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We apply new bilevel and trilevel optimization models to make critical infrastructure more resilient against
terrorist attacks. Each model features an intelligent attacker (terrorists) and a defender (us), information
transparency, and sequential actions by attacker and defender. We illustrate with examples of the US Strategic
Petroleum Reserve, the US Border Patrol at Yuma, Arizona, and an electrical transmission system. We conclude
by reporting insights gained from the modeling experience and many “red-team” exercises. Each exercise gathers
open-source data on a real-world infrastructure system, develops an appropriate bilevel or trilevel model, and
uses these to identify vulnerabilities in the system or to plan an optimal defense.
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Our national strategy for homeland security deems
these 13 infrastructure sectors critical to the

United States: agriculture, banking and finance, chem-
ical industry, defense industrial base, emergency ser-
vices, energy, food, government, information and
telecommunications, postal and shipping, public
health, transportation, and water (Department of
Homeland Security 2002, p. 30). In this paper, we
introduce methods to identify vulnerabilities in these
critical sectors and plan defensive measures. We also
expand on conclusions found in a tutorial by Brown
et al. (2005a).
Any critical-infrastructure system represents an

enormous public investment. Even a minor disrup-
tion, randomly or deliberately caused, can degrade
the system’s performance and inflict substantial eco-
nomic losses. How do we analyze the vulnerability of
such a system to a set of coordinated terrorist attacks,
and make informed proposals for reducing that vul-
nerability?
The techniques of system-reliability analysis have

been proposed for gauging vulnerability (Garcia 2001,
pp. 39–48). For example, real-time reliability assess-
ment of an electric power grid may pronounce the
system robust if there is no single point of failure (e.g.,
Wood and Wollenberg 1996, pp. 410–430). Fault-tree
analysis, as used in transportation systems, power

plants, and other critical systems (Roberts et al. 1981),
typically identifies minimal sets of events, or “cut-
sets,” that are most likely to disrupt a system, and
pronounces the system robust if the combined proba-
bility of occurrence is sufficiently low.
However, infrastructure that resists single points of

random failure—these are single-element cutsets—or
whose cutsets have low occurrence probabilities, may
not survive an intelligently malicious attack. Random
component failures offer a poor paradigm in a world
with intelligent adversaries.
Vulnerability analysis must consider our adver-

sary’s ability to collect information about our infras-
tructure and use this information to identify weak
points. A captured al Qaeda training manual advises:
“Using [public sources] openly and without resorting
to illegal means, it is possible to gather at least 80% of
information about the enemy” (Federation of Amer-
ican Scientists 2006, p. UK/BM 80). In fact, we find
that public sources often provide 100 percent of the
information required to plan a devastating attack on
an infrastructure system.
Al Qaeda also teaches the “overthrow of godless

regimes [by] gathering information about the enemy,
the land, the installations, and theneighbors � � �blasting
and destroying the places of amusement� � � �em-
bassies� � � �vital economic centers� � � �bridges leading
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into and out of cities� � � �” (Federation of American
Scientists 2006, p. UK/BM 12). Al Qaeda may not
possess perfect models of our infrastructure, but its
operatives are instructed to gather relevant infor-
mation. That information can then be used to plan
the most damaging attacks it can implement. Con-
sequently, prudence dictates that we assume (1) that
al Qaeda, or any other terrorist organization, will use
its limited offensive resources to maximize damage to
the infrastructure it decides to attack; and (2) that the
terrorist organization has all the information neces-
sary to accomplish its mission.
How would the military assess vulnerability when

faced with an intelligent enemy? First, it would
assume that our infrastructure will be attacked and
would take steps to protect it, i.e., harden the infras-
tructure or improve its active defenses. The budget
for this purpose will always be limited, but often not
pre-specified. The military typically draws up a prior-
itized list of “defended assets” in need of protection,
along with a list of potential protective measures, and
presents these to policy makers. The latter parties
make the final decisions after balancing costs, effec-
tiveness, and intangibles, and after determining the
budget. The United States Army (Department of the
Army 2002a, b) applies four doctrinal components to
evaluate and prioritize its defended assets (as well
as those of its enemies): criticality (how essential is
the asset?), vulnerability (how susceptible is the asset
to surveillance or attack?), reconstitutability (how hard
will it be to recover from inflicted damage?), and
threat (how probable is an attack on this asset?).
However, a prioritized list of defended assets has

a serious flaw for our applications. Such a list creates
a “preferred set” of n+1 assets by adding one asset to
the preferred set of size n. But, we know that an opti-
mal set of size n and an optimal set of size n+ 1 may
have nothing in common. For instance, a community
with funds to build a new facility for one bomb-
disposal truck would select the most central location.
However, if the community has money available for
two facilities and two trucks, it would select two
completely different facility locations, based on their
ability to provide better average response time.
There are other differences that distinguish mili-

tary and civilian infrastructure vulnerability. Military
infrastructure is usually “hard” and well protected,

while most civilian infrastructure in the United States
is “soft,” i.e., open to surveillance and attack, from
an enemy that could be anywhere. Military planners
assess probabilities of winning and losing, while civil-
ians assume that they will eventually recover from an
attack, no matter how damaging. Military planners
also have extensive experience in assessing the likeli-
hood that an enemy will choose a particular plan of
attack (“course of action”). As civilian security plan-
ners, we are new to such analysis; we must learn
to plan for what is possible, rather than what sub-
jective assessments indicate is likely. We need a bet-
ter method to assess the vulnerability of civilian
infrastructure. Worst-case analysis is critical.
We apply attacker-defender models, and other related

bilevel and trilevel optimization models, to these
problems. These models do not normally attempt to
measure directly the importance or value of an indi-
vidual system component, i.e., “asset.” They model a
complete infrastructure system and its value to soci-
ety, including how losses of the system’s assets reduce
that value, or how improvements in the system mit-
igate lost value. The exact meaning of value will
depend on the system being modeled. It may mean
economic output, production of a commodity, or time
to detection of a toxic substance. Furthermore, (oper-
ating) cost, the converse of value, will often be a more
convenient measure of how well a system functions.
(The attacker-defender model is often called an “inter-
diction model” in the literature, e.g., Golden 1978,
Wood 1993.)
An attacker-defender model does address critical-

