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Abstract: We develop techniques to optimise the locations and surveillance scheduling of  
tower-mounted camera systems used by a military force in an urban setting. Using a  
game-theoretic foundation, we seek to minimise expected damage from attacks or other 
adversarial events (e.g., emplacements of improvised explosive devices). Assuming that at most 
one camera may surveil a single point of interest (POI) at any time, a mixed-integer program uses 
an additive-probability model to optimise the placement of towers, while allocating ‘aggregate, 
normalised surveillance time’ between cameras and POIs. Linear-programming-based column 
generation then creates a probability distribution for camera-to-POI assignments to define 
implementable schedules. We prove that such schedules must exist, making the additive 
probability model exact. Computational examples on realistically sized problems produce  
high-quality solutions quickly, with quality suffering only when the number of cameras available 
nears the number of POIs to be surveilled. We show that an alternative game-theoretic model 
may produce better solutions when such a situation arises. 
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1 Introduction 

This paper develops and tests models for optimally locating 
a set of camera towers used for surveillance of an urban area 
during a military conflict. We build on Salmeron and Wood 
(2015) who develop models that minimise the damage 
caused by undetected random or adversarial attacks at 
surveilled ‘point of interests’ (POIs). We overcome the key 
limitation of that work, the assumption of a fixed 
assignment of cameras to POIs, by also scheduling 
‘surveillance sessions’ with various camera-to-POI 
assignments. 

Using Salmeron and Wood’s (2015) adversarial 
paradigm, we first develop a model to optimise tower 

locations using an objective that evaluates aggregate, 
normalised camera-to-POI assignment times. We go on to 
show that: 

a a post-processing algorithm can produce an 
implementable session schedule whose long-term 
coverage matches those aggregate values 

b the complete procedure can be carried out efficiently 
using standard software and hardware. 

In essence, the camera schedule is a probability distribution 
over surveillance sessions, which is to be implemented as a 
Monte Carlo simulation. Thus, our paper concerns itself 
with efficient simulation, but in a less standard fashion than 
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do papers covering, say, efficient ‘mechanics’ of a 
simulation (e.g., Gillespie, 2001; Chen and Yucesan, 2005), 
efficient statistical tests to optimise the design of a 
simulated system (e.g., Nelson et al., 2001), or efficient 
optimisation of a simulated system (e.g., Fu et al., 2005; 
Jafferali et al., 2005). 

Examples of tower-based surveillance systems  
include ‘ground-based operational surveillance system’ 
(GBOSS) and base expeditionary targeting and surveillance 
systems-combined (BETSS-C). These systems have been 
used in Iraq and Afghanistan by coalition forces to help 
thwart the emplacement of improvised explosive devices 
(Defense Industry Daily, 2015). They can also help identify 
other events to which forces should respond, e.g., armed 
attacks, riots, sightings of suspicious vehicles; for 
simplicity, we refer to all such events as ‘attacks’. In 
addition to camera towers, low-altitude aerostats (tethered 
blimps) could also be included in the set of modelled 
surveillance assets. 

Murray et al. (2007) develop a model, similar to  
facility-location model, to identify the best subset of 
potential locations to place a limited number of surveillance 
cameras. Their objective function ignores probabilities of 
detection and simply tries to maximise the weighted number 
of POIs that can be surveilled. Using a similar physical 
setting, Salmeron and Wood (2015) develop several models 
that do account for detection probabilities, which may vary 
by distance between tower and POI and by other factors. 
However, neither of these deals with the actual scheduling 
of surveillance sessions. Scheduling could be critical given 
that the total number of POIs that should be surveilled may 
exceed the number of available cameras. 

The current paper takes camera scheduling into account, 
while still beginning with the solution to a static model for 
optimising ‘facility locations’. This model, a mixed-integer 
program (MIP), locates towers and determines the fraction 
of time that a camera at a particular location should surveil 
each POI. The MIP assumes a game-theoretic environment 
of an ‘attacker-defender model’ (Brown et al., 2006). In 
particular, a single attacker, who will carry out attacks over 
time, understands: 

a the value that the defender places on the various POIs 

b the defender’s nominal probability of detecting an 
attack at a POI from any potential tower location. 

While these worst-case assumptions may seem strong, they 
are appropriate for a military setting in which a central 
authority directs attacks (and another central authority 
directs defences). A model that minimises ‘average damage’ 
would require even stronger assumptions: the defender 
would also need to know the frequency with which attacks 
will occur at each POI. We do briefly develop in the body of 
the paper, however, an average-damage variant of our 
techniques, which might apply in a civilian setting. 

Our tower-location model does have some similarities 
with certain camera-placement models which, in turn, 
resemble certain facility-location models. Bodor et al. 
(2007) address the problem of camera placement for 

maximum observability of moving subjects in a given area, 
and introduce a joint measure of observability with quality 
of the view. Their optimisation in terms of the ‘motion 
statistics of a scene’ resembles the optimisation of facility 
locations over an empirical probability distribution of 
customer demands. [See the survey paper on stochastic 
facility-location models by Snyder (2006).] Hörster and 
Lienhart (2006) address a problem involving both  
coverage and resolution of images, accounting for cost of 
operations and effectiveness of a set of cameras with 
orientation-dependent effectiveness. They develop a number 
of models, but at least one has a strong flavour of a 
deterministic facility-location model. [See the survey paper 
on deterministic facility-location models by Owen and 
Daskin (1998).] In particular, variables determine whether a 
camera is placed at particular location and with a particular 
orientation (cf. facility operations), and with rewards that 
depend on whether a particular POI is covered by (cf. 
served by) a camera. In summary, our basic model  
has some similarities with certain camera-location and 
facility-location models, but our adversarial objective 
function appears to be unique. 

