grid example
to illustrate.

An attacker wishes to maximize the
short-term, unserved demand for power in a
defender’s transmission grid. Thus, [ADMP3]
must be converted to a maximization prob-
lem, and the inequality in Equation (26)
reversed. When x̂k = 0, vk(x̂) should bound
the amount of unserved demand that will
accrue if the status of grid component k is
changed from ‘‘unattacked and functional’’
to ‘‘attacked and nonfunctional.’’ The power-
handling capability of the component pro-
vides a simple bound which is usually valid. If
x̂k = 1, vk(x̂) must reflect how much unserved
demand will be eliminated if component k’s
status is changed in the opposite direction.
Because of the existence of series compo-
nents, vk(x̂) = 0 is a reasonable, albeit crude,
approximation. (Actually, unserved demand
can increase after repairing a component, but
this does not normally cause difficulties [45]).

The subproblem in this example is merely
a LP, and an attack on component k does
force its capacity to 0 as in [ADLP1]. A

complication arises, however, because the
destruction of a component can also improve
power flow by eliminating one or more ‘‘sus-
ceptance constraints’’ between power lines
having common end points [64]. Thus, z0(x)
is neither concave nor convex in this applica-
tion. However, this function tends to be well-
behaved in practice, and the corresponding
penalty vector v(x) is easily computed. The
definition of that vector may seem simplistic,
but Salmerón et al. [45] use it within global
Benders decomposition to solve interdiction
models on full-scale, regional transmission
grids. An added benefit of the global Benders
approach is that it extends to the trilevel
network-defense problem for a power grid.

CONCLUSIONS

This article has described mathematical
techniques for modeling and solving a BNI.
BNI is a two-person, zero-sum, two-stage,
sequential-play (Stackelberg) game whose
solution prescribes an optimal application
of limited resources to attack components
of an enemy’s network, and thereby limit
that network’s usefulness to the enemy.
When a LP suffices to model optimal net-
work operation, we show that BNI can be
converted to and solved as a MIP. But, we
describe special decomposition techniques
that typically solve these problems more
efficiently and, importantly, can solve more
general problems.
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