ity, vulnerability, reconstitutability, and threat, but in
a very different way than military planners might.
We include reconstitutability, when appropriate, by
representing the repair of damaged assets over time,
and how repaired assets contribute to improved
system value (Salmerón et al. 2004b). We assume
that each system component is vulnerable to attack
unless it is specifically hardened or defended. We
address “threat” by positing different levels of offen-
sive resources for the terrorists. At the end of an
analysis, we can determine the criticality of a group
of assets, i.e., the value of protecting or hardening
a given set of assets. We can also determine the value
of adding redundant assets to improve the system’s
robustness.
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In essence, an attacker-defender model becomes a sub-
model in a formal model or informal procedure for
identifying a near-optimal, budget-limited defense
plan. The formal model is a defender-attacker-defender
model. However, a simpler defender-attacker model may
suffice for this purpose if the contribution of a single
asset to system performance is easy to define. We
cover each of these three model types in this paper.
We present the basic models in the next three

sections. If the mathematics is not of interest, the
reader may skim those sections and continue with
the “Three Examples” and “Supply Chains and Other
Systems” sections to learn what we have discovered
and how we generalize our findings. Brown et al.
(2005a) provide additional examples.

Attacker-Defender Models
The core of an attacker-defender model is an opti-
mization model of an infrastructure system whose
objective represents the system’s value or cost to
the defender, i.e., our society, while it operates. For
instance, the maximum throughput of a pipeline
network could measure that system’s value, while
power-generation costs, plus economic losses result-
ing from unmet demand, could measure the cost of
operating an electric power grid. We use cost rather
than value in the following model.
We assume that the defender operates a system to

minimize cost, which is represented by a linear func-
tion. The defender’s problem is

(D) min
y∈Y

cy� (1)

where c defines a vector of component operating
costs (and/or penalties), y represents system operat-
ing decisions or activities, and y ∈ Y represents con-
straints on that operation and the requirements to be
met. Of course, by appropriately defining variables
and constraints, we can also represent or approximate
certain nonlinear cost functions in this model.
We note that “defender” is actually a misnomer in

these models because the models do not directly rep-
resent defensive actions. “System user” or “system
operator” would be more accurate, but awkward.
The model posits that an attacker wishes to max-

imize the defender’s optimal (minimum) operating

cost, and will do so by restricting the defender’s activ-
ities y. Let xk = 1 if the attacker attacks the defender’s
kth asset, let xk = 0 otherwise, and let x denote the
vector of attack decisions, i.e., an attack plan. For sim-
plicity, we assume that if xk = 1, asset k is disabled
and yj = 0 for any activity j that requires that asset.
That is, attack of an asset stops the defender from car-
rying on activities that depend directly on that asset.
Binary restrictions on x, and some reasonable set

of constraints on the attacker’s resources, are repre-
sented by x ∈X. Let Y 
x� represent the defender’s set
of feasible activities, restricted by the attack plan x.
Thus, the attacker solves this planning problem:

(AD) max
x∈X

min
y∈Y 
x�

cy� (2)

AD is a type of bilevel program (e.g., Moore and
Bard 1990), and a bilevel program is a type of Stack-
elberg game (von Stackelberg 1952). The terms leader
and follower in a Stackelberg game represent our
attacker and defender, respectively. The key assump-
tions that make a Stackelberg game appropriate here
are (1) the attacker’s and defender’s actions are
sequential, (2) the attacker has a perfect model of how
the defender will (or should) optimally operate the
system, even after an attack, and (3) the attacker will
manipulate that system to his best advantage. The lat-
ter two assumptions are strong but prudent for us:
The defender can suffer no worse should the attacker
possess a less-than-perfect model of the defender’s
system, or fail to implement a perfect attack plan. A
defensive plan that hardens or protects the defender’s
activities will be prudently conservative if AD is used
to evaluate the plan’s effectiveness.
One can devise many generalizations of AD, in-

cluding attacks that increase costs rather than limit
activities, or attacks that reduce the capacity of an
asset by less than 100 percent. We will cover some of
these generalizations after establishing basic results.
Naturally, the defender may also lack perfect know-

ledge of the attacker’s capabilities. That is, the
defender may be guessing at the attack-resource con-
straints representing part of X. In this case, the
defender will need to solve the model over a range
of attack-resource levels, and use these results, along
with some common sense, to determine system
improvements.
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For many situations, a linear program (LP) will
provide an adequate model of the defender’s sys-
tem and its operations. For instance, the electric
power industry commonly employs linearized “opti-
mal power-flow models” for security analysis (Wood
and Wollenberg 1996, p. 419). Therefore, we can
express the optimal operation of the defender’s sys-
tem as


D0� min
y≥0

cy (3)

s.t. Ay= b� (4)

F y≤ u� (5)

Constraints (4) correspond to general system-oper-
ations constraints (e.g., balance of current at junctions
in an electric power network), and constraints (5)
represent capacity limitations for asset k ∈ K (e.g.,
maximum capacity, in megawatts, of the kth power
line). Assets can include power lines, pipelines, roads,
ports, communications hubs, and so forth.
We assume that an attack on asset k causes the loss

of all its capacity uk. Thus, the full AD model is

(AD0) max
x∈X

min
y≥0

cy (6)

s.t. Ay= b� (7)

F y≤U
1− x�� (8)

where U = diag
u�. The inner LP must be constructed
to be feasible for any x because we expect the sys-
tem to operate in some degraded fashion after any
conceivable attack. This may require the use of invul-
nerable activities, i.e., extra variables yj that do not
appear in constraints. Also, if some amount of capac-
ity u0 is invulnerable to attack, constraints (8) become
F y≤ u0+U
1− x��
A natural approach to solving AD0 begins by refor-

mulating it: Fix x temporarily; take the dual of the
inner linear program; and then release x (Wood 1993).
Unfortunately, this yields an unappealing, nonlinear,
mixed-integer program. That model can be linearized,
but there is a simpler method: Change the paradigm
of “capacity attack” to “cost attack,” and then take
the dual of the inner problem (Cormican et al. 1998).
Specifically, let −p strictly bound the dual variables
associated with F y≤U
1−x� over all possible values
of x ∈ X. Thus, pk bounds the value to the defender

of a unit of asset k’s capacity. Because AD0 is feasi-
ble even when asset k has been disabled and has no
capacity, it must be possible to penalize use of that
capacity to make any use “uneconomical”: pk is such
a penalty. AD0 is thus equivalent to