Although our problem involves surveillance and 
scheduling, it shares few similarities with the topic often 
referred to in the literature as surveillance scheduling. This 
topic involves the coordination of one or more cameras to 
surveil one or more moving targets (e.g., Costello and 
Wang, 2005; Qureshi and Terzopoulos, 2006; Krahnstoever 
et al., 2008; Natarajan et al., 2012; Jänen et al., 2013). 
Surveillance-scheduling models assume a fixed set of 
camera locations, so they cannot help us with optimally 
locating camera towers. These models may seek to 
maximise a probabilistic function such as the expected 
number of targets recognised – superficially, this might 
resemble our objective, which measures expected damage 
from attacks – but surveillance scheduling always models a 
stochastic environment with no adversarial characteristics. 
In summary, we find no useful connections between 
‘surveillance scheduling’ and the camera-to-POI scheduling 
that we require. 

We design our foundational tower-location model to 
identify aggregate, normalised camera-to-POI surveillance 
times – no scheduling is involved yet – because a model that 
combines location and scheduling would be complicated 
and might solve too slowly for practical use. In effect, a 
solution to the tower-location model identifies marginal 
probabilities for a camera-scheduling distribution, a 
distribution we prove to exist under reasonable assumptions. 
Of course, we also describe a method for computing such a 
distribution. To establish correctness, this effort employs the 
theory exploited by Liu et al. (2005) to solve a ‘maximal 
lifetime sensor-scheduling problem’. For a survey of related 
sensor-scheduling problems, see Section 4.2 in Wang 
(2011), but note that the techniques described there lack the 
game-theoretic foundations of our techniques. 

The current paper is based on, but diverges substantially 
from, a conference paper, Salmeron and Wood (2015). In 
particular, the current paper: 
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a omits details of a supporting database 

b emphasises an adversarial, game-theoretic environment 

c adds a new model and mathematical derivation 

d develops a completely new scheduling paradigm and 
algorithm, along with validating theoretical results 

e demonstrates the computational behaviour of our 
models and algorithms using new software 
implementations and test problems. 

2 A MIP for locating camera towers 

This section develops a MIP to identify the best subset of 
potential locations to place a limited number of camera 
towers. The MIP assigns cameras to POIs for surveillance, 
and determines the fraction of time, called ‘aggregate, 
normalised time’, that each camera will be tasked with 
surveilling each POI to which it is assigned. Using an 
additive model of detection probability, the objective 
function seeks to minimise the maximum expected cost of 
damage from any attack that goes undetected. Here, ‘limited 
number of camera towers’ simply implies that a collection 
of towers is an expensive, limited resource that places 
demands on other limited resources such as operating 
personnel. ‘Potential locations’ reflect a limited number of 
sites that have good viewsheds and that have or could have 
acceptable security, for example, existing or planned 
command posts, respectively. 

The MIP and subsequent scheduling algorithm ignore 
the fact that some surveillance time will be lost in switching 
from one camera-to-POI assignment to another. We believe 
this to be reasonable, because it should require only few 
seconds to change a camera’s angle, declination and focus 
to shift surveillance from one POI to another, and because 
we expect a given assignment to be maintained for several 
minutes. 

2.1 Minimising worst-case expected damage 

Using an additive model of detection probability and 
assuming that all camera towers are identical, the MIP 
below, MX1, minimises the maximum (i.e., worst-case) 
expected damage from an undetected attack. Section 2.2 
provides the game-theoretic interpretation of this model. 

Indices and index sets 
∈A L  potential camera-tower locations 

i∈ I  POIs that should be kept under surveillance 

c∈ AC  cameras on a tower located at ∈A L  

C  set of all cameras, i.e., .
∈

= A
A∪ L

C C  

Note: To simplify later exposition, we define nC/T = |Cℓ| for 
any .∈A L  This definition is valid because all towers are 
assumed to be identical. 

Data 

nT number of camera towers to be installed 

nI/C maximum number of POIs assignable to a single 
camera 

di expected cost of damage that an attack at POI i will 
cause if the attack is not detected 

pℓi probability of detecting an attack at POI i from a 
camera on a tower at location ℓ when the camera is 
surveilling i. 

Variables 

yℓ 1 if a tower is located at ℓ, 0 otherwise 

ciy  1 if camera c has some of its time assigned to surveil 
POI i (‘allowed assignments’) 

fci normalised time that camera c is assigned to surveil 
POI i. 