(AD1) max
x∈X

min
y≥0


c+ xT PF �y [dual variables]

s.t. Ay= b ����

F y≤ u ����

where P = diag
p�, and “dual variables” denotes dual
variables for the inner LP given fixed x. (Note that
nonstrict bounds p are actually valid for optimizing x;
see Cormican et al. 1998.)
After taking the dual of the inner minimization,

a mixed-integer linear program (MILP) results:


AD1-MILP� max
�≤0���x

bT �+u�

s.t. AT �+ F T�− F T P x≤ c�

x ∈X�
We can solve this model directly or by using

Benders’ decomposition (Benders 1962). The standard
Benders method for integer x begins by taking the
dual of AD1-MILP with x fixed, which causes AD1
to reappear. Thus, the Benders decomposition applies
naturally to these problems.
To illustrate, consider the following simplified

model of a crude-oil pipeline network:

Data
A node-arc incidence matrix for the network.
b vector of supplies and demands: bi > 0 defines a

supply of bi million barrels per day (mmbbl/day)
at node i, bi < 0 defines a demand of bi
mmbbl/day at i, and bi = 0 implies that i is a
transshipment node (pumping station), assumed
invulnerable to attack.

c1 vector of shipping costs by arc, i.e., pipeline seg-
ment ($/mmbbl/day).

c2 vector of penalties for not taking available supply
(“take-or-pay penalties”) ($/mmbbl/day).

c3 vector of penalties for unmet demand (e.g., spot-
market cost) ($/mmbbl/day).

Î2 incomplete diagonal matrix with a one for each
supply node, but with zeroes elsewhere.

Î3 incomplete diagonal matrix with a one for each
demand node, but zeroes elsewhere.

See Errata, Note 1
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Variables
y1 flows on pipelines (mmbbl/day).
y2 unused supply (mmbbl/day).
y3 unmet demand (mmbbl/day).

Formulation


D0P� min
y≥0

c1y1+ c2y2+ c3y3 (9)

s.t. Ay1− Î2y2+ Î3y3 = b� (10)

Iy1 ≤ u� (11)

Constraints (10) are “elastic flow-balance con-
straints” that allow unused supply and unmet de-
mand; constraints (11) represent pipeline capacities.
For simplicity, we will (1) ignore the oil’s purchase
price, (2) assume that c2 = 0, c1 > 0, and c3 = 
c3�

c3� � � � � c3�, and (3) assume that only pipeline segments
can be attacked.
Now, we proceed directly to create a “cost-attack”

variant of the attacker-defender model in the form
of AD1. Let x be defined as in AD1, with “asset k”
now meaning “pipeline segment k.” We suppose that
intelligence reports indicate that terrorists can form
at most T squads to carry out a coordinated attack,
so that

x ∈X ≡
{
x ∈ �0�1��K�

∣∣∣∣ ∑
k∈K
xk ≤ T

}
�

We further note that p ≡ c3 exceeds the penalty
incurred by not supplying one mmbbl/day because
c1 > 0. Thus, letting p= 
p� p� � � � � p� and P = diag
p�,
the max-min attacker-defender model becomes


AD1P� max
x∈X

min
y≥0


c1+ xT P�y1+ c2y2+ c3y3 (12)

s.t. Ay1− Î2y2+ Î3y3 = b� (13)

Iy1 ≤ u� (14)

We leave it to the reader to take the dual of the
inner minimization to create AD1P-MILP. However,
there is a caveat: The quality of the LP relaxation
of that MILP will depend directly on how small the
penalties pk are. Therefore, the modeler may need to
work to identify small, valid values. For instance, for
any � > 0, each pk in AD1P can be validly reduced to
pk − c1�min + �, where c1�min is the smallest shipping
cost a demand might incur while being satisfied.

Actually, a cost-attack model like AD1 will some-
times apply directly to infrastructure analysis. For
instance, suppose that D0, with constraints (5) elim-
inated, corresponds to a minimum-traversal-time
(shortest-path) problem in a road network. Rather
than having an attack on link k reduce that link’s
capacity, a more natural model may simply add
a delay dk to the nominal traversal time ck. Thus, this
model becomes


AD1R� max
x∈X

min
y≥0


c+ xT D�y

s.t. Ay= b

(Israeli and Wood 2002), where D = diag
d�, with d
being the vector of delays dk. (Hereafter, we will not
announce the bold, vector versions of variables and
data, except when used to define matrices such as D.)

Defender-Attacker Models
The solution of an attacker-defender model identifies
a set of most-critical assets (components) for a system.
The ability to identify such assets leads to some obvi-
ous heuristics for approximating the solution to the
“optimal defense problem,” i.e., for identifying a near-
optimal defense plan, given a limited defense budget.
But, how do we identify truly optimal solutions?
In theory, one merely embeds the bilevel attacker-

defender model in a trilevel defender-attacker-de-
fender model (DAD) such as


DAD� min
w∈W

max
x∈X
w�

min
y∈Y 
x�

cy� (15)

Here, w denotes a binary vector of defensive deci-
sions (e.g., wk = 1 if asset k is hardened and made
invulnerable, and wk = 0, otherwise), w ∈W denotes
the binary restrictions on w together with budgetary
and other possible constraints, and the inner max-
min problem simply represents an attacker-defender
model with a restricted set of attack strategies, X
w�.
Thus, the defender wishes to identify a defense plan
w∗ so that when the attacker solves

max
x∈X
w∗�

min
y∈Y 
x�

(16)

the “benefit” the attacker perceives, i.e., the worst
damage the attacker can inflict, is minimized.
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In general, we believe that DADs will solve only
with difficulty because conversion to a monolithic
MILP will usually be impossible, necessitating more
complicated decomposition techniques. We discuss
this topic later in the paper. Fortunately, certain
optimal-defense problems lend themselves to eas-
ier bilevel, defender-attacker models of the following
form:

Indices
k asset the defender may want to defend, and the
attacker may want to attack (we use a one-to-one
relationship here for simplicity).

Data
ck value to the attacker of attacking undefended

asset k.
pk reduction in value of attacking asset k if that asset

is defended, i.e., the attacker receives benefit ck+
pk, pk ≤ 0, by attacking defended asset k.

Variables

xk =
{
1 if the defender defends his kth asset�

0 otherwise�

yk =
{
1 if the defender’s kth asset is attacked�

0 otherwise�

Constraints
x ∈X resource constraints and binary restrictions

on the defender’s defense plan, e.g., X =
�x ∈ �0�1�n �Gx≤ f�.

y ∈ Y resource constraints and binary restrictions
on the attacker’s attack plan, e.g., Y =
�y ∈ �0�1�n �Ay= b�.

Formulation

DA1� min

x∈X
max
y∈Y


c+ xT P�y�

A simplified example illustrates this model. Sup-
pose that intelligence reports indicate that a terror-
ist organization, “the attacker,” intends to send out
b teams to attack b different subway stations in a
city having M > b total stations. Municipal authori-
ties, “the defender,” have m<M teams with which to
defend stations. The value to the defender of station k
is ck > 0, and we assume that the attacker assigns the
same values. Let pk = −ck. Thus, a defended station

becomes invulnerable, and the attacker gains no bene-
fit by attacking it. We formulate this “subway-defense
problem” as


DA1SUB� min
x∈X

max
y∈�0�1�M

M∑
k=1

ck+ xkpk�yk (17)

s.t.
M∑
k=1
yk = b� (18)

where X = �x ∈ �0�1�M �∑M
k=1 xk =m�.

In general, DA1 and instances like DA1SUB are dif-
ficult to solve because the inner maximization is not
an LP. Thus, no general transformation exists to con-
vert DA1 into an MILP as we converted AD1 into
AD1-MILP. This can be resolved in one of three ways:
Case 1. We decide that continuous attack effort rep-

resents a reasonable approximation of reality; there-
fore, we convert Y to YCONT = �y ∈Rn+ �Ay= b� y≤ 1�
(Golden 1978).
Case 2. The LP relaxation of Y , YLP = �y ∈ Rn+ �

Ay = b� y ≤ 1�, yields intrinsically binary solutions,
making a conversion from DA1 into DA1-MILP pos-
sible. Such is the situation with DA1SUB, and we invite
the reader to work out the details. Typically, Case 2
will arise when YLP corresponds to a network-flow
problem which, having a totally unimodular con-
straint matrix, possesses integer extreme points (e.g.,
Ahuja et al. 1993, pp. 447–449). Indeed, YLP for DA1SUB
describes a simple network flow problem. Brown et al.
(2005b) present a more complex instance involving
theater ballistic missile defense.
Case 3. Neither of the cases above pertains, and we

must include restriction y ∈ �0�1�n in the definition
of Y .
Case 3 requires special techniques to solve, but

solution methods better than brute-force enumeration
do exist (e.g., Israeli and Wood 2002, Skroch 2005).
This paper focuses on Cases 2 and 3 because Case 1
seems unrealistic for our applications.
We offer one final observation on the DA model.

DA cannot incorporate a detailed operational model
of the defender’s system. However, by manipulating
x ∈X� we can describe limited operational detail. For
instance, suppose that the defender’s system loses
value c > 0 if either asset k or k′ is attacked (when
undefended), but loses no additional value if both



Brown, Carlyle, Salmerón, and Wood: Defending Critical Infrastructure
536 Interfaces 36(6), pp. 530–544, © 2006 INFORMS

k and k′ are attacked. The constraint xk + xk′ ≤ 1 han-
dles this situation perfectly when added to the con-
straints defining X.

Defender-Attacker-Defender Models
Although difficult, we can sometimes solve a trilevel
DAD model exactly, to prescribe an optimal defen-
sive plan for an infrastructure system. The DAD must
assume a fixed level of offensive resources, but results
will be believable if we make appropriately conserva-
tive assumptions. For instance, can we really believe
that a group of terrorists will be able to strike more
than 10 electric power substations simultaneously in
a particular region? Limiting the number of attacks to
10 may be deemed appropriately conservative.
For simplicity, we assume that if asset k is de-

fended, i.e., wk = 1, then that asset becomes invul-
nerable. We let h+ ≡max�0�h� apply componentwise
in a vector, so that 
x −w�+ denotes the “net attack
plan” that results from attack plan x implemented
against defense plan w. Using AD0 as the inner,
bilevel model, the trilevel model becomes

(DAD0) z∗D = min
w∈W

max
x∈X

min
y∈Y

cy

s.t. Ay= b�

0≤ y≤U
1− 
x−w�+��

We warned about taking the dual of the inner min-
imization before, but now we have

z∗D = min
w∈W

max
x∈X

max
���

�bT +�U
1− 
x−w�+� (19)

s.t. �A+�I ≤ c� (20)

�≤ 0� (21)

= min
w∈W�z

z (22)

s.t. z≥ ��lbT + ��lU 
1− 
�xl−w�+��

l ∈ L� (23)

where L enumerates all combinations of maximal
attack plans �x ∈X and extreme points 
 ��� ��� from (20)
and (21).
The final formulation indicates that DAD0 can be

solved just as we might solve a DA with a Benders
decomposition, except: (1) the subproblems will be

instances of AD solved via AD1, and (2) the mas-
ter problem will require constructs to handle the “+”
operator. The fact that the subproblems can be solved
by decomposition leads to interesting possibilities for
a “nested decomposition” (O’Neill 1976).
We have only just begun to explore DADs, and a

host of alternative or complementary solution tech-
niques must be tested. One technique has already
proven useful—the addition of “super-valid inequal-
ities” (Israeli and Wood 2002) to the relaxed mas-
ter problem, i.e., the version of the master problem
(22)–(23), that is solved during the Benders decompo-
sition algorithm. In particular, as the algorithm gen-
erates each Benders cut (23) based on a new solution
wl, we also add a constraint that represents w �= wl.
The upper bound from the relaxed master problem
remains valid if we have not identified an optimal
solution; if we have identified such a solution, the
value of the bound is irrelevant. Because w is binary,
simple linear constraints will implement the super-
valid inequalities.
Actually, one can implement a version of Benders’

decomposition with a master problem whose con-
straints consist only of super-valid inequalities, and
with an objective function that represents any of
the lower-bounding functions in (23). Brown (2005)
applies this technique to a model for planning the
reconstruction of the Iraqi oil pipeline system and
defending it from insurgents.