Formulation 

, , ,
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∀ ∈≤∑∑
A L C
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,ci ciy if c∀ ∈ ∈≤ C I  (6) 

I/C ,ci
i

y n y c
∈

≤ ∀ ∈ ∈∑ A AA
I

L C  (7) 

,ci
c C

y y i
∈

≤ ∀ ∈ ∈∑
A

A A L I  (8) 

{0, 1}y ∈ ∈∀A A L  (9) 

{0, 1} ,ciy c i∈ ∈∈ ∀ C I  (10) 

0 ,ci c if ∀≥ ∈ ∈C I  (11) 

The objective function (1), together with constraints (2), 
minimises the worst case of an approximate expected 
damage function for undetected attacks across all POIs. 
Constraint (3) limits the number camera towers being 
located and installed to the number available nT. Constraints 
(4) ensure that the total, normalised surveillance time from 
each camera equals the time available. Constraints (5) 
ensure that the total normalised time assigned to surveilling 
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a particular POI does not exceed 1; this approximates the 
requirement that no more than a single camera surveil a POI 
at any time. Constraints (6) insist that no surveillance time 
be allocated from camera c to POI i unless that camera is 
assigned explicitly to that POI. Taking advantage of (6), 
constraints (7) limit the number of POIs that can be 
surveilled from a single tower; these constraints reflect the 
limited capabilities of human operators and the loss of 
effectiveness that would arise if a single camera had to 
constantly switch focus from one POI to another. 
Constraints (8) require that cameras on a single, installed 
tower be assigned to different POIs. Constraints (9) to (11) 
limit the variables’ domains. 

For notational simplicity, we assume that every POI 
i∈ I  can be usefully surveilled from every potential tower 
location .∈A L  In practice, the distance between a location 
and a POI, or the lack of a line of sight, may make 
surveillance of little or no value between certain pairs (i, ℓ), 
and the implemented model can be simplified by taking that 
into account. 

We note that MX1 does not distinguish one camera on a 
tower from another. Thus, the model may exhibit a great 
deal of symmetry in potential solutions, a symmetry that 
will grow with increasing values of nC/T. This could reduce 
the efficiency of a branch-and-bound solution algorithm and 
necessitate the application of some symmetry-breaking 
constructs. With few exceptions, however, reasonably large 
test instances solve easily, so we do not pursue this issue. 

2.2 Game-theoretic interpretation of MX1 

This section presents the game-theoretic interpretation of 
MX1. In this interpretation, the tower-location model 
includes both the decision vector y for tower locations and 
the decision vector for camera-to-POI assignments .y  
Given those decisions, the defender and attacker engage in a 
simultaneous-play game with decision vectors f and φ: 

a with probability fci, the defender surveils POI i∈ I  
with camera * 1| ciC yc∈ =  

b with probability ,,iφ i∈ I  the attacker attacks POI i. 

The model has this formulation: 

,
*

:

min min max 1i i ci i
I ci

z d p f φ
∈ ∈ ∈

⎛ ⎞−
⎜ ⎟
⎝ ⎠

≡ ∑ ∑∑MMX1
y f φy

MMX1

A

A
A L C

 (12) 

subject to: (3) to (11), and 

1i
i

φ
∈

=∑
I

 (13) 

0iφ i≥ ∀ ∈ I  (14) 

MX1 formally derives from MMX1 by fixing y, y  and f, 
taking the dual of the resulting linear program and then 
releasing the fixed variables. Given this derivation, a 
standard game-theory result applies to obtain the optimal 

attack probabilities φ*: these are the optimal dual variables 
for constraints (2) in the linear program that appears after 
fixing y = y* and *.=y y  

2.3 Minimising average damage 

We have advocated, in the context of a military conflict, for 
scheduling urban surveillance to minimise maximum 
expected damage. The reason is that attacks in this context 
are likely to be guided by a central authority and, thus, the 
game-theoretic model of two adversaries with directly 
competing goals is credible. In a peacetime urban setting, 
however, attacks could represent independent street crimes. 
Historical data may then justify the modelling of attacks at 
each POI as a Poisson process with known rate (Braga and 
Bond, 2008). Such modelling yields a fixed probability of 
attack ˆiφ  for each POI ,i∈ I  and we could create the 
following optimisation model to minimise the average 
damage from attacks across all POIs: 

, ,
: m ˆin 1i i i ci

i c

φ d p f
∈ ∈ ∈

⎛ ⎞−⎜ ⎟
⎝ ⎠

∑ ∑∑y fy
AVG1

A

A
AI L C

 (15) 

subject to: (3) to (11). 
Camera towers may be irrelevant in a peacetime urban 

setting, however. Rather, we expect this setting to involve 
an existing collection of cameras on fixed mounts, with 
each camera aimed at a ‘fixed scene’. (In some cases, the 
camera and scene can be adjusted in real-time to better 
monitor suspicious activity, but ‘fixed scene’ would  
be a reasonable modelling assumption.) Human observers 
monitor the scenes on video screens for ‘attacks’, with this 
monitoring limited by human ability and available screens. 
Because the number of cameras may exceed the number that 
can be monitored effectively (Neil et al., 2007), efficient 
scheduling of that monitoring could be important. Thus, we 
believe that a model related to AVG1, along with a 
schedule-producing algorithm like the one described next, 
could be useful in a peacetime urban setting. Because of our 
interest in military applications, however, we do not pursue 
this topic. 