Three Examples
This section describes AD, DA, and DAD models
applied to problems of protecting specific instances
of critical infrastructure. We have created and tested
many of these models by (1) defining a hypothetical
but realistic scenario, (2) assembling a “red team” of
well-trained, military officer-students to gather data
from strictly public sources, (3) advising the team on
creating and solving an appropriate model, and (4)
helping analyze results.
The results have led to valuable insights. We have

found cases in which a given set of attackers can
do more—or less—damage than we would have pre-
dicted, and sometimes the attacks do not target the
“obvious” components revealed in single-point-of-
failure analysis.
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The Strategic Petroleum Reserve:
Attacker-Defender
We first consider the US Strategic Petroleum Reserve
(SPR), which stores 700 million barrels of crude oil in
underground caverns, and which can deliver this oil
(about two months’ supply for the United States) via
its pumps and pipelines to refiners, ports, and export
pipelines. Terrorists have certainly planned attacks on
infrastructure like the SPR elsewhere in the world
(Luft and Korin 2003).
We seek a defensive plan for a section of the SPR

that lies in Louisiana. (We base Figure 1 on a series
of telephone and e-mail discussions during April
and May 2005 with J. Holbrook and P. Withers, ana-
lysts for the Space Countermeasures Hands On Pro-
gram at Kirtland Air Force Base, Albuquerque, NM.)
Figure 1 depicts that section as a network, showing
(1) the Bayou Choctaw and West Hackberry storage
sites as source nodes, (2) four refineries, four ports,
and 14 export pipelines as sink nodes, (3) a number
of pumping stations and junctions as transshipment
nodes, and (4) a number of pipeline sections connect-
ing the nodes as network arcs.
We suppose that the United States is in a state of

emergency and that the defender requires maximum
output from the SPR and consequently measures the

Strategic Petroleum Reserve
Louisiana pipelines

Louisiana
pipelines and facilities

Sources
Pumps/ transfer stations
Sinks

Figure 1: The US Strategic Petroleum Reserve has two storage locations
in Louisiana connected by a system of pumps and pipelines to refiners,
ports, and export pipelines. We model defense of the maximum system
output. Several simple defense plans make the system highly robust
against multiple attacks (Benedetto et al. 2005).

“cost” of operating the system in terms of any reduc-
tion below that maximum. We could create a formal
DAD as the basis for analysis—the network is small
and the corresponding DAD would solve easily. How-
ever, we imagine that analysts have just begun their
work, and prefer to explore a set of discrete options
to “get a feel for the problem.” So, for this limited
scenario, the analysts’ toolkit consists of the attacker-
defender model AD1P, (Equations (12)–(14)).
Analysts working for the SPR would have precise

data for pipeline capacities and pumping rates, but
we believe that our estimates, derived from public
sources, should suffice for purposes of demonstra-
tion. They should also suffice for purposes of a ter-
rorist organization. Now, for each of three defensive
options, we evaluate optimal attack plans assuming
that the attacker can destroy no network components
(nodes or arcs), one component, two components, and
so forth. The options and results follow.
Defense Option A: Baseline, no defense. The destruc-

tion of only two system components, the sources,
reduces optimum system output to zero (i.e., leads to
the most costly system operation possible). Thus, a
sensible defensive plan must include the sources.
Defense Option B: Protect critical core components. We

discover a “critical backbone” of components, which,
if protected, ensures connection of the two sources to
many, normally redundant, parts of the distribution
network. With the backbone defended, at least seven
(undefended) components must be destroyed before
maximum system output drops below half.
Defense Option C: Protect a 10-mile-radius security

zone around each source. This protects three-quarters of
the system capacity for any conceivable number of
attacks.

Border Patrol: Defender-Attacker
The porosity of the United States’ borders has re-
ceived much attention in recent years, with empha-
sis placed on the lack of border-patrol resources (e.g.,
General Accounting Office 2004). We believe that
operations research can help make better use of lim-
ited budgetary and human resources here. In partic-
ular, we want to improve the probability that border
defenses will detect an alien, who may be a terrorist,
trying to infiltrate the country from Mexico. For sim-
plicity, we assume a single “infiltrator” will choose
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Figure 2: Limited patrol assets can be allocated optimally to detect illegal
incursions into the United States through the Yuma, Arizona border area.
A map of the area is overlaid with a skeleton of a network that represents
potential infiltration routes from Mexico. Arcs not shown represent move-
ments from border entry points through sensor fields, and along roads and
footpaths. The dark nodes identify a route that minimizes the maximum
probability of detection for an infiltrator (Pulat 2005).

from among a set of well-known routes to attempt to
enter the United States.
Figure 2 shows a map of the Yuma border area,

along with a skeleton of the “infiltration network”
that describes the paths an infiltrator could take from
Mexico, into the United States through conventional
portals, or via incursions over roads or footpaths. (The
full network contains too many arcs to depict.) The
intent is to spend a limited security budget on pro-
cedural changes, sensors, road patrols, and helicopter
patrols to increase detection probabilities on individ-
ual arcs and thereby maximize overall detection prob-
ability. The options for procedural changes include
closing off certain legal portals, and using sensors or
helicopter patrols for detection and cueing ground
units. Ground units are vehicles and crews that we
position independently, or position to follow up on
cues from helicopter patrols.
Probability of nondetection proves to be a useful con-

cept for modeling this problem. For simplicity, we
assume that every arc k in the network possesses
a nominal probability 1≥ qk >0: This is the current
probability of nondetection if the infiltrator traverses
arc k. If we spend ck dollars at arc k, a new sensor will

be installed, or a new procedure implemented, and
the nondetection probability becomes q̄k > 0, with q̄k <
qk. (Note that (1) The model extends easily to handle
multiple options for reducing nondetection probabil-
ity on an arc, (2) completely closing off an arc k can
be handled by setting q̄k arbitrarily close to zero, (3)
an artificial arc k connects each entry point to an arti-
ficial source node s, with qk = q̄k = 1, and, similarly (4)
an artificial arc k connects each node representing a
completed infiltration to an artificial sink node t, with
qk = q̄k = 1.)
We seek to spend a budget of c′ dollars to minimize

the maximum probability of nondetection along any
path the infiltrator might take. If we assume indepen-
dence of detection events, this model can be formu-
lated as follows (see the related model in Pan et al.
2003):

Indices and Structural Data
i ∈� nodes of the infiltration network.
k ∈� directed arcs of the infiltration network.