3 Scheduling 

Let * * *( , ),y y f  denote a solution to MX1, and define 

*
*

| 1
,

y∈ =
=

A
A

A∪ L
C C  which is the set of usable cameras 

following selection of tower locations. This section shows 
how the normalised surveillance times represented by f* can 
be scheduled as surveillance sessions. Such a session is 
simply a period of time with a valid POI-to-camera 
assignment; ‘valid’ implies that every camera *∈c C  is 
assigned to a POI ,i∈ I  with at most one camera per POI. 
In turn, this implies that the additive probability 
approximation that MX1 uses in (2) is exact. To show that 
such scheduling is possible, we employ the theory outlined 
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in Liu et al. (2005), but in a much condensed fashion. We 
create a much simpler schedule-generating algorithm, also. 

Let gk be a 0-1 vector that represents the kth possible 
assignment of cameras *∈c C  to POIs .i∈ I  That is,  
gkci = 1 if camera *∈c C  views POI i∈ I  in assignment k, 
and gkci = 0, otherwise; ‘at most one camera per POI’ 
implies that 0kci kc ig g ′ =⋅  for all k, i and c ≠ c′. (For 
notational simplicity below, we allow assignments k with 
gkci = 1 for *,c C∈  even though * 0.cif =  In practice, we 
eliminate variables and constraints using this information.) 

Finally, let K  denote the index set for all 
* |

| |
|
⎛ ⎞
⎜ ⎟
⎝ ⎠

I
C

 

assignment vectors. Now, an optimal schedule is 
represented by a solution (α**, s**) to the following linear 
program, provided that: 

a s** = 0 **
SKED  (i.e.,  0,z =  below) 

b ** 1,kk∈
=∑ α

K
 i.e., α** is a probability distribution for 

the surveillance sessions represented by gk, :k ∈K  

*

*
,

( ) min
i

c
c

iz s
∈∈

= ∑∑*
s

SKEDSKED
IC

K
α

 (16) 

subject to: 

* *,kci k ci ci
k

g c is f
∈

+ = ∀ ∈ ∈∑ α
K

C I  (17) 

*0 ; 0 ,k ci ck s c i≥ ∀ ∈ ≥ ∀ ∈ ∈α K C I  (18) 

If condition (a) is true, summing all constraints (17) gives 
** | |,| | kk∈
=∑ α

K
C C  which means that condition (b) will 

hold automatically. Assuming **
SKED 0,z =  the installed 

cameras are scheduled very simply then: every pre-specified 
interval of time (e.g., every 10 minutes), create a new 
surveillance session by, according to the probability 
distribution α**, randomly selecting and applying some 
assignment gk. 

If a valid distribution exists, we can find it by solving 
( )SKED K  using a standard, linear-programming-based 

column-generation algorithm (Gilmore and Gomory, 1961), 
provided that the algorithm does not cycle. The algorithm 
follows: 

GenDist 

Input: *, , fI C  and *C  from MX1. 

Output: Probability distribution αk on assignment vectors gk, 
.k ∈ ′K  

{ 
 ;′ ←∅K  

 Repeat{ 
  Solve ( )SKED K  for 

   (i) ** ,zSKED  

   (ii) **
kα  for ,k ∈ ′K  and 

   (iii) **
ciμ  for *, ,C Ic i∈ ∈  which are optimal dual 

variables for constraints (17); 
  If **( 0)z =SKED  go to Solved; 

  Solve this assignment problem for ˆ :g  

   
*

**min ci ci
ic

gμ
∈∈

∑∑g
IC

 (19)

   subject to: 
   

*|

*

0

1
ci

c

i f

ig c C
∈ >

∀= ∈∑
I

 (20)

   
* *| 0

1
ci

ci

c f

ig
∈ >

≤ ∀ ∈∑
C

I  (21)

   *{0,1} , ;cig c i∈ ∀ ∈ ∈C I  (22)

  k ← k + 1; 
  ˆ;k ←g g  

  { };k′ ← ′∪K K  

 } 
 Solved: 
 For ( )k ∈ ′K  { 

  Print (‘Assign’, gk, ‘with probability’, **);kα  

 } 
} 

Of course, the assignment problem (19) to (22) solves 
efficiently using combinatorial or linear-programming-
based techniques [e.g., Ahuja et al., (1993), pp.470–473]. 

To show that ( )SKED K  has an optimal solution with 
s** = 0, we use the following standard definitions: 

A permutation matrix P
kG  is an n × n 0-1 matrix with 

exactly one 1 in each row and column. 
An assignment matrix A

kG  is an m × n 0-1 matrix,  
m ≤ n, with exactly one 1 in each row and at most one 1 in 
each column. 

A (singly) stochastic matrix FSS is an m × n  
non-negative real matrix, m ≤ n, with each row sum being 1 
an each column sum being at most 1. 

A doubly stochastic matrix FDS is an n × n non-negative 
real matrix each of whose row and column sums is 1. 

Lemma 1: An n × n doubly stochastic matrix FDS can be 
written as a convex combination of the n × n permutation 
matrices , ,P P

k kG ∈K  where PK  is the index set for all 
such permutation matrices. 