�= 
� ��� infiltration network.

Variables

xk =
{
1 if the defender upgrades security on arc k�

0 otherwise.

yk =
{
1 if the attacker traverses arc k when xk = 0�
0 otherwise.

�yk =
{
1 if the attacker traverses arc k when xk = 1�
0 otherwise.

Data
A node-arc incidence matrix for �.
b node-length vector with bs = 1, bt =−1, and bi = 0

for all i ∈� \�s� t�.
qk nominal probability of nondetection on arc k

when xk = 0 (qk > 0�.
q̄k probability of nondetection on arc k when xk = 1

(qk > q̄k > 0�.
dk log qk (vector form d and D≡ diag
d��.
d̄k log q̄k (vector form d̄ and �D≡ diag
d̄��.
ck cost to upgrade security on arc k ($).
c′ total budget for upgrading security ($).
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Formulation


DA1YUMA� min
x∈X

max
y� �y

∏
k∈�
q

1−xk�yk
k q̄ k

xk �yk (24)

s.t. Ay+A�y= b� (25)

y� �y ∈ �0�1����� (26)

where X = �x ∈ �0�1���� � cx≤ c′�.
Constraints (25) and (26) ensure that one unit of

“unsplittable flow,” representing the infiltrator, moves
from s to t. Constraints (25) are standard flow-
balance constraints, just like those that would model
a shortest-path problem in �′ = 
� ��∪�′�, where �′

duplicates �.
We then apply a standard logarithmic transforma-

tion to the objective function to obtain this equivalent
model:


DA2YUMA� min
x∈X

max
y� �y≥0


1− x�T Dy+ xT �D�y
s.t. Ay+A�y= b�

Simple nonnegativity restrictions replace con-
straints (26), because the constraint matrix in (25) is
totally unimodular. Indeed, for fixed x, the model
defines a shortest-path problem on �′ if one multiplies
D and �D by −1, and switches the maximization to a
minimization. This model converts easily to an MILP.
(See Case 2 in the Defender-Attacker Models section.)
We use standard search-theory to estimate detection

probabilities on arcs. Although absolute statistics are
of questionable value, relative results are plausible.
The results for four different resources scenarios are
summarized below. Note that the results are specified
in terms of probability of detection, not nondetection.
Baseline Scenario 1, no security improvements. An infil-

trator would cross the border and traverse downtown
Yuma, exiting the city to the northeast. Probability of
detection= 0�04.
Scenario 2, one check point, one remote observation post,

two road patrols, sensors to cover at most 15 road seg-
ments, and one helicopter, all visible to the infiltrator.
Probability of detection= 0�07.
Scenario 3, two check points, one remote observation

post, two road patrols, sensors to cover at most 15 road
segments, and one helicopter, all visible to the infiltrator.
Probability of detection= 0�11.

Scenario 4, surprise interdiction of downtown Yuma
infiltration route. One hidden sensor field and two sur-
prise roadblocks are located optimally. The probabil-
ity of detection rises to 0.6 because information has
been hidden from the infiltrator. This represents an
interesting use of a Stackelberg game in which we fool
the follower (“infiltrator” or “attacker”) into playing
one game but evaluate success according to another
that is more advantageous to the leader (“defender”).
This game will be played many times, however, and
the infiltrator will eventually catch on to the ruse.
Two-person zero-sum game theory may be needed
here.

Electric Power Grids: Defender-Attacker-Defender
We have produced a complete decision-support sys-
tem called the Vulnerability of Electric Grids Ana-
lyzer (VEGA) that uses an AD model to identify
critical components in a power grid (Salmerón et al.
2004a, b; Brown et al. 2005a). Criticality of grid com-
ponents is measured through “disruption,” which
may be viewed as the penalty for unserved demand,
weighted by different customer sectors. (Disruption
includes a small factor for actual generation costs, but
we ignore that in this paper.) We assume that a group
of terrorists, using limited offensive resources, will
attack and destroy, i.e., “interdict,” grid components
to maximize disruption.
In VEGA, a set of standard “optimal DC power-

flow submodels” (DCOPFs) comprise D0, the inner,
minimizing LP (Wood and Wollenberg 1996, p. 514).
Each submodel looks just like the pipeline model

D0P�, constraints (9)–(11), except that (1) the network
is an electrical grid instead of a pipeline network; (2)
the commodity flowing through the network is elec-
trical current instead of oil; and (3) the model adds
linearized admittance constraints for AC lines. This
LP approximates the “true,” nonlinear AC model, but
the industry deems it adequate for security analyses.
In fact, an independent system operator may solve a
model like this thousands of times per day to ensure
that a power grid maintains “N −1 security,” i.e., can
still meet all customer demand after any single com-
ponent failure. In our case, the submodels represent
different system states as demand varies and repairs
proceed, over time, after an attack.
Ultimately, we wish to identify the best, budget-

limited set of protective measures for the power grid,

See Errata, Note 2
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i.e., to solve an instance of DAD with VEGA’s current
model representing the “AD” part of “DAD.” We
have developed such a DAD model for VEGA, but
cannot yet solve full-scale problems as we can for
AD. Consequently, the example described below only
covers a modest-size test system from the Institute of
Electrical and Electronics Engineers (IEEE).
We make a number of assumptions to simplify the

presentation: Only power lines can be interdicted,
and thus only power lines need defending; all lines
require the same amount of time to repair; and load
(demand) remains constant. Thus, we concern our-
selves only with the instantaneous unserved demand
for power and solve only a single DCOPF to evaluate
the inner model, D0.
Under the above assumptions, the following model

describes a valid master problem for this DAD, taking
the place of (22)–(23):