Proof: For example, see Theorem 5.4 in Berman and 
Plemmons (1994). ■ 

Lemma 2: Any stochastic matrix FSS can be expanded to a 
doubly stochastic matrix FDS by defining: 

a ij j
DS SS

if f=  for i = 1, …, m and j = 1, …, n 
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b ( )1
1 ( )SmDS

i
S

iji jf f n m′ =
= − −∑  for 1, ..., ni m′ = +  and  

j = 1, …, n. 

Proof: The first m rows of FDS are identical to the first m 
rows of FSS, so each such row sums to 1. It remains to show 
that all columns of FDS sum to 1 as do all rows i = m + 1, …, 
n. We leave the details to the reader. ■ 

Lemma 3: Any m ×n stochastic matrix FSS with m ≤ n can be 
written as a convex combination of the assignment matrices 

, ,P
k
A kG ∈K  that are created by deleting the last n – m 

rows from the corresponding permutation matrices 
, .P

k
P kG ∈K  

Proof: If m = n, FSS must actually be a doubly stochastic 
matrix and the result follows trivially from Lemma 1 
because , .A

k
A P

k
P kG G ∈= =K K  So, now assume that  

m < n for FSS. Using Lemma 2, add n – m rows i, i = m + 1, 
…, n with appropriate entries to extend this matrix to a 
doubly stochastic matrix FDS. From Lemma 1, we know that 
a convex combination of the n × n permutation matrices 

, ,P
k
P kG ∈K  must exist. Find such a convex combination, 

that is, find α** satisfying 

P

A DS
kk

k

G F
∈

=∑ α
K

 (23) 

1
P

k
k∈

=∑ α
K

 (24) 

.0 P
k k≥ ∀ ∈α K  (25) 

Deleting the last n – m constraints in (23) shows that the 
convex combination required by the theorem exists. ■ 

Lemma 4: Any m × m stochastic matrix FSS with m ≤ n can 
be written as a convex combination of the set of all m × n 
assignment matrices , .A

k
A kG ∈K  

Proof: As in the proof of Lemma 3, the case of m = n is 
trivially true. Thus, assume m < n and let (23)′ denote the 
subset of constraints (23) that remain after the last  
(row-deletion) step in that proof. We know that vector α** 
applied to the system (23)′, (24), (25) defines a convex 
combination of assignment matrices, although some of these 
matrices will be duplicates. Collecting like terms in this 
system yields the desired result. ■ 

Theorem 1: ( )SKED K  has an optimal solution (α**, s**) 
with s** = 0 

Proof: This theorem’s statement is equivalent to that of 
Lemma 4, with the stochastic matrix FSS being represented 
as the vector f* and the assignment matrices ,A

kG  k ∈ KA, 
represented by corresponding assignment vectors 

.Ak ∈ ≡K K  ■ 

Theorem 2: In the absence of cycling, algorithm  
GenDist produces a valid probability distribution for 
camera-assignment scheduling. 

Proof: This follows from: 

a Theorem 1 which proves that a valid distribution exists 

b the fact that GenDist just implements a special version 
of the simplex algorithm for solving a linear program 

c the simplex algorithm always converges unless it 
cycles. ■ 

In practice, we find that GenDist converges in a modest 
number of steps, and thus no anti-cycling techniques are 
required. [For examples of anti-cycling techniques that 
might be applied if needed, see Gill et al. (1989) and the 
references therein.] 

4 Computational results 

Using simulated scenarios, this section investigates the 
empirical behaviour of our procedure for locating camera 
towers and scheduling surveillance sessions for the cameras 
on those towers. The computation also validates our 
methods in a self-evident fashion by: 

a providing empirical evidence of the correctness of 
Section 3’s theory 

b substantiating our claim that the procedure consisting 
of model MX1 and the algorithm GenDist solves 
realistic problems efficiently enough for practical 
applications using standard hardware and software 

c identifying extreme parameter ranges for which MX1 
produces poor results or must fail 

d exploring an alternative camera-location model for such 
parameter ranges. 

4.1 Computational environment 

We generate all mathematical programs using the standard 
modelling system GAMS (version 23.3.3), and solve them 
with CPLEX (version 12.6.0.1). A Lenovo W541 laptop 
computer carries out all computations, running at 2.9 GHz 
and using 16 GB of RAM. All MIPs are solved using a 
relative optimality tolerance of 1%, subject to a time limit of 
1,000 seconds. 

4.2 Scenario description 

We model a square study region with each side having a 
length of 100 in arbitrary units. Two ‘geographical 
scenarios’ apply, a medium-sized one ‘M’ and a large-sized 
one ‘L’. The former has 15 candidate locations and 60 POIs 
and the latter has 30 and 120, respectively. The x- and  
y-coordinates for all of these are randomly chosen according 
to a uniform distribution over the study region. Letting Dℓi 
denote the distance between ℓ and i, and letting 30,D =  
both geographical scenarios use 
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The reduction in pℓi with 2
iD−
A  reflects reduced resolution of 

an image on a rectangular screen with a given number of 
pixels as camera-to-POI distance increases (Bodor et al., 
2007). 