z∗ = min
w∈W�z

z (27)

s.t. z≥ f 
�xl�+
∑

k � x̂lk=1
�0lkukwk� l ∈ L� (28)

where f 
�xl� evaluates the disruption caused by inter-
diction plan (attack plan) �xl, i.e., “load shedding”
(unmet demand for electricity) or its cost; uk denotes
the capacity of line k; and �0lk is the optimal dual vari-
able on the capacity constraint that must be enforced
when x̂lk = 1, namely, yk ≤ 0.
The formulation (27)–(28) ignores the fact that an

attack not only drops the capacity of a line to zero, but
also eliminates one or more admittance constraints
that relate phase angles of power flows on inter-
connected lines. Thus, a partial benefit may actu-
ally accrue to the system because of an attack. This
means that when interdicted line k is retrospectively
defended, i.e., the master problem sets wk = 1 for
some x̂lk = 1� so that 
x̂lk−wk�+ = 0 (see DAD0), then
we should account for the negative benefit accrued
by re-enforcing one or more admittance constraints.
However, we ignore this effect. The negative bene-
fit could serve to reduce the coefficients �0lk in (28)
and thereby strengthen the master problem. But, the
master problem remains valid because each constraint
in (28) defines a valid lower-bounding function on
z∗, and the solution to the final master problem

returns the true objective-function value for DAD0
for any explicitly evaluated solution wl ∈W . (This is
true because whenever the master problem returns
wl ∈W , we will immediately solve for a correspond-
ing optimal interdiction plan �xl, with objective value
f 
�xl�, and add a Benders cut (28) to the master prob-
lem.)
A hypothetical grid known as “Reliability Test Sys-

tem with Two Areas” (Institute of Electrical and
Electronics Engineers 1999) defines our test scenario
(Figure 3). This grid comprises 48 buses (nodes), 69
power lines (which allow flow of electricity in both
directions), and 10 high-voltage transformers in four
substations and 66 generating units. (However, recall
that, for simplicity, only power lines may be inter-
dicted.) Also, Equation (26) is slightly modified to
account for attacks on physically parallel lines (14 in
our example). Specifically, if two lines are mounted on
the same towers, an attack on one implies an attack
on both. We allow n = 4 interdictions (attacker’s
resource), but assume that we can prevent interdiction
on m= 8 lines (defender’s resource).
Using our AD model, it is relatively easy to find an

optimal interdiction plan on the undefended network,
i.e., when w = w0 = 0. The optimal lines to interdict
are X∗
w0�= �A18�A21�A23�A26�, yielding a cost of
$915,023/hour based on a load-shedding penalty of
$1,000/MWh. Interestingly, the optimal defense plan
for eight lines does not cover all four of the lines
in X∗
w0�. In fact,W ∗ = �A18�A23�A32-1�A33-1�B21�
B23�B27�B28�, which includes only two lines from
the optimal, undefended interdiction plan. With this
defense, denoted by the vector w∗, the best inter-
diction plan becomes X∗
w∗� = �A11�A12-1�B11�
B12-1�, and the defended system now costs only
$421,028/hour. (Note that the attacker does not inter-
dict the now-undefended lines �A21�A26�.)
Next, let us show that forcing a defense plan

to cover the optimal, undefended interdiction plan
X∗
w0� would result in a substantial misuse of defen-
sive resources. Such a defense might result from a
planner using a natural, defensive rule of thumb:
Completely defend against the worst-case interdiction
plan, and use your remaining defensive resources as
advantageously as possible. To simulate this rule of
thumb, we fix variables in the DAD to defend �A18�
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Figure 3: Reliability Test System with Two-Areas (after Institute of Electrical and Electronics Engineers 1999).
This “one-line diagram” describes a hypothetical electric power transmission grid used here to illustrate optimal
and suboptimal defensive plans evaluated through a formal, trilevel, defender-attacker-defender model.

A21�A23�A26�, and allow the model to select opti-
mally the remaining four defended lines. The full,
suboptimal defense plan becomes W ′ = �A18�A21�
A23�A26�A27�A28�B21�B28�, also denoted by the
vector w′. The attacker counters w′ by interdicting
lines X∗
w′� = �A12-1�B18�B23�B26�, yielding a cost
of $538,192/hour—almost 28 percent higher than opti-
mal. This percentage would likely be even higher in
the real world: Presumably, a planner who subopti-
mally forces defense of X∗
w0�, will not optimally allo-
cate his remaining defensive resources, either.

Supply Chains and Other Systems
Supply chains, i.e., physical-distribution systems, are
a key infrastructure of companies that manufacture
or distribute goods. Supply chains are critical to our
nation’s well-being despite their omission from the
Department of Homeland Security (2002) list of crit-
ical infrastructure. For example, Wein and Liu (2005)
describe how thousands of people could be killed by
the introduction of botulinum toxin at various points
in a milk production, transportation, and processing
chain.
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Strategic supply chain design for reducing costs
and improving service levels has a long and success-
ful record in the United States. Unfortunately, efficient
supply chains are highly vulnerable to attack. In fact,
after scrupulously investing exactly the right amount
of money in a supply chain, on exactly the right bot-
tlenecks, the resulting product-flow channels resem-
ble one or more spanning trees. However, a spanning
tree is maximally fragile: Breaking any link discon-
nects the network.
Brown et al. (2003a, b, 2004) and INSIGHT (2006)

address supply chain vulnerability. Our most impor-
tant “result” is an observation: We still encounter
considerable confusion in the private sector between
random acts of nature—these have been studied
by insurance actuaries for centuries—and belligerent
acts of an intelligent attacker who observes defen-
sive preparations and acts to maximize damage. We
strongly suggest remedying this confusion before pro-
ceeding with any analysis.
Sometimes, one can reduce vulnerability substan-

tially with simple planning and with only a modest
investment in new physical infrastructure: Strategi-
cally relocating surge capacity may provide benefit
at virtually no cost. This contrasts with the high cost
of adding redundant capacity, or hardening compo-
nents, in other types of infrastructure.
We have learned to model competitors and dis-

satisfied labor unions as attackers because they seek
to maximize damage inflicted (e.g., to market share,
profit, or reputation). For instance, the labor dispute
that resulted in denial of access to west coast ports in
the United States in 2002 was no less damaging than
the anthrax attacks of 2001 that closed eastern postal
services.
We have presented our findings to numerous com-

panies and have received enthusiastic responses.
American companies now have senior executives
focused on “corporate continuity.” These positions
were originally motivated by threats to information
systems. Thus, back-up computer facilities and dou-
bly backed-up data have become ubiquitous. Now,
these same companies are realizing that they must
also back up their physical operations to handle
attacks on their own infrastructure (e.g., equipment,
warehouses) as well as attacks on the public infras-
tructure they use (e.g., roads, communications net-
works).