We further create 32 complete ‘test scenarios’ from the 
geographical scenarios M and L, by using variants of: 

a damage values (either selected according to a discrete 
uniform distribution over di ∈ {1, …, 5}∀i or set as  
di = 1∀i) 

b number of potential tower locations nT ∈ {5, 10, 15, 
20}, depending on the geographical scenario 

c number of cameras per tower nC/T ∈ {1, …, 12}, 
depending on other parameters. 

Table 1 describes the set of test scenarios. For example, 
M5/10/3 indicates a medium-sized geographical scenario 
that is completed by specifying di ∈{1, …, 5}∀i, nT = 10 
and nC/T = 3. 

Table 1 Test scenarios analysed 

Scenario | |L  | |I  di nT: nC/T 

Md/nT/nC/T 15 60 {1} 5: 1, …, 12 
{1, …, 5} 10: 1, …, 6 

Ld/nT/nC/T 30 120 {1} 15: 1, …, 8 
{1, …, 5} 20: 1, …, 6 

Note: See the text for a detailed explanation. 

4.3 Test scenario results 

Tables 2 and 3 present the results for the medium- and 
large-sized test scenarios, respectively. In addition to the 
optimal objective value * ,zMX1  the tables list: | |,′K  the 
total number of assignment vectors that are generated; 
| |,′′K  the number of those vectors with positive weight in 
the optimal scheduling distribution α*; Δavg, the average 
number of individual camera-to-POI assignments that 
change in transitioning from one session to another; Δmax the 
maximum number of such changes that can occur; and 
‘Time’ which gives the total elapsed seconds used to solve 
MX1 and execute GenDist. We note that each row in these 
tables represents only a single, randomly generated instance. 
Our computational experience indicates that, while optimal 
objective values may vary greatly among randomly 
generated instances, the conclusions reached on 
computational behaviour do not change across the range of 
parameters displayed. 

We conclude from Tables 2 and 3 that MX1 and 
GenDist typically produce good schedules quickly, with 
probabilities of detection that increase sensibly as  
nC/T increases. We also note that | |,′K  the number  
of assignments generated, tracks well with total  
solution time. Thus, this value seems to give a good 
implementation-independent measure of the difficulty of 
solving a particular model instance. 

Table 2 Results for medium-sized scenarios 

Scenario 
30D =  

*zMX1  | |′K  | |′′K  Δavg Δmax 
Time 
(sec.) 

M1/5/1 0.9240 106 60 4.6 5 18.3 
M1/5/2 0.8448 103 58 8.4 10 18.7 
M1/5/3 0.7642 156 58 11.4 15 28.6 
M1/5/4 0.6812 88 60 13.8 19 19.4 
M1/5/5 0.6028 96 60 16.0 20 25.2 
M1/5/6 0.5193 105 60 16.7 23 42.7 
M1/5/7* 0.4449 95 60 18.5 27 1018.9 
M1/5/8 0.3900 114 60 20.0 30 39.1 
M1/5/9 0.3866 115 58 19.7 25 26.4 
M1/5/10 0.3866 86 32 14.1 20 18.6 
M1/5/11 0.3866 26 14 5.4 8 7.4 
M1/5/12 0.3866 4 4 10.1 20 6.9 
M5/5/1 3.7218 65 30 3.9 5 10.8 
M5/5/2 3.0110 45 30 6.7 10 8.2 
M5/5/3 2.5040 80 38 9.3 13 16.7 
M5/5/4 2.0062 56 38 10.2 17 14.8 
M5/5/5 1.9329 128 36 9.6 17 23.7 
M5/5/6 1.9329 66 26 7.8 13 12.7 
M5/5/7 1.9329 82 29 9.3 14 15.8 
M5/5/8 1.9329 50 18 5.4 9 9.8 
M5/5/9 1.9329 55 16 7.1 13 11.1 
M5/5/10 1.9329 52 14 5.9 10 11.1 
M5/5/11 1.9329 58 10 9.1 16 16.4 
M5/5/12 1.9445 3 3 6.7 14 4.7 
M1/10/1 0.8386 95 60 8.4 10 8.4 
M1/10/2 0.6740 83 60 13.7 18 13.7 
M1/10/3 0.5131 82 60 16.6 24 16.6 
M1/10/4 0.3866 90 52 17.9 25 17.9 
M1/10/5 0.3866 105 31 16.3 26 16.3 
M1/10/6 0.3866 11 11 16.7 25 16.7 
M5/10/1 2.9892 112 38 6.9 10 24.0 
M5/10/2 1.9620 124 50 10.8 16 29.6 
M5/10/3 1.9329 81 32 9.5 13 99.5 
M5/10/4 1.9329 128 25 8.9 15 29.8 
M5/10/5 1.9329 128 25 8.9 15 29.5 
M5/10/6 1.9329 68 18 10.1 20 16.3 

Notes: See the text for an explanation of the table’s 
entries. For the case marked ‘*’, MX1 times out 
with a 2.2% optimality gap remaining. GenDist 
operates normally on the resulting solution, 
however. 

Tables 2 and 3 also show, however, that the methodology is 
imperfect: when the number of towers is small or the best 
set of towers has poor geographical coverage, improvement 
in expected damage can stall as nC/T increases; for example, 
see M1/5/nC/T for nC/T ≥ 10. Because expected damage does 
not stall as nC/T increases for the large-sized scenarios 
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reported in Table 3, we conclude that a high-quality solution 
requires a good geographical dispersion of potential tower 
locations. 

GenDist never generates more than 600 camera-to-POI 
assignments, and the number used in a schedule (i.e., having 
positive probability) never exceeds 120. The only result that 
may seem unfortunate is that the average number of changes 
in POI surveillance in moving from one assignment to 
another, Δavg, is a large fraction of the maximum number 
that might occur, Δmax. For example, the schedule for test 
scenario M5/5/4 surveils 20 POIs simultaneously but, on 
average over half of the POIs being surveilled (i.e., 10.2) 
change from one session to the next. 

Table 3 Computational results for large-sized scenarios 

Scenario 
30D =  

*zMX1  | |′K  | |′′K  Δavg Δmax 
Time 
(sec.) 

L1/15/1 0.8752 285 119 13.1 15 54.8 
L1/15/2 0.7501 599 120 22.5 26 103.1 
L1/15/3 0.6250 131 102 30.2 35 32.4 
L1/15/4 0.5000 22 13 30.0 44 7.1 
L1/15/5 0.3750 179 106 37.8 44 49.2 
L1/15/6 0.2500 83 66 37.6 46 26.2 
L1/15/7 0.1251 320 106 35.3 43 100.6 
L1/15/8 0.0000 1 1 0 0 2.5 
L5/15/1 3.0457 63 45 10.4 14 12.3 
L5/15/2 2.2150 132 71 18.0 25 26.9 
L5/15/3 1.6076 138 89 24. 32 34.4 
L5/15/4 1.0708 169 89 28.9 37 41.7 
L5/15/5 0.7758 226 117 32.7 47 61.9 
L5/15/6 0.5193 310 119 37.9 48 99.1 
L5/15/7 0.2599 336 117 34.8 52 121.7 
L5/15/8 0.0000 1 1 0 0 7.2 
L1/20/1 0.8753 243 120 13.1 15 47.6 
L1/20/2 0.6667 144 80 26.7 32 34.0 
L1/20/3 0.5000 18 8 30.0 46 4.5 
L1/20/4 0.3333 63 42 36.4 46 15.8 
L1/20/5 0.1667 318 96 36.6 49 89.4 
L1/20/6 0 1 1 0 0 3.9 
L5/20/1 2.7543 177 71 13.6 18 32.8 
L5/20/2 1.7847 171 89 22.7 32 34.9 
L5/20/3 1.0708 160 90 28.2 33 35.9 
L5/20/4 0.6895 237 105 31.1 38 60.0 
L5/20/5 0.3447 456 120 35.4 48 119.8 
L5/20/6 0 1 1 0 0 4.61 

Note: See the text for an explanation of the entries. 

4.4 Many cameras: an alternative model 

As the total number of cameras available nC/T ∙ nT starts to 
approach the number of POIs | |,L  focusing two or more 
cameras on distinct towers upon a single POI might improve 

detection probabilities and reduce expected damage. This 
could alleviate some of the stalling of the expected-damage 
values seen going down the rows of Table 2. Assuming 
independent detections, and requiring that each camera be 
permanently assigned to some POI, the following model 
applies MX1’s game-theoretic paradigm (Salmeron and 
Wood, 2015): 
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MX2 linearises easily, of course, and we solve that 
linearised version in practice. Constraints (29) are not 
required, but they may tighten the model’s continuous 
relaxation and reduce solution times. Note also that the 
fixed camera-to-POI assignments assumed in MX2 alleviate 
the need for a secondary scheduling algorithm and any 
related theory. 

For testing, we fix nT = 5, and vary nC/T from 1 to 8 in 
‘small-sized scenarios’ defined to have | | 9=L  and 
| | 30.=I  Following the nomenclature above, Sd/nT/nC/T = 
Sd/5/nC/T denotes instances of these scenarios. We use 
small-sized scenarios because certain larger instances of 
MX2 can be difficult to solve. Also, to avoid scenarios in 
which expected damage drops abruptly to nearly 0, we 
reduce D  to 20. 

Table 4 compares the behaviour of MX1 and MX2. 
Consider first the eight instances with di = 1 for all POIs i. 
The ‘fixed-assignment system’ represented by MX2 must 
leave some POIs unsurveilled when 1 ≤ nC/T ≤ 5, and hence, 
the initial collection of 1s in column 4. By contrast, the 
‘variable-assignment system’ represented by MX1 can 
spend some time surveilling every POI in those scenarios 
and reduce expected damage below 1. But then, because of 
the requirement for the MX1-based solution that no POI be 
surveilled simultaneously by two or more cameras, the 
value of adding more cameras to available towers trails off 
and may stop improving as the total number of cameras 
becomes large; of course, the model becomes infeasible 
once that number exceeds | | .I  

When nC/T = 6, the total number of cameras equals | |,I  
and thus exactly one camera can be assigned to each POI in 
either model to reduce expected damage below 1. The 
optimal objective values for the two models are therefore 
identical. For nC/T > 6, MX2 can assign two or more 
cameras from separate towers to some POIs in order to 
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continue reducing expected damage. In these cases, 
however, the variable-assignment system based on MX1 
simply becomes infeasible, given the requirement that no 
two cameras surveil the same POI simultaneously. 