Our work has also led to new military and dip-
lomatic planning models; two have already been
incorporated into comprehensive decision-support
systems. One system helps plan theater ballistic-
missile defense (Brown et al. 2005a). The embedded
defender-attacker model optimally locates anti-mis-
sile platforms (ships and ground-based units supplied
with antimissile missiles) while assuming the attacker
can see some or all of our defensive preparations. The
other system identifies optimal actions (e.g., embar-
goes of key materials, economic sanctions, military
strikes) to delay a nuclear weapons program (Skroch
2005, Harney et al. 2006). In this attacker-defender
model, we are the attacker. This model applies to any
complex industrial project that can be delayed by a
competitor.
One insight from these military and diplomatic

exercises is that the use of deception and secrecy can
contribute significantly to the successful defense of
our critical infrastructure, or to successful attacks on
an adversary’s infrastructure. For instance, hiding the
location of a defensive asset could cause an attacker to
strike an essentially invulnerable target. When deal-
ing with a suicide bomber, such an outcome could be
desirable.
Even though this work is relatively new, there

is already a large body of unclassified publica-
tions, including about 70 red-team case studies, over
20 graduate theses, and numerous journal papers
from our research team and others. The topics
include those discussed in this paper as well as rail
networks, domestic water-distribution systems, sea
routes, attacks on public events, and others. Further-
more, several decision-support tools have been built
and are actively being extended.

What We Have Learned
The answers are not obvious. The most damaging

coordinated attacks, and the most effective defenses,
can be nonintuitive. The United States infrastruc-
ture is enormous and complex. Analysis of such
a large infrastructure deserves rigorous, optimizing,
decision-support tools to formalize the notion of a
transparent, two-sided conflict.
High-fidelity models are achievable. We can for-

mulate, find data for, and quickly solve high-fidelity
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models of critical-infrastructure systems. Simpler,
aggregated models may appeal, but unless verified
by high-fidelity models, their answers will always be
suspect and insights may be lost.
Heuristics and rules of thumb are useful, but

not for identifying vulnerability. If we can evalu-
ate vulnerability precisely, we can create a reason-
able heuristic to identify good, budget-limited sets
of vulnerability-reducing defensive actions. However,
using a surrogate measure of vulnerability (e.g., node
degree and basic connectivity indices in a network)
leads to sensible defensive plans only if the system is
very simple, or an attacker plans attacks using that
surrogate. If we base defensive measures on heuris-
tically identified, “near-optimal” attacks, we risk an
attack by an aggressor who is smarter than our
heuristic.
Reliability is not the answer. We must protect

collections of critical components in our infrastruc-
ture systems, rather than backing up the least-reliable
components.
Malicious, coordinated attacks can be more damag-

ing than random acts of nature.
The attacker has the advantage. This is the reverse

of classical military theory and occurs, in part,
because of the asymmetric nature of this conflict: The
defender must protect a huge, dispersed target set,
while the attacker need only focus on a small set of
targets chosen to maximize damage. The attacker also
has an advantage in terms of information.
The data are available to everyone. Governmen-

tal agencies have produced Web sites that offer much
useful information to citizens and terrorists alike.
While many Web sites have been redesigned to reduce
access to potentially dangerous information, excep-
tions abound. We advise any owner of a public Web
site to appoint an independent red team to analyze
that site with intent to cause harm. There must be
a proper balance between the public’s right to know
and advertising our vulnerabilities.
Some systems are naturally robust, while others

are not. Our road networks are remarkably robust;
fuel pipeline-and-storage systems are highly fragile;
most other systems lie somewhere in the middle.
Hardening infrastructure from attack can be ex-

pensive. However, if we understand the nature of the
most damaging attacks, we can improve a system’s

robustness for a given budget. Critical infrastructure
has been built to be cost-effective with little concern
for belligerent attacks; economic incentives to mitigate
this situation are lacking. This requires (1) subsidies,
changes to tax codes, and regulatory reform, and/or
(2) proving the secondary economic benefit of the nec-
essary expenditures (e.g., spare electric transmission
capacity could provide new, profitable trading oppor-
tunities).
However, there is at least one exception to the “can-

be-expensive” rule:
An appropriate level of redundancy or reorganiza-

tion could be inexpensive. Some types of infrastruc-
ture, e.g., supply chains, will benefit, at little expense,
by adding a few alternate shipping paths, or by relo-
cating surge capacity wisely.
Secrecy and deception can be valuable. Two-per-

son zero-sum games (e.g., Owen 2001, pp. 11–31) have
secrecy at their core, and are likely to be useful in this
arena, too.

Conclusion
We face a determined, intelligent enemy who seeks
to cause us maximum harm. Worst-case analysis
using optimization is crucial to a credible assessment
of infrastructure vulnerability and for planning
mitigating actions.
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Errata 
Brown, Carlyle, Salmerón, and Wood: Defending Critical Infrastructure, Interfaces 36(6), pp. 530–544. 
 
 
Note 1: Page 533, column 2 
 
In (AD1-MILP), 

  s.t. T T TA F F P+ − ≤θ β x c
should be 

  s.t. T T TA F F P+ − ≤θ β x cT

 
 
Note 2: Page 539, column 1 
 
(DA1YUMA) should be 
 

(1 )
YUMA(DA1 ) min max ( )k k kx x y

k kX k

q q−

∈
∈
∏x y A

  (24)  

                                    (25)  s.t. A =y b

                                    (26)                          { }| |0,1∈y A

where { }| |{0,1}X c′= ∈ ≤x cxA . 

 
 
And,  (DA2YUMA) should be 
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