Table 4 Comparison of solutions to MX1 and MX2 on  
small-sized scenarios as the total number of cameras 
approaches and exceeds the number of POIs 

Scenario 
20D =  

MX1  MX2 

*zMX1  Time 
(sec.) 

*zMX2  
POIs w/ 

extra 
cover 

Time 
(sec.) 

S1/5/1 0.8848 0.30  1 - - 
S1/5/2 0.7727 0.48  1 - - 
S1/5/3 0.7385 0.33  1 - - 
S1/5/4 0.7385 0.28  1 - - 
S1/5/5 0.7385 0.33  1 - - 
S1/5/6 0.7385 0.58  0.7385 0 1.95 
S1/5/7 NA NA  0.5668 3 1.41 
S1/5/8 NA NA  0.5111 4 1.02 
S5/5/1 2.8766 0.20  5 0 12.76 
S5/5/2 2.3572 0.41  3 0 0.25 
S5/5/3 2.0706 0.67  3 0 203.29 
S5/5/4 2.0706 0.75  2.4735 0 1.14 
S5/5/5 2.0706 0.75  1.7073 2 1.20 
S5/5/6 2.0706 0.75  1.4930 4 1.56 
S5/5/7 NA NA  1.4275 7 1.53 
S5/5/8 NA NA  1.4275 7 1.42 

Notes: ‘NA’ indicates that MX1 is infeasible, while ‘-’ 
indicates that any solution to MX2 would give 
the same objecitve value. ‘POIs w/ extra cover’ 
gives the number of POIs with at least two 
cameras assigned to them in MX2’s solution. 

For the scenarios with di ∈ {1, …, 5} the fixed-assignment 
system (MX2) must leave some POIs unsurveilled, and the 
worst damage from an unsurveilled POI defines the 
expected damage of 5, 3 or 3, when nC/T = 1, 2 or 3, 
respectively. However, when nC/T = 4, some POIs remain 
unsurveilled, but the expected damage of 2.4735 is defined 
by a POI that is, in fact, surveilled. 

When nC/T = 5, we see that the fixed-assignment  
system outperforms the variable-assignment system, even 
though some POIs must be left unsurveilled. This happens 
because the fixed-assignment system can assign at least one 
camera to every POI i with di > 2 and, where that does not 
suffice to bring the worst-case expected damage down 
sufficiently, that reduction can be achieved by assigning  
two or more cameras to certain ‘high-value POIs’ (i.e.,  
POIs i with di ≥ 3). Thus, when nominal damage values 
vary, the fixed-assignment system can outperform the 
variable-assignment system even when some POIs must be 
left unsurveilled. 

We remind the reader of the strong assumption of 
independent detections made in developing the results 
above. The apparent superiority of the fixed-assignment 

system modelled by MX2, for certain parameter settings, 
might not be realisable in practice. 

5 Conclusions 

We have demonstrated a method for optimally locating a set 
of surveillance-camera towers and then scheduling 
surveillance of ‘POIs’ by installed cameras. The model 
seeks to minimise worst-case expected damage from attacks 
or other events in an adversarial setting. A key assumption 
applies: at most one camera may surveil a POI at any time. 

By using a two-step process, we create a solution 
technique that solves quickly enough on a laptop computer 
for practical use. First, the solution to a facility-location-like 
model identifies camera locations that optimise aggregate, 
normalised, camera-to-POI assignment times. Then, a 
linear-programming-based column-generation algorithm 
produces a probability distribution for camera-to-POI 
assignments – each with at most one camera per POI – 
whose marginal probabilities match the normalised, 
aggregate assignment times. We prove that this solution 
must be optimal and show that it is achievable in practice. 

When the total number of cameras becomes large 
compared to the number of POIs, we also demonstrate the 
potential benefits a tower-location model that uses a fixed 
assignment of cameras to POIs. Specifically, each camera 
surveils a single POI, but two or more cameras may surveil 
a POI, provided that those cameras are mounted on separate 
towers. The fixed-assignment model may reduce expected 
damage as the total number of cameras grows, but that 
result depends strongly on: 

a the variation across POIs of the nominal damage 
associated with a successful attack 

b the assumption of independent detections among 
cameras surveilling the same POI from different 
locations. 

These issues will require further research. 
Our general topic area has numerous opportunities for 

additional research involving simulation. For instance, 
surveillance cameras can detect riots, but simulation of 
human behaviour in this context might lead to methods that 
can detect and help stop a riot at the earliest possible stage 
(Bruzzone et al., 2011; Lacko et al., 2013). Also, if we relax 
some of the assumptions required of our optimisations 
models – suppose simultaneous attacks at multiple locations 
can occur – then the models’ results could be viewed as 
approximate solutions that need to be verified or modified 
through simulation studies; for example, see Schriber and 
Stecke (1987) and Wiese et al. (2009). 
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